Morphological Changes Detection of a Large Earthflow Using Archived Images, LiDAR-Derived DTM, and UAV-Based Remote Sensing
Abstract
:1. Introduction
2. Study Area
3. Material and Methods
3.1. Collection and Pre-Processing of Archive Images and DTMs from 1954 to 2016
3.2. Acquisition and Photogrammetric Elaboration of UAV Images
3.3. Accuracy of the DTMs Collection
3.4. Geological and Geomorphological Setting and Plano-Altimetric Changes Analysis of the Landslide
4. Results
4.1. Geological Features of Landslide Area
4.2. Landslide Map and Main Features of the Vomice Landslide
4.3. Geomorphic Changes Detection of the Vomice Earthflow between 1954 and 2019
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baum, R.L. Earth flows. In Sedimentology; Springer: Berlin/Heidelberg, Germany, 1978; pp. 397–400. [Google Scholar]
- Keefer, D.K.; Johnson, A.M. Earth Flows: Morphology, Mobilization and Movement. US Geol. Surv. Prof. Pap. 1983, 1256, 56. [Google Scholar] [CrossRef] [Green Version]
- Varnes, D.J.; Savage, W.Z. The Slumgullion earth flow; a large-scale natural laboratory. US Geol. Surv. Bull. 1996, 2130, 95. [Google Scholar] [CrossRef] [Green Version]
- Simoni, A.; Ponza, A.; Picotti, V.; Berti, M.; Dinelli, E. Earthflow sediment production and Holocene sediment record in a large Apennine catchment. Geomorphology 2013, 188, 42–53. [Google Scholar] [CrossRef]
- Bertolini, G.; Pizziolo, M. Risk assessment strategies for the reactivation of earth flows in the Northern Apennines (Italy). Eng. Geol. 2008, 102, 178–192. [Google Scholar] [CrossRef]
- Lollino, G.; Manconi, A.; Giordan, D.; Allasia, P.; Baldo, M. Infrastructure in Geohazard Contexts: The Importance of Automatic and Near-Real-Time Monitoring. In Environmental Security of the European Cross-Border Energy Supply Infrastructure; Culshaw, M., Osipov, V., Booth, S., Victorov, A., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 73–89. [Google Scholar] [CrossRef]
- Lollino, P.; Giordan, D.; Allasia, P.; Fazio, N.L.; Perrotti, M.; Cafaro, F. Assessment of post-failure evolution of a large earthflow through field monitoring and numerical modelling. Landslides 2020, 17, 2013–2026. [Google Scholar] [CrossRef]
- Giordan, D.; Allasia, P.; Manconi, A.; Baldo, M.; Santangelo, M.; Cardinali, M.; Corazza, A.; Albanese, V.; Lollino, G.; Guzzetti, F. Morphological and kinematic evolution of a large earthflow: The Montaguto landslide, southern Italy. Geomorphology 2013, 187, 61–79. [Google Scholar] [CrossRef]
- Conforti, M.; Pascale, S.; Sdao, F. Mass movements inventory map of the Rubbio stream catchment (Basilicata—South Italy). J. Maps 2015, 11, 454–463. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Varnes, D.J. Slope Movement Types and Processes. In Special Report 176: Landslides: Analysis and Control; Schuster, R.L., Krizek, R.J., Eds.; National Academy of Sciences: Washington, DC, USA, 1978; pp. 11–33. [Google Scholar]
- Bovis, M.J. Earthflows in the Interior Plateau, southwest British Columbia. Can. Geotech. J. 1985, 22, 313–334. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslides: Investigation and Mitigation. Chapter 3—Landslide Types and Processes. Transp. Res. Board Spec. Rep. 1996, 247, 36–75. [Google Scholar]
- Skempton, A.W. Residual strength of clays in landslides, folded strata and the laboratory. Géotechnique 1985, 35, 3–18. [Google Scholar] [CrossRef]
- Baum, R.L.; Reid, M.E. Ground Water Isolation by Low-Permeability Clays in Landslide Shear Zones. In Landslides in Research, Theory and Practice, Proceedings of the 8th International Symposium on Landslides, Cardiff, UK, 26–30 June 2000; Bromhead, E., Dixon, N., Ibsen, M.-L., Eds.; Thomas Telford: London, UK, 2000; pp. 139–144. [Google Scholar]
- Van Asch, T.W.J.; Malet, J.-P. Flow-type failures in fine-grained soils: An important aspect in landslide hazard analysis. Nat. Hazards Earth Syst. Sci. 2009, 9, 1703–1711. [Google Scholar] [CrossRef] [Green Version]
- Mackey, B.H.; Roering, J.J. Sediment yield, spatial characteristics, and the long-term evolution of active earthflows determined from airborne LiDAR and historical aerial photographs, Eel River, California. Geol. Soc. Am. Bull. 2011, 123, 1560–1576. [Google Scholar] [CrossRef]
- Guerriero, L.; Revellino, P.; Coe, J.A.; Focareta, M.; Grelle, G.; Albanese, V.; Corazza, A.; Guadagno, F.M. Multi-temporal Maps of the Montaguto Earth Flow in Southern Italy from 1954 to 2010. J. Maps 2013, 9, 135–145. [Google Scholar] [CrossRef]
- Casson, B.; Delacourt, C.; Baratoux, D.; Allemand, P. Seventeen years of the “La Clapière” landslide evolution analysed from ortho-rectified aerial photographs. Eng. Geol. 2003. [Google Scholar] [CrossRef]
- Del Soldato, M.; Riquelme, A.; Bianchini, S.; Tomàs, R.; Di Martire, D.; De Vita, P.; Moretti, S.; Calcaterra, D. Multisource data integration to investigate one century of evolution for the Agnone landslide (Molise, southern Italy). Landslides 2018. [Google Scholar] [CrossRef] [Green Version]
- Delacourt, C. Velocity field of the “La Clapière” landslide measured by the correlation of aerial and QuickBird satellite images. Geophys. Res. Lett. 2004, 31, L15619. [Google Scholar] [CrossRef] [Green Version]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide inventory maps: New tools for an old problem. Earth-Science Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef] [Green Version]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.-H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2010, 61, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Walstra, J.; Dixon, N.; Chandler, J.H. Historical aerial photographs for landslide assessment: Two case histories. Q. J. Eng. Geol. Hydrogeol. 2007, 40, 315–332. [Google Scholar] [CrossRef]
- Prokešová, R.; Kardoš, M.; Medveďová, A. Landslide dynamics from high-resolution aerial photographs: A case study from the Western Carpathians, Slovakia. Geomorphology 2010, 115, 90–101. [Google Scholar] [CrossRef]
- Aucelli, P.P.C.; Conforti, M.; Della Seta, M.; Del Monte, M.; D’uva, L.; Rosskopf, C.M.; Vergari, F. Multi-temporal Digital Photogrammetric Analysis for Quantitative Assessment of Soil Erosion Rates in the Landola Catchment of the Upper Orcia Valley (Tuscany, Italy). L. Degrad. Dev. 2016, 27, 1075–1092. [Google Scholar] [CrossRef]
- Fernández, T.; Pérez, J.; Colomo, C.; Cardenal, J.; Delgado, J.; Palenzuela, J.; Irigaray, C.; Chacón, J. Assessment of the Evolution of a Landslide Using Digital Photogrammetry and LiDAR Techniques in the Alpujarras Region (Granada, Southeastern Spain). Geosciences 2017, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Mora, P.; Baldi, P.; Casula, G.; Fabris, M.; Ghirotti, M.; Mazzini, E.; Pesci, A. Global Positioning Systems and digital photogrammetry for the monitoring of mass movements: Application to the Ca’ di Malta landslide (northern Apennines, Italy). Eng. Geol. 2003, 68, 103–121. [Google Scholar] [CrossRef]
- Baldi, P.; Cenni, N.; Fabris, M.; Zanutta, A. Kinematics of a landslide derived from archival photogrammetry and GPS data. Geomorphology 2008, 102, 435–444. [Google Scholar] [CrossRef]
- Corsini, A.; Borgatti, L.; Cervi, F.; Dahne, A.; Ronchetti, F.; Sterzai, P. Estimating mass-wasting processes in active earth slides—Earth flows with time-series of High-Resolution DEMs from photogrammetry and airborne LiDAR. Nat. Hazards Earth Syst. Sci. 2009, 9, 433–439. [Google Scholar] [CrossRef]
- González-Díez, A.; Fernández-Maroto, G.; Doughty, M.W.; Díaz de Terán, J.R.; Bruschi, V.; Cardenal, J.; Pérez, J.L.; Mata, E.; Delgado, J. Development of a methodological approach for the accurate measurement of slope changes due to landslides, using digital photogrammetry. Landslides 2014, 11, 615–628. [Google Scholar] [CrossRef]
- Mallet, C.; David, N. Digital Terrain Models Derived from Airborne LiDAR Data. In Optical Remote Sensing of Land Surface; Elsevier: Amsterdam, The Netherlands, 2016; pp. 299–319. [Google Scholar]
- Gullà, G.; Peduto, D.; Borrelli, L.; Antronico, L.; Fornaro, G. Geometric and kinematic characterization of landslides affecting urban areas: The Lungro case study (Calabria, Southern Italy). Landslides 2017, 14, 171–188. [Google Scholar] [CrossRef]
- Conforti, M.; Ietto, F. An integrated approach to investigate slope instability affecting infrastructures. Bull. Eng. Geol. Environ. 2019, 78, 2355–2375. [Google Scholar] [CrossRef]
- Peduto, D.; Santoro, M.; Aceto, L.; Borrelli, L.; Gullà, G. Full integration of geomorphological, geotechnical, A-DInSAR and damage data for detailed geometric-kinematic features of a slow-moving landslide in urban area. Landslides 2020. [Google Scholar] [CrossRef]
- Tarolli, P. High-resolution topography for understanding Earth surface processes: Opportunities and challenges. Geomorphology 2014, 216, 295–312. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; de Jong, S. Time Series Analysis of Landslide Dynamics Using an Unmanned Aerial Vehicle (UAV). Remote Sens. 2015, 7, 1736–1757. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, L.; Conforti, M.; Mercuri, M. Lidar and UAV system data to analyse recent morphological changes of a small drainage basin. ISPRS Int. J. Geo-Inf. 2019, 8, 536. [Google Scholar] [CrossRef] [Green Version]
- Pellicani, R.; Argentiero, I.; Manzari, P.; Spilotro, G.; Marzo, C.; Ermini, R.; Apollonio, C. UAV and Airborne LiDAR Data for Interpreting Kinematic Evolution of Landslide Movements: The Case Study of the Montescaglioso Landslide (Southern Italy). Geosciences 2019, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Godone, D.; Allasia, P.; Borrelli, L.; Gullà, G. UAV and Structure from Motion Approach to Monitor the Maierato Landslide Evolution. Remote Sens. 2020, 12, 1039. [Google Scholar] [CrossRef] [Green Version]
- Rossi, G.; Tanteri, L.; Tofani, V.; Vannocci, P.; Moretti, S.; Casagli, N. Multitemporal UAV surveys for landslide mapping and characterization. Landslides 2018, 15, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Lindner, G.; Schraml, K.; Mansberger, R.; Hübl, J. UAV monitoring and documentation of a large landslide. Appl. Geomatics 2016, 8, 1–11. [Google Scholar] [CrossRef]
- Buttafuoco, G.; Caloiero, T.; Coscarelli, R. Spatial and temporal patterns of the mean annual precipitation at decadal time scale in southern Italy (Calabria region). Theor. Appl. Climatol. 2011, 105, 431–444. [Google Scholar] [CrossRef]
- Iovine, G.; Merenda, L. Nota illustrativa alla “Carta delle frane e della mobilizzazione diastrofica, dal 1973 ad oggi, nel bacino del Torrente Straface (Alto Jonio, Calabria)”. Geol. Appl. Idrogeol 1996, 31, 107–128. [Google Scholar]
- Bonardi, G.; Amore, F.O.; Ciampo, G.; De Capoa, P.; Miconnet, P.; Perrone, V. Il “Complesso Liguride” Auct.: Stato delle conoscenze e problemi aperti sulla sua evoluzione appenninica ed i suoi rapporti con l’Arco calabro. Mem. Soc. Geol. Ital. 1988, 41, 17–35. [Google Scholar]
- ISPRA Carta Geologica d’Italia alla scala 1:50.000, Foglio 535 ‘Trebisacce’. Available online: http://www.isprambiente.gov.it/Media/carg/535_TREBISACCE/Foglio.html (accessed on 7 February 2019).
- Catalano, S.; Monaco, C.; Tortorici, L.; Tansi, C. Pleistocene strike-slip tectonics in the Lucanian Apennine (southern Italy). Tectonics 1993, 12, 656–665. [Google Scholar] [CrossRef]
- Ferranti, L.; Santoro, E.; Mazzella, M.E.; Monaco, C.; Morelli, D. Active transpression in the northern Calabria Apennines, southern Italy. Tectonophysics 2009, 476, 226–251. [Google Scholar] [CrossRef]
- Carrara, A.; Catalano, E.; Sorriso Valvo, M.; Reali, C.; Merenda, L.; Rizzo, V. Landslide morphometry and typology in two zones, Calabria, Italy. Bull. Int. Assoc. Eng. Geol. 1977, 16, 8–13. [Google Scholar] [CrossRef]
- Rago, V.; Conforti, M.; Muto, F.; Critelli, S. Landslide susceptibility assessment in the Ferro Torrent (Calabria, south Italy) using GIS-based conditional analysis method. Rend. Online della Soc. Geol. Ital. 2013, 24, 257–259. [Google Scholar]
- Conforti, M.; Muto, F.; Rago, V.; Critelli, S. Landslide inventory map of north-eastern Calabria (South Italy). J. Maps 2014, 10, 90–102. [Google Scholar] [CrossRef]
- Hughes, M.L.; McDowell, P.F.; Marcus, W.A. Accuracy assessment of georectified aerial photographs: Implications for measuring lateral channel movement in a GIS. Geomorphology 2006, 74, 1–16. [Google Scholar] [CrossRef]
- Cavalli, M.; Trevisani, S.; Comiti, F.; Marchi, L. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 2013, 188, 31–41. [Google Scholar] [CrossRef]
- McKean, J.; Roering, J. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 2004, 57, 331–351. [Google Scholar] [CrossRef]
- Godone, D.; Giordan, D.; Baldo, M. Rapid mapping application of vegetated terraces based on high resolution airborne LiDAR. Geomatics, Nat. Hazards Risk 2018, 9, 970–985. [Google Scholar] [CrossRef] [Green Version]
- Fisher, P.F.; Tate, N.J. Causes and consequences of error in digital elevation models. Prog. Phys. Geogr. Earth Environ. 2006, 30, 467–489. [Google Scholar] [CrossRef]
- Lane, S.N.; Westaway, R.M.; Murray Hicks, D. Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surf. Process. Landforms 2003, 28, 249–271. [Google Scholar] [CrossRef]
- Chandler, J.H.; Fryer, J.G.; Jack, A. Metric capabilities of low-cost digital cameras for close range surface measurement. Photogramm. Rec. 2005, 20, 12–26. [Google Scholar] [CrossRef]
- Rib, H.T.; Liang, T. Recognition and identification. In Landslide Analysis and Control.: Transportation Research Board Special Re-port, 176; Schuster, R.L., Krizek, R.J., Eds.; National Academy of Sciences: Washington, DC, USA, 1978; pp. 34–80. [Google Scholar]
- Keaton, J.R.; DeGraff, J.V. Surface Observation and Geologic Mapping. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; National Academy Press: Washington, DC, USA, 1996. [Google Scholar]
- Wu, S.; Li, J.; Huang, G.H. A study on DEM-derived primary topographic attributes for hydrologic applications: Sensitivity to elevation data resolution. Appl. Geogr. 2008, 28, 210–223. [Google Scholar] [CrossRef]
- Hsü, K.J. Principles of mélanges and their bearing on the franciscan-knoxville paradox. Bull. Geol. Soc. Am. 1968, 79, 1063–1074. [Google Scholar] [CrossRef]
- Esu, F. Behaviour of Slopes in Structurally Complex Formations; General Report, Int. Symp. on the Geotechnics of Structurally Complex Formations; AGI: Capri, Italy, 1977; Volume 2, pp. 292–304. [Google Scholar]
- Vezzani, L. Distribuzione facies e stratigrafia della Formazione del Saraceno (Albiano-Daniano) nell’area compresa fra il Mare Jonio e il Torrente Frido. Geol. Rom. 1968, 7, 229–275. [Google Scholar]
- Ogniben, L. Schema introduttivo alla geologia del confine calabro-lucano. Mem. Soc. Geol. Ital. 1969, 8, 453–763. [Google Scholar]
- Cowan, D.S. Structural styles in Mesozoic and Cenozoic mélanges in the western Cordillera of North America. Geol. Soc. Am. Bull. 1985, 96, 451–462. [Google Scholar] [CrossRef]
- Cowan, D.S.; Pini, G.A. Disrupted and chaotic rock units. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Springer: Dordrecht, The Netherlands, 2001; pp. 165–175. [Google Scholar]
- Gullà, G.; Caloiero, T.; Coscarelli, R.; Petrucci, O. A proposal for a methodological approach to characterization of Widespread Landslide Events: An application to Southern Italy. Nat. Hazards Earth Syst. Sci. 2012, 12, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Bentivenga, M.; Palladino, G.; Caputi, A. Development of Pietra Maura landslide and interactions with the Marsico Nuovo dam (Basilicata, Italy). Geogr. Fis. Din. Quat. 2012, 35, 13–22. [Google Scholar] [CrossRef]
- Borgatti, L.; Corsini, A.; Barbieri, M.; Sartini, G.; Truffelli, G.; Caputo, G.; Puglisi, C. Large reactivated landslides in weak rock masses: A case study from the Northern Apennines (Italy). Landslides 2006, 3, 115–124. [Google Scholar] [CrossRef]
- Dewitte, O.; Jasselette, J.-C.; Cornet, Y.; Van Den Eeckhaut, M.; Collignon, A.; Poesen, J.; Demoulin, A. Tracking landslide displacements by multi-temporal DTMs: A combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Eng. Geol. 2008, 99, 11–22. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, B.; Han, Y.; Zuo, Z.; Zhang, X. Modeling Accumulated Volume of Landslides Using Remote Sensing and DTM Data. Remote Sens. 2014, 6, 1514–1537. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, Y.-C.; Chan, Y.-C.; Hu, J.-C. Digital Elevation Model Differencing and Error Estimation from Multiple Sources: A Case Study from the Meiyuan Shan Landslide in Taiwan. Remote Sens. 2016, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Fookes, P.G.; Wilson, D.D. The Geometry of Discontinuities and Slope Failures in Siwalik Clay. Géotechnique 1966, 16, 305–320. [Google Scholar] [CrossRef]
- Guzzetti, F.; Cardinali, M.; Reichenbach, P. The influence of structural setting and lithology on landslide type and pattern. Environ. Eng. Geosci. 1996. [Google Scholar] [CrossRef]
- Martino, S.; Moscatelli, M.; Scarascia Mugnozza, G. Quaternary mass movements controlled by a structurally complex setting in the central Apennines (Italy). Eng. Geol. 2004, 72, 33–55. [Google Scholar] [CrossRef]
- Revellino, P.; Grelle, G.; Donnarumma, A.; Guadagno, F.M. Structurally controlled earth flows of the Benevento province (Southern Italy). Bull. Eng. Geol. Environ. 2010, 69, 487–500. [Google Scholar] [CrossRef]
- Conforti, M.; Pascale, S.; Pepe, M.; Sdao, F.; Sole, A. Denudation processes and landforms map of the Camastra River catchment (Basilicata—South Italy). J. Maps 2013, 9, 444–455. [Google Scholar] [CrossRef] [Green Version]
- Cotecchia, F.; Vitone, C.; Santaloia, F.; Pedone, G.; Bottiglieri, O. Slope instability processes in intensely fissured clays: Case histories in the Southern Apennines. Landslides 2015, 12, 877–893. [Google Scholar] [CrossRef]
- Pinto, F.; Guerriero, L.; Revellino, P.; Grelle, G.; Senatore, M.R.; Guadagno, F.M. Structural and lithostratigraphic controls of earth-flow evolution, Montaguto earth flow, Southern Italy. J. Geol. Soc. London. 2016, 173, 649–665. [Google Scholar] [CrossRef]
- Carlini, M.; Chelli, A.; Francese, R.; Giacomelli, S.; Giorgi, M.; Quagliarini, A.; Carpena, A.; Tellini, C. Landslides types controlled by tectonics-induced evolution of valley slopes (Northern Apennines, Italy). Landslides 2018, 15, 283–296. [Google Scholar] [CrossRef]
- Iovine, G.; Parise, M. Caratterizzazione geomorfologica e morfometrica di alcune colate nell’Alto Jonio Calabrese. Geol. Appl. Idrogeol. 1993, 28, 523–533. [Google Scholar]
- Guerriero, L.; Diodato, N.; Fiorillo, F.; Revellino, P.; Grelle, G.; Guadagno, F.M. Reconstruction of long-term earth-flow activity using a hydro-climatological model. Nat. Hazards 2015, 77, 1–15. [Google Scholar] [CrossRef]
- Ferrari, E.; Iovine, G.; Petrucci, O. Evaluating landslide hazard through geomorphologic, hydrologic and historical analyses in north-eastern Calabria (southern Italy). In Proceedings of the EGS Plinius Conference on Mediterranean Storms, Maratea, Italy, 14–16 October 1999; pp. 425–437. [Google Scholar]
- Iovine, G.; Petrucci, O. Effetti sui versanti e nel fondovalle indotti da un evento pluviale eccezionale nel bacino di una fiumara calabra (T. Pagliara). Boll. Soc. Geol. Ital. 1998, 117, 821–840. [Google Scholar]
- Zhang, X.; Phillips, C.; Pearce, A. Surface movement in an earthflow complex, Raukumara Peninsula, New Zealand. Geomorphology 1991, 4, 261–272. [Google Scholar] [CrossRef]
- Coe, J.; Ellis, W.; Godt, J.; Savage, W.; Savage, J.; Michael, J.; Kibler, J.; Powers, P.; Lidke, D.; Debray, S. Seasonal movement of the Slumgullion landslide determined from Global Positioning System surveys and field instrumentation, July 1998–March 2002. Eng. Geol. 2003, 68, 67–101. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Lulie Getahun, F. Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models. Geomorphology 2003, 54, 77–89. [Google Scholar] [CrossRef]
- Dewitte, O.; Demoulin, A. Morphometry and kinematics of landslides inferred from precise DTMs in West Belgium. Nat. Hazards Earth Syst. Sci. 2005, 5, 259–265. [Google Scholar] [CrossRef]
- Tsutsui, K.; Rokugawa, S.; Nakagawa, H.; Miyazaki, S.; Cheng, C.; Shiraishi, T.; Yang, S. Detection and Volume Estimation of Large-Scale Landslides Based on Elevation-Change Analysis Using DEMs Extracted From High-Resolution Satellite Stereo Imagery. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1681–1696. [Google Scholar] [CrossRef]
Acquisition Date | Type of Image | Time Span between Acquisition Dates (year) | Ground Pixel Resolution (m) |
---|---|---|---|
October 1954 | AP black/White (1:35,000) | - | 0.74 |
November 1984 | AP black/White (1:30,000) | 30 | 0.64 |
September 1990 | AP black/White (1:33,000) | 6 | 0.70 |
July 2001 | OP color (1:10,000) | 11 | 1.0 |
April 2007 | OP color (1:5000) | 6 | 1.0 |
August 2012 | SI color | 5 | 2.5 |
April 2016 | SI color | 4 | 1.5 |
February 2019 | UAV color | 3 | 0.07 |
Year | 2019 |
---|---|
Total number of images | 1122 |
Average flying altitude (m) | 131 |
Total coverage area (ha) | 127.4 |
Number of GCPs | 30 |
Number of CHKs | 15 |
Ground resolution (m/pix) | 0.067 |
X RMSE (m) | 0.19 |
Y RMSE (m) | 0.18 |
Z RMSE (m) | 0.21 |
Orthomosaic resolution (m/pix) | 0.3 |
DSM/DTM resolution (m/pix) | 0.5 |
DTM (Year) | Number of GCPs | Accuracy in Elevation (m) | |
---|---|---|---|
ME | SDE | ||
1954 | 15 | −1.12 | 4.05 |
2001 | 15 | −0.42 | 1.52 |
2012 | 15 | −0.33 | 1.21 |
2019 | 15 | 0.09 | 0.34 |
Year | Landslide Area | Space-Time Variation | |||||||
---|---|---|---|---|---|---|---|---|---|
Source Area | Total Area | Period | Source Area | Rates | Total Area | Rates | |||
m2 | m2 | m2 | % | m2/yr | m2 | % | m2/yr | ||
1954 | 167,118.63 | 240,662.81 | 1954–1984 | 36,608.67 | 21.9 | 1220.29 | 62,925.06 | 26.1 | 2097.50 |
1984 | 203,727.30 | 303,587.87 | 1984–1990 | 13,439.73 | 6.6 | 2239.96 | 16,760.88 | 5.5 | 2793.48 |
1990 | 217,167.03 | 320,348.75 | 1990–2001 | 16,553.47 | 7.6 | 1504.86 | 37,702.7 | 11.8 | 3427.52 |
2001 | 233,720.50 | 358,051.45 | 2001–2007 | 10,092.11 | 4.3 | 1682.02 | 12,371.03 | 3.5 | 2061.84 |
2007 | 243,812.61 | 370,422.48 | 2007–2012 | 20,086.60 | 8.2 | 4017.32 | 35,006.88 | 9.5 | 7001.38 |
2012 | 263,899.21 | 405,429.36 | 2012–2016 | 11,566.70 | 4.4 | 2891.68 | 13,650.69 | 3.4 | 3412.67 |
2016 | 275,465.91 | 419,080.05 | 2016–2019 | 2198.91 | 0.8 | 732.97 | 2398.91 | 0.6 | 799.64 |
2019 | 277,864.82 | 421,478.96 | 1954–2019 | 110,546.19 | 66.1 | 1700.71 | 180,816.15 | 75.1 | 2781.79 |
Period | Elevation Differences (m) | Rates (m/yr) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Depletion | Accumulation | Depletion | Accumulation | |||||||
Min | Max | Mean | SD | Min | Max | Mean | SD | Mean | Mean | |
1954–2001 | −0.01 | −22.96 | −5.18 | −6.65 | 0.01 | 11.13 | 3.16 | 2.51 | −0.11 | 0.07 |
2001–2012 | −0.01 | −22.40 | −2.59 | −2.81 | 0.01 | 9.95 | 2.70 | 2.15 | −0.24 | 0.25 |
2012–2019 | −0.01 | −10.29 | −1.27 | −1.39 | 0.01 | 7.75 | 1.38 | 1.03 | −0.18 | 0.20 |
1954–2019 | −0.01 | −23.86 | −5.63 | −4.47 | 0.01 | 14.98 | 6.07 | 4.24 | −0.09 | 0.09 |
Period | Volumes (m3) | Rates (m3/yr) | ||||
---|---|---|---|---|---|---|
Depletion | Accumulation | Mass Balance | Depletion | Accumulation | Mass Balance | |
1954–2001 | 1,210,672.19 | 392,885.80 | 817,786.39 | 25,758.98 | 8359.27 | 17,399.71 |
2001–2012 | 683,499.95 | 382,131.41 | 301,367.55 | 62,136.27 | 34,739.22 | 27,397.05 |
2012–2019 | 352,634.32 | 198,463.51 | 154,170.81 | 50,376.33 | 28,351.93 | 22,024.40 |
1954–2019 | 1,563,252.94 | 872,951.83 | 690,301.11 | 24,050.05 | 13,430.03 | 10,620.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conforti, M.; Mercuri, M.; Borrelli, L. Morphological Changes Detection of a Large Earthflow Using Archived Images, LiDAR-Derived DTM, and UAV-Based Remote Sensing. Remote Sens. 2021, 13, 120. https://doi.org/10.3390/rs13010120
Conforti M, Mercuri M, Borrelli L. Morphological Changes Detection of a Large Earthflow Using Archived Images, LiDAR-Derived DTM, and UAV-Based Remote Sensing. Remote Sensing. 2021; 13(1):120. https://doi.org/10.3390/rs13010120
Chicago/Turabian StyleConforti, Massimo, Michele Mercuri, and Luigi Borrelli. 2021. "Morphological Changes Detection of a Large Earthflow Using Archived Images, LiDAR-Derived DTM, and UAV-Based Remote Sensing" Remote Sensing 13, no. 1: 120. https://doi.org/10.3390/rs13010120
APA StyleConforti, M., Mercuri, M., & Borrelli, L. (2021). Morphological Changes Detection of a Large Earthflow Using Archived Images, LiDAR-Derived DTM, and UAV-Based Remote Sensing. Remote Sensing, 13(1), 120. https://doi.org/10.3390/rs13010120