Integrated Hyperspectral and Geochemical Study of Sediment-Hosted Disseminated Gold at the Goldstrike District, Utah
Abstract
1. Introduction
Geological Settings
2. Materials and Methods
2.1. Hyperspectral Imaging
2.2. Geochemistry
3. Results
3.1. Hyperspectral Imaging
3.2. Geochemistry
4. Discussion
4.1. Gold Mineralization in Carlin-Type Deposits
4.2. Stratigraphic Control
4.3. Mineralogical Alterations
4.4. Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cline, J.S.; Hofstra, A.H.; Muntean, J.L.; Tosdal, R.M.; Hickey, K.A. Carlin-type gold deposits in Nevada: Critical geologic characteristics and viable models. Econ. Geol. 100th Anniv. Vol. 2005, 451–484. [Google Scholar] [CrossRef]
- Muntean, J.L.; Cline, J.S.; Simon, A.C.; Longo, A.A. Magmatic-hydrothermal origin of Nevada’s Carlin-type gold deposits. Nat. Geosci. 2011, 4, 122–127. [Google Scholar] [CrossRef]
- Gu, X. Turbidite-Hosted Micro-Disseminated Gold Deposits; Chengdu University of Science and Technology Press: Chengdu, China, 1996. [Google Scholar]
- Ashley, R.P.; Cunningham, C.G.; Bostick, N.H.; Dean, W.E.; Chou, I.M. Geology and geochemistry of three sedimentary-rock-hosted disseminated gold deposits in Guizhou Province, People’s Republic of China. Ore Geol. Rev. 1991, 6, 133–151. [Google Scholar] [CrossRef]
- Xia, Y.; Su, W.; Zhang, X.; Liu, J. Geochemistry and metallogenic model of carlin-type gold deposits in southwest Guizhou province, China. In Geochemistry-Earth’s System Processes; Panagiotaras, D., Ed.; InTech: Rijeka, Croatia, 2012; pp. 127–156. [Google Scholar]
- Percival, T.J.; Radtke, A.S. Sedimentary-rock-hosted disseminated gold mineralization in the Alsar district, Macedonia. Can. Mineral. 1994, 32, 649–665. [Google Scholar]
- Staude, J.M.G. Epithermal Mineralization in The Sierra Madre Occidental, and the Metallogeny of Northwestern Mexico. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 1995. [Google Scholar]
- Krahulec, K. Sedimentary rock-hosted gold and silver deposits of the Northeastern Basin and Range, Utah. Gt. Basin Evolut. Metallog. Geol. Soc. Nev. Symp. 2010, 1, 31–62. [Google Scholar]
- Emsbo, P.; Hutchinson, R.W.; Hofstra, A.H.; Volk, J.A.; Bettles, K.H.; Baschuk, G.J.; Johnson, C.A. Syngenetic au on the carlin trend: Implications for carlin-type deposits. Geology 1999, 27, 59–62. [Google Scholar] [CrossRef]
- Willden, R.; Adair, D.H. Gold deposits at Goldstrike, Utah. In Thrusting and Extensional Structures and Mineralization in the Beaver Dam Mountains, Southwestern Utah; Griffen, D.T., Phillips, W.R., Eds.; Utah Geological Association: Salt Lake City, UT, USA, 1986; pp. 137–147. [Google Scholar]
- Gustin, M.M.; Smith, M.T. Technical Report on the Goldstrike Project, Washington County, Utah, U.S.A.; Technical Report No.; Mine Development Associates: Reno, NV, USA, 2016; pp. 1–106. [Google Scholar]
- Willden, R. Goldstrike mining district, Washington County, Utah. In Mining Districts of Utah; Bon, R.L., Gloyn, R.W., Park, G.M., Eds.; Utah Geological Association: Salt Lake City, UT, USA, 2006; pp. 458–476. [Google Scholar]
- Dalm, M.; Buxton, M.W.N.; van Ruitenbeek, F.J.A. Discriminating ore and waste in a porphyry copper deposit using short-wavelength infrared (SWIR) hyperspectral imagery. Miner. Eng. 2017, 105, 10–18. [Google Scholar] [CrossRef]
- Gallie, E.A.; McArdle, S.; Rivard, B.; Francis, H. Estimating sulphide ore grade in broken rock using visible/infrared hyperspectral reflectance spectra. Int. J. Remote Sens. 2002, 23, 2229–2246. [Google Scholar] [CrossRef]
- Kruse, F.A.; Bedell, R.L.; Taranik, J.V.; Peppin, W.A.; Weatherbee, O.; Calvin, W.M. Mapping alteration minerals at prospect, outcrop and drill core scales using imaging spectrometry. Int. J. Remote Sens. 2012, 33, 1780–1798. [Google Scholar] [CrossRef]
- Riaza, A.; Müller, A. Hyperspectral remote sensing monitoring of pyrite mine wastes: A record of climate variability (Pyrite Belt, Spain). Environ. Earth Sci. 2010, 61, 575–594. [Google Scholar] [CrossRef]
- Adair, D.H. Structural Setting of the Goldstrike District, Washington County, Utah. In Thrusting and Extentional Structures and Mineralization in the Beaver Dam Mountains, Southwest Utah; Griffen, D.T., Phillips, W.R., Eds.; 1986; Volume 15, pp. 129–135. Available online: http://archives.datapages.com/data/uga/data/057/057001/129_ugs570129.htm (accessed on 22 August 2019).
- Christiansen, R.L.; Yeats, R.S.; Graham, S.A.; Niem, W.A.; Niem, A.R.; Snavely, P.D., Jr. Post-Laramide geology of the US Cordilleran region. In The Cordilleran Orogen, Conterminous US: Geology of North America 3; Burchfiel, B.C., Lipman, P.W., Zoback, M.L., Eds.; Geological Society of America: Boulder, CO, USA, 1992; pp. 261–406. [Google Scholar]
- Rowley, P.D.; Anderson, R.E.; Hacker, D.B.; Boswell, J.T.; Maxwell, D.J.; Cox, D.P.; Willden, R.; Adair, D.H. Interim Geologic Map of the Goldstrike Quadrangle and the East Part of the Docs Pass Quadrangle. Washington County, Utah; Utah Geological Survey Open-File Report 510; Utah Geological Survey: Salt Lake City, Utah, 2007. [Google Scholar]
- Ott, A.L. Detailed Stratigraphy and Stable Isotope Analysis of the Claron Formation, Bryce Canyon National Park, Southwestern Utah. Master’s Thesis, Washington State University, Pullman, WA, USA, 1999. [Google Scholar]
- Clark, R.N.; Swayze, G.A.; Livo, K.E.; Kokaly, R.F.; Sutley, S.J.; Dalton, J.B.; McDougal, R.R.; Gent, C.A. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. J. Geophys. Res. Planets 2003, 108, 5131. [Google Scholar] [CrossRef]
- Alonso de Linaje, V.; Khan, S.D.; Bhattacharya, J. Study of carbonate concretions using imaging spectroscopy in the Frontier Formation, Wyoming. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 82–92. [Google Scholar] [CrossRef]
- Entezari, I.; Rivard, B.; Geramian, M.; Lipsett, M.G. Predicting the abundance of clays and quartz in oil sands using hyperspectral measurements. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 1–8. [Google Scholar] [CrossRef]
- Khan, S.D.; Okyay, U.; Ahmad, L.; Shah, M.T. Characterization of gold mineralization in northern Pakistan using imaging spectroscopy. Photogramm. Eng. Remote Sens. 2018, 84, 425–434. [Google Scholar] [CrossRef]
- Krupnik, D.; Khan, S.; Okyay, U.; Hartzell, P.; Zhou, H.W. Study of Upper Albian rudist buildups in the Edwards Formation using ground-based hyperspectral imaging and terrestrial laser scanning. Sediment. Geol. 2016, 345, 154–167. [Google Scholar] [CrossRef]
- Okyay, U.; Khan, S.D.; Lakshmikantha, M.R.; Sarmiento, S. Ground-based hyperspectral image analysis of the Lower Mississippian (Osagean) reeds spring formation rocks in southwestern Missouri. Remote Sens. 2016, 8, 1–21. [Google Scholar] [CrossRef]
- Sun, L.; Khan, S.D.; Sarmiento, S.; Lakshmikantha, M.R.; Zhou, H. Ground-based hyperspectral imaging and terrestrial laser scanning for fracture characterization in the Mississippian Boone Formation. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 222–233. [Google Scholar] [CrossRef]
- Sun, L.; Khan, S.; Godet, A. Integrated ground-based hyperspectral imaging and geochemical study of the Eagle Ford Group in West Texas. Sediment. Geol. 2018, 363, 34–47. [Google Scholar] [CrossRef]
- Green, A.A.; Berman, M.; Switzer, P.; Graig, M.D. A transformation for ordering multispectral data in term of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; Wise, R.; Livo, K.E.; Hoefen, T.M.; Kokaly, R.F.; Sutley, S.J. USGS Digital Spectral Library Splib06a; Digital Data Series 231; US Geological Survey: Reston, VA, USA, 2007.
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. Solid Earth 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Mustard, J.F.; Sunshine, J. Spectral analysis for earth science: Investigations using remote sensing data. In Remote Sensing for the Earth Sciences: Manual of Remote Sensing; Rencz, A.N., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1999; pp. 251–307. [Google Scholar]
- Sunshine, J.M.; Pieters, C.M.; Pratt, S.F. Deconvolution of minerals absorption bands: An improved approach. J. Geophys. Res 1990, 95, 6955–6966. [Google Scholar] [CrossRef]
- Asadzadeh, S.; de Souza Filho, C.R. Spectral remote sensing for onshore seepage characterization: A critical overview. Earth Sci. Rev. 2017, 168, 48–72. [Google Scholar] [CrossRef]
- Hunt, G.R. Near-infrared (1.3–2.4 μm) spectra of alteration minerals–Potential for use in remote sensing. Geophysics 1979, 44, 1974–1986. [Google Scholar] [CrossRef]
- Cloutis, E.A.; Gaffey, M.J.; Jackowski, T.L.; Reed, K.L. Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra. J. Geophys. Res. 1986, 91, 11641–11653. [Google Scholar] [CrossRef]
- Gaffey, S.J. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 μm): Anhydrous carbonate minerals. J. Geophys. 1987, 92, 1429–1440. [Google Scholar] [CrossRef]
- Hunt, G.R.; Salisbury, J.W. Visible and near infrared spectra of minerals and rocks. II. Carbonates. Mod. Geol. 1971, 2, 23–30. [Google Scholar]
- Hunt, G.R.; Salisbury, J.W. Visible and near-infrared spectra of minerals and rocks: I silicate minerals. Mod. Geol. 1970, 1, 283–300. [Google Scholar]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res 1990, 95, 12653–12680. [Google Scholar] [CrossRef]
- Morris, R.V.; Lauer, H.V.; Lawson, C.A.; Gibson, E.K.; Nace, G.A.; Stewart, C. Spectral and other physicochemical properties of submicron powders of hematite (alpha-Fe2o3), maghemite (gamma-Fe2o3), magnetite (Fe3o4), goethite (alpha-Feooh) and lepidocrocite (gamma-Feooh). J. Geophys. Res 1985, 90, 3126–3144. [Google Scholar] [CrossRef]
- Pearson, K. Principal components analysis. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1901, 6, 559. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Sun, L.; Khan, S. Ground-based hyperspectral remote sensing of hydrocarbon-induced rock alterations at cement, Oklahoma. Mar. Pet. Geol. 2016, 77, 1243–1253. [Google Scholar] [CrossRef]
- Coney, P.J.; Reynolds, S.J. Cordilleran Benioff zones. Nature 1977, 270, 403–406. [Google Scholar] [CrossRef]
- Humphreys, E.D. Post-Laramide removal of the Farallon slab, western United States. Geology 1995, 23, 987–990. [Google Scholar] [CrossRef]
- Richards, J.P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 2009, 37, 247–250. [Google Scholar] [CrossRef]
- Gans, P.B.; Mahood, G.A.; Schermer, E. Synextensional Magmatism in the Basin and Range Province: A Case Study from the Eastern Great Basin; Geological Society of America: Boulder, CO, USA, 1989. [Google Scholar]
- Williams-Jones, A.E.; Heinrich, C.A. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ. Geol. 2005, 100, 1287–1312. [Google Scholar] [CrossRef]
- Rice, J.A. Stratigraphy, Diagenesis, and Provenance of Upper Paleozoic Eolian Limestones, Western Grand Canyon and Southern Nevada. Ph.D. Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, May, 1990. [Google Scholar]
- Wardlaw, B.R. The Pennsylvanian Callville Limestone of Beaver County, southwestern Utah. In Paleozoic Paleogeography of the West-Central United States: Rocky Mountain Paleogeography Symposium 1; Fouch, T.D., Magathan, E.R., Eds.; Rocky Mountain Section SEPM: Denver, CO, USA, 1980; pp. 175–179. [Google Scholar]
- Choe, E.; van der Meer, F.; van Ruitenbeek, F.; van der Werff, H.; de Smith, B.; Kim, K.W. Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sens. Environ. 2008, 112, 3222–3233. [Google Scholar] [CrossRef]
- Hong-yan, R.E.N.; Da-fang, Z.; Singh, A.N.; Jian-jun, P.A.N.; Dong-sheng, Q.I.U. Estimation of As and Cu contamination in agricultural soils around a mining area by reflectance spectroscopy: A case study. Pedosphere 2009, 19, 719–726. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Khan, S.; Shabestari, P. Integrated Hyperspectral and Geochemical Study of Sediment-Hosted Disseminated Gold at the Goldstrike District, Utah. Remote Sens. 2019, 11, 1987. https://doi.org/10.3390/rs11171987
Sun L, Khan S, Shabestari P. Integrated Hyperspectral and Geochemical Study of Sediment-Hosted Disseminated Gold at the Goldstrike District, Utah. Remote Sensing. 2019; 11(17):1987. https://doi.org/10.3390/rs11171987
Chicago/Turabian StyleSun, Lei, Shuhab Khan, and Peter Shabestari. 2019. "Integrated Hyperspectral and Geochemical Study of Sediment-Hosted Disseminated Gold at the Goldstrike District, Utah" Remote Sensing 11, no. 17: 1987. https://doi.org/10.3390/rs11171987
APA StyleSun, L., Khan, S., & Shabestari, P. (2019). Integrated Hyperspectral and Geochemical Study of Sediment-Hosted Disseminated Gold at the Goldstrike District, Utah. Remote Sensing, 11(17), 1987. https://doi.org/10.3390/rs11171987