Monitoring of Land Subsidence in the Po River Delta (Northern Italy) Using Geodetic Networks
Abstract
:1. Introduction
2. The Po River Delta
3. The PODELNET Network
4. Materials, Methods, and Processing
4.1. GNSS Data and Analysis
4.2. InSAR Data and Analysis
5. Results of the GNSS-InSAR Integrated Monitoring
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ericson, J.P.; Vörösmarty, C.J.; Dingman, S.L.; Ward, L.G.; Meybeck, M. Effective sea-level rise and deltas: Causes of change and human dimension implications. Glob. Planet. Chang. 2006, 50, 63–82. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.W.; Vorosmarty, C.J.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Fiaschi, S.; Fabris, M.; Floris, M.; Achilli, V. Estimation of land subsidence in deltaic areas through differential SAR interferometry: The Po River Delta case study (Northeast Italy). Int. J. Remote Sens. 2018, 39, 8724–8745. [Google Scholar] [CrossRef]
- Fabris, M. Coastline evolution of the Po River Delta (Italy) by archival multi-temporal digital photogrammetry. Geomat. Nat. Hazards Risk 2019, 10, 1007–1027. [Google Scholar] [CrossRef] [Green Version]
- Fabris, M. Monitoring the Coastal Changes of the Po River Delta (Northern Italy) since 1911 Using Archival Cartography, Multi-Temporal Aerial Photogrammetry and LiDAR Data: Implications for Coastline Changes in 2100 A.D. Remote Sens. 2021, 13, 529. [Google Scholar] [CrossRef]
- Brooks, B.A.; University of Hawaii; Bawden, G.; Manjunath, D.; Werner, C.; Knowles, N.; Foster, J.H.; Dudas, J.; Cayan, D.; Survey, U.G.; et al. Contemporaneous Subsidence and Levee Overtopping Potential, Sacramento-San Joaquin Delta, California. San Franc. Estuary Watershed Sci. 2012, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Wolstencroft, M.; Shen, Z.; Törnqvist, T.E.; Milne, G.A.; Kulp, M. Understanding subsidence in the Mississippi Delta region due to sediment, ice, and ocean loading: Insights from geophysical modeling. J. Geophys. Res. Solid Earth 2014, 119, 3838–3856. [Google Scholar] [CrossRef] [Green Version]
- Minderhoud, P.S.J.; Erkens, G.; Pham, V.H.; Bui, V.T.; Erban, L.; Kooi, H.; Stouthamer, E. Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environ. Res. Lett. 2017, 12, 064006. [Google Scholar] [CrossRef] [PubMed]
- Saleh, M.; Becker, M. New estimation of Nile Delta subsidence rates from InSAR and GPS analysis. Environ. Earth Sci. 2018, 78, 6. [Google Scholar] [CrossRef]
- Carminati, E.; Martinelli, G. Subsidence rates in the Po Plain, northern Italy: The relative impact of natural and anthropogenic causation. Eng. Geol. 2002, 66, 241–255. [Google Scholar] [CrossRef]
- Carminati, E.; Martinelli, G.; Severi, P. Influence of glacial cycles and tectonics on natural subsidence in the Po Plain (Northern Italy): Insights from14C ages. Geochem. Geophys. Geosyst. 2003, 4, 1–14. [Google Scholar] [CrossRef]
- Doke, R.; Kikugawa, G.; Itadera, K. Very Local Subsidence Near the Hot Spring Region in Hakone Volcano, Japan, Inferred from InSAR Time Series Analysis of ALOS/PALSAR Data. Remote Sens. 2020, 12, 2842. [Google Scholar] [CrossRef]
- National Research Council. Mitigating Losses from Land Subsidence in the United States; The National Academies Press: Washington, DC, USA, 1991; p. 58. [Google Scholar] [CrossRef]
- Benetatos, C.; Codegone, G.; Ferraro, C.; Mantegazzi, A.; Rocca, V.; Tango, G.; Trillo, F. Multidisciplinary Analysis of Ground Movements: An Underground Gas Storage Case Study. Remote Sens. 2020, 12, 3487. [Google Scholar] [CrossRef]
- Even, M.; Westerhaus, M.; Simon, V. Complex Surface Displacements above the Storage Cavern Field at Epe, NW-Germany, Observed by Multi-Temporal SAR-Interferometry. Remote Sens. 2020, 12, 3348. [Google Scholar] [CrossRef]
- Gido, N.A.A.; Bagherbandi, M.; Nilfouroushan, F. Localized Subsidence Zones in Gävle City Detected by Sentinel-1 PSI and Leveling Data. Remote Sens. 2020, 12, 2629. [Google Scholar] [CrossRef]
- Grgić, M.; Bender, J.; Bašić, T. Estimating Vertical Land Motion from Remote Sensing and In-Situ Observations in the Dubrovnik Area (Croatia): A Multi-Method Case Study. Remote Sens. 2020, 12, 3543. [Google Scholar] [CrossRef]
- Sopata, P.; Stoch, T.; Wójcik, A.; Mrocheń, D. Land Surface Subsidence Due to Mining-Induced Tremors in the Upper Silesian Coal Basin (Poland)—Case Study. Remote Sens. 2020, 12, 3923. [Google Scholar] [CrossRef]
- Zhou, C.; Gong, H.; Chen, B.; Gao, M.; Cao, Q.; Cao, J.; Duan, L.; Zuo, J.; Shi, M. Land Subsidence Response to Different Land Use Types and Water Resource Utilization in Beijing-Tianjin-Hebei, China. Remote Sens. 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Stein, R.S. Discrimination of tectonic displacement from slope-dependent errors in geodetic leveling from southern California. In Earthquake Prediction: An International Review; Simpson, D.W., Richards, P.G., Eds.; Maurice Ewing Series for Earthquake Prediction and International Review: Washington, DC, USA, 1981; pp. 441–456. [Google Scholar]
- Cenni, N.; Viti, M.; Baldi, P.; Mantovani, E.; Bacchetti, M.; Vannucchi, A. Present vertical movements in Central and Northern Italy from GPS data: Possible role of natural and anthropogenic causes. J. Geodyn. 2013, 71, 74–85. [Google Scholar] [CrossRef]
- Strange, W.E. The impact of refraction correction on leveling interpretations in Southern California. J. Geophys. Res. Solid Earth 1981, 86, 2809–2824. [Google Scholar] [CrossRef]
- Chen, X.; Achilli, V.; Fabris, M.; Menin, A.; Monego, M.; Tessari, G.; Floris, M. Combining Sentinel-1 Interferometry and Ground-Based Geomatics Techniques for Monitoring Buildings Affected by Mass Movements. Remote Sens. 2021, 13, 452. [Google Scholar] [CrossRef]
- Cenni, N.; Fiaschi, S.; Fabris, M. Integrated use of archival aerial photogrammetry, GNSS, and InSAR data for the monitoring of the Patigno landslide (Northern Apennines, Italy). Landslides 2021, 1–17. [Google Scholar] [CrossRef]
- Sarychikhina, O.; Glowacka, E. Spatio-temporal evolution of aseismic ground deformation in the Mexicali Valley (Baja California, Mexico) from 1993 to 2010, using differential SAR interferometry. In International Association of Hydrological Sciences; Copernicus GmbH: Wallingford, UK, 2015; pp. 335–341. [Google Scholar]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Fiaschi, S.; Wdowinski, S. Local land subsidence in Miami Beach (FL) and Norfolk (VA) and its contribution to flooding hazard in coastal communities along the U.S. Atlantic coast. Ocean. Coast. Manag. 2019, 187, 105078. [Google Scholar] [CrossRef]
- Simeoni, U.; Corbau, C. A review of the Delta Po evolution (Italy) related to climatic changes and human impacts. Geomorphology 2009, 107, 64–71. [Google Scholar] [CrossRef]
- Farolfi, G.; Piombino, A.; Catani, F. Fusion of GNSS and Satellite Radar Interferometry: Determination of 3D Fine-Scale Map of Present-Day Surface Displacements in Italy as Expressions of Geodynamic Processes. Remote Sens. 2019, 11, 394. [Google Scholar] [CrossRef] [Green Version]
- Teatini, P.; Tosi, L.; Strozzi, T. Quantitative evidence that compaction of Holocene sediments drives the present land subsidence of the Po Delta, Italy. J. Geophys. Res. Space Phys. 2011, 116, 1–10. [Google Scholar] [CrossRef]
- Baldi, P.; Casula, G.; Cenni, N.; Loddo, F.; Pesci, A. GPS-based monitoring of land subsidence in the Po Plain (Northern Italy). Earth Planet. Sci. Lett. 2009, 288, 204–212. [Google Scholar] [CrossRef]
- Baldi, P.; Casula, G.; Cenni, N.; Loddo, F.; Pesci, A.; Bacchetti, M. Vertical and horizontal crustal movements. In Central and Northern Italy; Teorica, B.D.G., Ed.; Applicata: Sofia, Bulgaria, 2011. [Google Scholar] [CrossRef]
- Cenni, N.; Mantovani, E.; Baldi, P.; Viti, M. Present kinematics of Central and Northern Italy from continuous GPS measurements. J. Geodyn. 2012, 58, 62–72. [Google Scholar] [CrossRef]
- Dokka, R.K. The role of deep processes in late 20th century subsidence of New Orleans and coastal areas of southern Louisiana and Mississippi. J. Geophys. Res. Space Phys. 2011, 116, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Karegar, M.A.; Dixon, T.H.; Malservisi, R. A three-dimensional surface velocity field for the Mississippi Delta: Implications for coastal restoration and flood potential. Geology 2015, 43, 519–522. [Google Scholar] [CrossRef]
- Vitagliano, E.; Riccardi, U.; Piegari, E.; Boy, J.-P.; Di Maio, R. Multi-Component and Multi-Source Approach for Studying Land Subsidence in Deltas. Remote Sens. 2020, 12, 1465. [Google Scholar] [CrossRef]
- Zerbini, S.; Richter, B.; Rocca, F.; Van Dam, T.; Matonti, F. A combination of Space and Terrestrial Geodetic Techniques to Monitor Land Subsidence: Case Study, the Southeastern Po Plain, Italy. J. Geophys. Res. Space Phys. 2007, 112, 1–12. [Google Scholar] [CrossRef]
- Zerbini, S.; Raicich, F.; Prati, C.M.; Bruni, S.; Del Conte, S.; Errico, M.; Santi, E. Sea-level change in the Northern Mediterranean Sea from long-period tide gauge time series. Earth Sci. Rev. 2017, 167, 72–87. [Google Scholar] [CrossRef]
- Mancini, F.; Grassi, F.; Cenni, N. A Workflow Based on SNAP–StaMPS Open-Source Tools and GNSS Data for PSI-Based Ground Deformation Using Dual-Orbit Sentinel-1 Data: Accuracy Assessment with Error Propagation Analysis. Remote Sens. 2021, 13, 753. [Google Scholar] [CrossRef]
- Cencini, C. Physical Processes and Human Activities in the Evolution of the Po Delta, Italy. J. Coast. Res. 1998, 14, 774–793. [Google Scholar]
- Correggiari, A.; Cattaneo, A.; Trincardi, F. The modern Po Delta system: Lobe switching and asymmetric prodelta growth. Mar. Geol. 2005, 222-223, 49–74. [Google Scholar] [CrossRef]
- Meckel, T.A.; Brink, U.S.T.; Williams, S.J. Current subsidence rates due to compaction of Holocene sediments in southern Louisiana. Geophys. Res. Lett. 2006, 33, 1–5. [Google Scholar] [CrossRef]
- Meckel, T.A. An attempt to reconcile subsidence rates determined from various techniques in southern Louisiana. Quat. Sci. Rev. 2008, 27, 1517–1522. [Google Scholar] [CrossRef]
- Picotti, V.; Pazzaglia, F.J. A new active tectonic model for the construction of the Northern Apennines mountain front near Bologna (Italy). J. Geophys. Res. Space Phys. 2008, 113, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Finetti, I.R.; Ben, A.D. Crustal tectono-stratigraphic setting of the Pelagian Foreland from new CROP seismic data. In Deep Seismic Exploration of the Central Mediterranean and Italy; CROP PROJECT, 26; Finetti, I.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 581–596. [Google Scholar]
- Mantovani, E.; Babbucci, D.; Tamburelli, C.; Viti, M. A review on the driving mechanism of the Tyrrhenian–Apennines system: Implications for the present seismotectonic setting in the Central-Northern Apennines. Tectonophysics 2009, 476, 22–40. [Google Scholar] [CrossRef]
- Martinelli, G.; Chahoud, A.; Dadomo, A.; Fava, A. Isotopic features of Emilia-Romagna region (North Italy) groundwaters: Environmental and climatological implications. J. Hydrol. 2014, 519, 1928–1938. [Google Scholar] [CrossRef]
- Salvioni, G. I movimenti del suolo nell’Italia Centro-Settentrionale. Boll. Geodesia E Scienze Aff. 1957, 16, 325–366. [Google Scholar]
- Arca, S.; Beretta, G.P. Prima sintesi geodetica-geologica sui movimenti verticali del suolo nell’Italia Settentrionale. Boll. Geod. E Sci. Aff. 1985, 44, 125–156. [Google Scholar]
- Caputo, M.; Pieri, L.; Unguendoli, M. Geometric investigation of the subsidence in the Po. Delta. Boll. Geofis. Teor. Appl. 1970, 47, 187–207. [Google Scholar]
- Caputo, M.; Folloni, G.; Gubellini, A.; Pieri, L.; Unguendoli, M. Survey and geometric analysis of the phenomena of subsidence in the region of Venice and its hinterland. Riv. Ital. Geofis. 1972, 21, 19–26. [Google Scholar]
- Corbau, C.; Simeoni, U.; Zoccarato, C.; Mantovani, G.; Teatini, P. Coupling land use evolution and subsidence in the Po Delta, Italy: Revising the past occurrence and prospecting the future management challenges. Sci. Total. Environ. 2019, 654, 1196–1208. [Google Scholar] [CrossRef] [PubMed]
- Bondesan, M.; Simeoni, U. Dinamica e analisi morfologica statistica dei litorali del delta del Po e alle foci dell’Adige e del Brenta. Sci. Geol. Mem. 1983, 36, 1–48. [Google Scholar]
- Teatini, P.; Ferronato, M.; Gambolati, G.; Gonella, M. Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: Modeling the past occurrence and the future trend. Water Resour. Res. 2006, 42, 1–19. [Google Scholar] [CrossRef]
- Tosi, L.; Da Lio, C.; Strozzi, T.; Teatini, P. Combining L- and X-Band SAR Interferometry to Assess Ground Displacements in Heterogeneous Coastal Environments: The Po River Delta and Venice Lagoon, Italy. Remote Sens. 2016, 8, 308. [Google Scholar] [CrossRef] [Green Version]
- Bogusz, J.; Klos, A. On the significance of periodic signals in noise analysis of GPS station coordinates time series. GPS Solut. 2016, 20, 655–664. [Google Scholar] [CrossRef] [Green Version]
- Klos, A.; Olivares, G.; Teferle, F.N.; Hunegnaw, A.; Bogusz, J. On the combined effect of periodic signals and colored noise on velocity uncertainties. GPS Solut. 2018, 22, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Herring, T.A.; King, R.W.; McClusky, S.C. GAMIT Reference Manual, GPS Analysis At MIT, Release 10.7; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology: Cambridge, UK, 2018. [Google Scholar]
- Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: Modern insights from FES2004. Ocean. Dyn. 2006, 56, 394–415. [Google Scholar] [CrossRef]
- Boehm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33, L07304. [Google Scholar] [CrossRef] [Green Version]
- Herring, T.A.; King, R.W.; McClusky, S.C. Global Kalman Filter VLBI And GPS Analysis Program. In GLOBK Reference Manual, Release 10.6; Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology: Cambridge, UK, 2018. [Google Scholar]
- Cenni, N.; Viti, M.; Mantovani, E. Space geodetic data (GPS) and earthquake forecasting: Examples from the Italian geodetic network. Boll. Geofis. Teor. Appl. 2015, 56, 129–150. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef] [Green Version]
- Lomb, N.R. Least-Squares Frequency Analysis of Unevenly Spaced Data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- Scargle, J.D. Studies in Astronomical Time Series Analysis. II-Statistical Aspects of Spectral Analysis of Unevenly Sampled Data. Astrophys. J. 1982, 263, 835–853. [Google Scholar] [CrossRef]
- Hackl, M.; Malservisi, R.; Hugentobler, U.; Wonnacott, R. Estimation of velocity uncertainties from GPS time series: Examples from the analysis of the South African TrigNet network. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef]
- Blewitt, G.; Lavallée, D. Effect of annual signals on geodetic velocity. J. Geophys. Res. Solid Earth 2002, 107, ETG-9. [Google Scholar] [CrossRef] [Green Version]
- Baldi, P.; Cenni, N.; Fabris, M.; Zanutta, A. Kinematics of a landslide derived from archival photogrammetry and GPS data. Geomorphology 2008, 102, 435–444. [Google Scholar] [CrossRef]
- Bos, M.S.; Fernandes, R.M.S.; Williams, S.D.P.; Bastos, L. Fast error analysis of continuous GNSS observations with missing data. J. Geod. 2013, 87, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Stefani, M.; Vincenzi, S. The interplay of eustasy, climate and human activity in the late Quaternary depositional evolution and sedimentary architecture of the Po Delta system. Mar. Geol. 2005, 222-223, 19–48. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer Science & Business Media: Berlin, Germany, 2001; p. 308. [Google Scholar]
- Bitelli, G.; Bonsignore, F.; Pellegrino, I.; Vittuari, L. Evolution of the techniques for subsidence monitoring at regional scale: The case of Emilia-Romagna region (Italy). Proc. PIAHS 2015, 372, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef] [Green Version]
Code | Start | T (year) | VN | VE | VV | σN | σE | σV |
---|---|---|---|---|---|---|---|---|
CGIA | 2011.3329 | 9.0 | 1.5 ± 0.6 | −0.2 ± 0.4 | −3.3 ± 0.6 | 1.1 | 1.4 | 3.2 |
CODI | 2007.6315 | 12.1 | 1.6 ± 0.3 | −0.1 ± 0.4 | −3.5 ± 0.7 | 1.1 | 1.0 | 2.7 |
GARI | 2009.5466 | 10.5 | 1.7 ± 0.3 | 0.1 ± 0.3 | −3.0 ± 0.5 | 1.1 | 0.9 | 3.7 |
PTO1 | 2010.5575 | 9.3 | 1.7 ± 0.4 | −0.2 ± 0.3 | −5.8 ± 1.0 | 0.9 | 0.8 | 2.6 |
TGPO | 2008.6544 | 11.3 | 1.5 ± 0.3 | −0.1 ± 0.3 | −5.6 ± 0.8 | 1.2 | 1.1 | 3.2 |
VMWA | Campaigns | Differences | |||||||
---|---|---|---|---|---|---|---|---|---|
Code | VN | VE | VV | VN | VE | VV | VN | VE | VV |
CGIA | 1.6 ± 0.5 | −1.0 ± 0.2 | −3.7 ± 0.4 | 2.1 | 0.3 | −3.1 | 0.5 | 1.4 | 0.6 |
CODI | 1.6 ± 0.2 | 0.2 ± 0.2 | −3.1 ± 0.4 | 1.8 | −0.2 | −2.8 | 0.2 | −0.4 | 0.3 |
GARI | 1.8 ± 0.2 | 0.0 ± 0.2 | −4.0 ± 0.6 | 1.1 | −0.9 | −4.9 | −0.7 | −1.0 | −0.9 |
PTO1 | 1.5 ± 0.5 | −0.3 ± 0.3 | −5.8 ± 0.4 | 2.2 | 0.5 | −5.1 | 0.6 | 0.8 | 0.8 |
TGPO | 1.8 ± 0.3 | 0.0 ± 0.2 | −6.5 ± 0.4 | 2.1 | −1.7 | −5.0 | 0.3 | −1.7 | 1.5 |
Code | Lon. | Lat. | H (m) | VN | VE | VV | VG | VS | DV | Np | R |
---|---|---|---|---|---|---|---|---|---|---|---|
077703 | 12.260075 | 44.802738 | 43.642 | 5.1 | −0.1 | −8.0 | −6.8 | −6.1 | 0.7 | 7 | 30 |
065704 | 12.102026 | 45.010397 | 41.728 | 6.5 | −0.7 | −12.2 | −10.6 | −6.9 | 3.7 | 7 | 100 |
077704 | 12.186658 | 44.820580 | 41.325 | 5.4 | −1.4 | −27.5 | −32.8 | ||||
065705 | 12.263817 | 45.028918 | 43.585 | 5.6 | 0.8 | −3.5 | −2.7 | 0.1 | 2.8 | 6 | 180 |
065706 | 12.366029 | 45.050220 | 44.634 | −2.4 | −4.5 | 2.6 | −1.3 | −5.8 | −4.5 | 7 | 20 |
065707A | 12.178306 | 45.048738 | 43.832 | 3.0 | −16.5 | −15.8 | −25.1 | −1.9 | 23.2 | 7 | 40 |
077707 | 12.120610 | 44.944699 | 47.301 | 3.7 | −0.1 | −9.5 | −7.8 | −3.4 | 4.4 | 7 | 20 |
065708 | 12.243050 | 45.109684 | 46.692 | 3.2 | −1.7 | 1.6 | −0.4 | −4.5 | −4.2 | 10 | 50 |
077708 | 12.393936 | 44.795427 | 44.249 | 2.0 | 0.7 | −4.6 | −6.5 | ||||
077710 | 12.320833 | 44.913816 | 40.934 | 2.8 | −3.7 | −5.8 | −8.6 | ||||
077712 | 12.245224 | 44.963337 | 41.205 | 2.7 | 0.7 | −2.0 | −1.3 | −5.5 | −4.2 | 10 | 30 |
077713 | 12.416656 | 44.959307 | 45.740 | 3.9 | 0.0 | −6.6 | −10.5 | ||||
077714 | 12.282582 | 44.944837 | 41.129 | 4.8 | 3.4 | −5.0 | −1.8 | −5.9 | −4.1 | 7 | 30 |
065715 | 12.248242 | 45.065886 | 42.373 | −0.8 | −0.2 | −6.2 | −4.8 | −4.3 | 0.5 | 6 | 120 |
077715 | 12.329042 | 44.885502 | 42.578 | 0.1 | −3.3 | −7.3 | −8.2 | −5.9 | 2.3 | 7 | 210 |
077716 | 12.387378 | 44.870481 | 44.329 | 4.9 | 1.9 | −11.4 | −8.0 | −4.3 | 3.7 | 6 | 30 |
077717 | 12.386918 | 44.818930 | 39.585 | −1.4 | 1.4 | −52.7 | −40.3 | −8.6 | 31.7 | 7 | 150 |
077718 | 12.465061 | 44.848658 | 42.539 | 3.7 | −3.4 | −13.4 | −13.6 | −8.6 | 4.9 | 7 | 50 |
077719 | 12.419420 | 44.898224 | 45.138 | −0.3 | 1.6 | −1.6 | 0.1 | −8.6 | −8.6 | 9 | 50 |
077720 | 12.463006 | 44.874260 | 42.016 | 3.2 | 2.7 | −1.7 | 0.4 | −4.2 | −4.6 | 6 | 160 |
077721 | 12.367670 | 44.856351 | 40.282 | 3.2 | −2.7 | −23.2 | −20.6 | −6.2 | 14.4 | 6 | 80 |
077801 | 12.098680 | 44.894848 | 42.848 | −0.7 | 0.0 | 4.3 | 3.3 | −3.5 | −6.9 | 12 | 30 |
065901 | 12.328480 | 45.006855 | 52.369 | −1.5 | 0.7 | 0.1 | 0.8 | −5.0 | −5.8 | 9 | 50 |
077902 | 12.493799 | 44.971619 | 46.423 | 4.5 | 3.5 | −20.1 | −24.6 | 0.0 | 24.6 | 0 | 0 |
065903 | 12.324322 | 45.131373 | 44.721 | 3.3 | −0.8 | −8.8 | −7.8 | −3.9 | 3.9 | 10 | 30 |
077903 | 12.307800 | 44.989406 | 39.477 | 1.6 | 2.7 | −8.6 | −4.8 | −7.6 | −2.9 | 6 | 80 |
065904 | 12.325107 | 45.095947 | 43.359 | −1.2 | 0.5 | 0.1 | 0.6 | 0.6 | 0.0 | 6 | 220 |
077904 | 12.393814 | 44.925592 | 39.940 | 8.5 | 0.3 | −19.2 | −15.8 | −5.1 | 10.6 | 8 | 100 |
065905 | 12.188237 | 45.027850 | 53.072 | 5.3 | −2.0 | −5.0 | −5.9 | −2.8 | 3.1 | 7 | 80 |
077905 | 12.475986 | 44.931427 | 42.395 | 11.8 | −2.0 | −26.3 | −23.5 | −8.3 | 15.2 | 7 | 50 |
065906 | 12.410976 | 45.031372 | 46.199 | 5.5 | −0.3 | −13.6 | −19.1 | ||||
077906 | 12.485966 | 44.900349 | 44.585 | 2.5 | −1.0 | −6.8 | −6.4 | −7.9 | −1.5 | 7 | 60 |
065907 | 12.357916 | 45.020930 | 45.059 | 7.2 | 3.8 | −10.0 | −5.6 | −5.9 | −0.3 | 10 | 30 |
077907 | 12.210529 | 44.887197 | 40.944 | 7.7 | 3.6 | 0.4 | 2.3 | −4.4 | −6.7 | 12 | 30 |
065908 | 12.417091 | 45.002345 | 44.669 | 8.5 | 6.1 | −11.0 | −4.7 | −6.7 | −1.9 | 8 | 210 |
077908 | 12.303962 | 44.854954 | 43.110 | 0.3 | 1.0 | −4.9 | −3.1 | −5.2 | −2.1 | 13 | 30 |
065909 | 12.305983 | 45.044967 | 40.644 | 4.9 | −0.8 | −11.4 | −10.0 | −4.6 | 5.5 | 9 | 70 |
077909 | 12.385867 | 44.985537 | 39.513 | 7.4 | 2.2 | −7.8 | −5.2 | −8.4 | −3.2 | 6 | 190 |
077910 | 12.185478 | 44.963624 | 43.321 | −2.0 | −2.4 | 7.7 | 4.3 | −2.0 | −6.4 | 7 | 60 |
077911 | 12.436716 | 44.935469 | 50.726 | 2.0 | −0.2 | −18.0 | −14.5 | −6.2 | 8.3 | 8 | 30 |
077912 | 12.174395 | 44.854307 | 41.029 | −4.1 | −1.5 | −4.0 | −3.8 | −3.7 | 0.1 | 10 | 30 |
077913 | 12.164334 | 44.903659 | 40.262 | 3.5 | 3.0 | 1.1 | −2.3 | ||||
077914 | 12.230335 | 44.919938 | 41.848 | 6.8 | 2.8 | 2.8 | 3.6 | −3.9 | −7.5 | 7 | 20 |
077915 | 12.289302 | 44.887051 | 39.613 | 5.3 | 5.7 | −11.4 | −16.7 | ||||
077916 | 12.343223 | 44.835887 | 42.470 | 4.3 | 0.7 | 0.2 | 0.3 | −7.2 | −7.5 | 6 | 270 |
077917 | 12.140406 | 45.000043 | 42.242 | 1.3 | −0.4 | 1.5 | 0.7 | −2.9 | −3.7 | 6 | 230 |
PTO1 | 12.334053 | 44.951520 | 49.311 | 2.2 | 0.5 | −5.1 | −3.8 | −4.3 | −0.5 | 11 | 30 |
TGPO | 12.228321 | 45.003060 | 49.322 | 2.1 | −1.7 | −5.0 | −5.4 | −4.3 | 1.1 | 6 | 20 |
VMWA | Number of Points | GNSS on LOS | InSAR LOS | Differences | |||
---|---|---|---|---|---|---|---|
Code | VN | VE | VV | VL | VS | VD | |
CGIA | 1.5 ± 0.2 | −0.1 ± 0.2 | −3.6 ± 0.3 | - | - | - | - |
CODI | 1.5 ± 0.2 | 0.0 ± 0.2 | −3.6 ± 0.3 | 8 | −2.9 | −2.9 | 0.0 |
GARI | 1.4 ± 0.2 | 0.0 ± 0.2 | −3.9 ± 0.3 | - | - | - | - |
PTO1 | 1.7 ± 0.2 | −0.1 ± 0.2 | −5.7 ± 0.3 | 11 | −4.8 | −4.3 | 0.5 |
TGPO | 1.5 ± 0.2 | −0.1 ± 0.2 | −5.6 ± 0.3 | 8 | −4.6 | −4.3 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cenni, N.; Fiaschi, S.; Fabris, M. Monitoring of Land Subsidence in the Po River Delta (Northern Italy) Using Geodetic Networks. Remote Sens. 2021, 13, 1488. https://doi.org/10.3390/rs13081488
Cenni N, Fiaschi S, Fabris M. Monitoring of Land Subsidence in the Po River Delta (Northern Italy) Using Geodetic Networks. Remote Sensing. 2021; 13(8):1488. https://doi.org/10.3390/rs13081488
Chicago/Turabian StyleCenni, Nicola, Simone Fiaschi, and Massimo Fabris. 2021. "Monitoring of Land Subsidence in the Po River Delta (Northern Italy) Using Geodetic Networks" Remote Sensing 13, no. 8: 1488. https://doi.org/10.3390/rs13081488
APA StyleCenni, N., Fiaschi, S., & Fabris, M. (2021). Monitoring of Land Subsidence in the Po River Delta (Northern Italy) Using Geodetic Networks. Remote Sensing, 13(8), 1488. https://doi.org/10.3390/rs13081488