Next Article in Journal
Individual Detection of Citrus and Avocado Trees Using Extended Maxima Transform Summation on Digital Surface Models
Previous Article in Journal
The Combined Effect of Orientation Angle and Material on PolSAR Images of Urban Areas
Open AccessArticle

Assessment of the GOES-16 Clear Sky Mask Product over the Contiguous USA Using CALIPSO Retrievals

National Center for Atmospheric Research, Boulder, CO 80301, USA
Remote Sens. 2020, 12(10), 1630; https://doi.org/10.3390/rs12101630
Received: 22 April 2020 / Revised: 12 May 2020 / Accepted: 17 May 2020 / Published: 20 May 2020
Cloud initialization is a challenge in numerical weather prediction. Probably the most relevant observations for this task come from geostationary satellites. These satellites provide the cloud mask with high spatio-temporal resolution and low latencies. The low latency is an attractive option for nowcasting systems such as the solar irradiance nowcasting model MAD-WRF. In this study we examine the potential of using the cloud mask from the GOES-16 satellite over the contiguous U.S. for this particular application. With this aim, the GOES-16 cloud mask product is compared against CALIPSO retrievals during a two year period. Both the GOES-16 data and the CALIPSO retrievals are interpolated to a grid that covers the contiguous U.S. at 9 km of horizontal grid spacing that is being used in MAD-WRF nowcasts. Results indicate a probability of detection, or accuracy, of all sky conditions of 86.0%. However, the accuracy is higher for cloud detections, 90.9% than for clear sky detections 74.8%. The lower performance of clear sky retrievals is a result of missdetections during daytime. This is especially clear for summer, and for regions to the north of parallel 36 during winter. However, regions to the south of parallel 36 show acceptable performance during both daytime and nighttime. It is over these regions wherein the cloud mask product should show its largest potential to enhance the cloud initialization in the MAD-WRF model. View Full-Text
Keywords: GOES-16; CALIPSO; ACM; NWP; cloud initialization; MAD-WRF model GOES-16; CALIPSO; ACM; NWP; cloud initialization; MAD-WRF model
Show Figures

Graphical abstract

MDPI and ACS Style

Jiménez, P.A. Assessment of the GOES-16 Clear Sky Mask Product over the Contiguous USA Using CALIPSO Retrievals. Remote Sens. 2020, 12, 1630.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop