Castro-Bello, M.; Romero-Juárez, V.M.; Fuentes-Pacheco, J.; Morales-Morales, C.; Marmolejo-Vega, C.V.; Zagal-Barrera, S.R.; Gutiérrez-Valencia, D.E.; Marmolejo-Duarte, C.
R3sNet: Optimized Residual Neural Network Architecture for the Classification of Urban Solid Waste via Images. Sustainability 2025, 17, 3502.
https://doi.org/10.3390/su17083502
AMA Style
Castro-Bello M, Romero-Juárez VM, Fuentes-Pacheco J, Morales-Morales C, Marmolejo-Vega CV, Zagal-Barrera SR, Gutiérrez-Valencia DE, Marmolejo-Duarte C.
R3sNet: Optimized Residual Neural Network Architecture for the Classification of Urban Solid Waste via Images. Sustainability. 2025; 17(8):3502.
https://doi.org/10.3390/su17083502
Chicago/Turabian Style
Castro-Bello, Mirna, V. M. Romero-Juárez, J. Fuentes-Pacheco, Cornelio Morales-Morales, Carlos V. Marmolejo-Vega, Sergio R. Zagal-Barrera, D. E. Gutiérrez-Valencia, and Carlos Marmolejo-Duarte.
2025. "R3sNet: Optimized Residual Neural Network Architecture for the Classification of Urban Solid Waste via Images" Sustainability 17, no. 8: 3502.
https://doi.org/10.3390/su17083502
APA Style
Castro-Bello, M., Romero-Juárez, V. M., Fuentes-Pacheco, J., Morales-Morales, C., Marmolejo-Vega, C. V., Zagal-Barrera, S. R., Gutiérrez-Valencia, D. E., & Marmolejo-Duarte, C.
(2025). R3sNet: Optimized Residual Neural Network Architecture for the Classification of Urban Solid Waste via Images. Sustainability, 17(8), 3502.
https://doi.org/10.3390/su17083502