Next Article in Journal
High-Throughput Phenotyping of Crop Water Use Efficiency via Multispectral Drone Imagery and a Daily Soil Water Balance Model
Next Article in Special Issue
Relationship between Spatiotemporal Variations of Climate, Snow Cover and Plant Phenology over the Alps—An Earth Observation-Based Analysis
Previous Article in Journal
Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests
Previous Article in Special Issue
Ecosystem Services in a Protected Mountain Range of Portugal: Satellite-Based Products for State and Trend Analysis
Open AccessArticle

Impacts of Climate and Supraglacial Lakes on the Surface Velocity of Baltoro Glacier from 1992 to 2017

1
German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Oberpfaffenhofen, Germany
2
Institute of Geography, Friedrich-Alexander-University Erlangen-Nuremberg, 91052 Erlangen, Germany
3
Geodesy and Glaciology, Bavarian Academy of Sciences and Humanities, 80637 Munich, Germany
*
Author to whom correspondence should be addressed.
Remote Sens. 2018, 10(11), 1681; https://doi.org/10.3390/rs10111681
Received: 31 August 2018 / Revised: 17 October 2018 / Accepted: 22 October 2018 / Published: 24 October 2018
(This article belongs to the Special Issue Mountain Remote Sensing)
The Baltoro Glacier is one of the largest glaciers in the Karakoram mountain range. Long-term monitoring of glacier dynamics provides key information on glacier evolution in a changing climate, which is essential for regional water resource and natural hazard management. On large glaciers, detailed field based mass balance is not feasible. Ice dynamic variations quantify changes in mass transport and possibly the influence of environmental parameters on the evolution of the glacier. Although velocity variations of Baltoro Glacier during winter and summer are linked to seasonally enhanced basal sliding, little is known about differences in timing and magnitude of (intra-)seasonal velocity variations and their determining mechanisms. We present time series of annual, seasonal, and intra-seasonal glacier surface velocities by means of intensity offset tracking applied on multi-mission Synthetic Aperture Radar (SAR) data for a period of 25 years from 1992 to 2017. Supraglacial lakes forming on the downstream glacier surface in summer were mapped from 1991 to 2017 based on the Normalized Difference Water Index (NDWI), calculated from multi-spectral Landsat and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery. Additionally, precipitation data of the Tropical Rainfall Measurement Mission (TRMM) and temperature data of ERA-Interim were used to derive the Standardized Precipitation Index (SPI) and Standardized Temperature Index (STI) from 1998 to 2017. Linking surface velocities to the SPI confirmed a strong correlation between heavy precipitation events in winter and the magnitude and the timing of glacier acceleration in summer. Downstream extensions of summer acceleration that have been found since 2015 may be explained by additional water draining from an increased number of supraglacial lakes through crevasses that have been formed in consequence of higher initial velocities, evoked by strong winter precipitation. The warmer melt seasons observed in the years 2015 to 2017 additionally affects the formation of a supraglacial lake, so stronger summer acceleration events in recent years may be indirectly related to global warming. View Full-Text
Keywords: glacier velocity; glacier dynamic; intensity and speckle tracking; supraglacial lake; SAR; Landsat data; NDWI; Karakorum glacier velocity; glacier dynamic; intensity and speckle tracking; supraglacial lake; SAR; Landsat data; NDWI; Karakorum
Show Figures

Graphical abstract

MDPI and ACS Style

Wendleder, A.; Friedl, P.; Mayer, C. Impacts of Climate and Supraglacial Lakes on the Surface Velocity of Baltoro Glacier from 1992 to 2017. Remote Sens. 2018, 10, 1681. https://doi.org/10.3390/rs10111681

AMA Style

Wendleder A, Friedl P, Mayer C. Impacts of Climate and Supraglacial Lakes on the Surface Velocity of Baltoro Glacier from 1992 to 2017. Remote Sensing. 2018; 10(11):1681. https://doi.org/10.3390/rs10111681

Chicago/Turabian Style

Wendleder, Anna; Friedl, Peter; Mayer, Christoph. 2018. "Impacts of Climate and Supraglacial Lakes on the Surface Velocity of Baltoro Glacier from 1992 to 2017" Remote Sens. 10, no. 11: 1681. https://doi.org/10.3390/rs10111681

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop