Next Article in Journal
Regional Scale Mapping of Grassland Mowing Frequency with Sentinel-2 Time Series
Next Article in Special Issue
Ultra-Light Aircraft-Based Hyperspectral and Colour-Infrared Imaging to Identify Deciduous Tree Species in an Urban Environment
Previous Article in Journal
Correction: Shao, Z.; et al. A Benchmark Dataset for Performance Evaluation of Multi-Label Remote Sensing Image Retrieval. Remote Sens. 2018, 10, 964
Previous Article in Special Issue
Tree Species Classification of the UNESCO Man and the Biosphere Karkonoski National Park (Poland) Using Artificial Neural Networks and APEX Hyperspectral Images
Open AccessFeature PaperArticle

Individual Tree Crown Segmentation and Classification of 13 Tree Species Using Airborne Hyperspectral Data

Institute of Surveying, Remote Sensing and Land Information (IVFL), University of Natural Resources and Life Sciences, Vienna (BOKU), Peter Jordan Strasse 82, 1190 Vienna, Austria
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Remote Sens. 2018, 10(8), 1218; https://doi.org/10.3390/rs10081218
Received: 25 June 2018 / Revised: 24 July 2018 / Accepted: 29 July 2018 / Published: 3 August 2018
Knowledge of the distribution of tree species within a forest is key for multiple economic and ecological applications. This information is traditionally acquired through time-consuming and thereby expensive field work. Our study evaluates the suitability of a visible to near-infrared (VNIR) hyperspectral dataset with a spatial resolution of 0.4 m for the classification of 13 tree species (8 broadleaf, 5 coniferous) on an individual tree crown level in the UNESCO Biosphere Reserve ‘Wienerwald’, a temperate Austrian forest. The study also assesses the automation potential for the delineation of tree crowns using a mean shift segmentation algorithm in order to permit model application over large areas. Object-based Random Forest classification was carried out on variables that were derived from 699 manually delineated as well as automatically segmented reference trees. The models were trained separately for two strata: small and/or conifer stands and high broadleaf forests. The two strata were delineated beforehand using CHM-based tree height and NDVI. The predictor variables encompassed spectral reflectance, vegetation indices, textural metrics and principal components. After feature selection, the overall classification accuracy (OA) of the classification based on manual delineations of the 13 tree species was 91.7% (Cohen’s kappa (κ) = 0.909). The highest user’s and producer’s accuracies were most frequently obtained for Weymouth pine and Scots Pine, while European ash was most often associated with the lowest accuracies. The classification that was based on mean shift segmentation yielded similarly good results (OA = 89.4% κ = 0.883). Based on the automatically segmented trees, the Random Forest models were also applied to the whole study site (1050 ha). The resulting tree map of the study area confirmed a high abundance of European beech (58%) with smaller amounts of oak (6%) and Scots pine (5%). We conclude that highly accurate tree species classifications can be obtained from hyperspectral data covering the visible and near-infrared parts of the electromagnetic spectrum. Our results also indicate a high automation potential of the method, as the results from the automatically segmented tree crowns were similar to those that were obtained for the manually delineated tree crowns. View Full-Text
Keywords: imaging spectroscopy; hyperspectral imaging; tree species; Random Forest; mean shift segmentation; OBIA; UNESCO Biosphere Reserve ‘Wienerwald’ imaging spectroscopy; hyperspectral imaging; tree species; Random Forest; mean shift segmentation; OBIA; UNESCO Biosphere Reserve ‘Wienerwald’
Show Figures

Graphical abstract

MDPI and ACS Style

Maschler, J.; Atzberger, C.; Immitzer, M. Individual Tree Crown Segmentation and Classification of 13 Tree Species Using Airborne Hyperspectral Data. Remote Sens. 2018, 10, 1218.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop