R3sNet: Optimized Residual Neural Network Architecture for the Classification of Urban Solid Waste via Images
Abstract
1. Introduction
2. Materials and Methods
2.1. Creation of the Dataset
2.2. Data Augmentation
2.3. R3sNet Network Proposal
- Input Layer
- Initial Convolutional Layer
- Batch Normalization
- ReLU Activation Function
- Residual Blocks
- Identity Blocks
- Projection Blocks
- Global Pooling Layer
- Output Layer
- Loss Function and Optimization
2.4. Evaluation of the Neural Network
3. Results
Performance of the R3sNet and ResNet50 Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaza, S.; Yao, L.C.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Lin, K.; Zhao, Y.; Kuo, J.H.; Deng, H.; Cui, F.; Zhang, Z.; Zhang, M.; Zhao, C.; Gao, X.; Zhou, T.; et al. Toward Smarter Management and Recovery of Municipal Solid Waste: A Critical Review on Deep Learning Approaches. J. Clean. Prod. 2022, 346, 130943. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, X.; Mu, X.; Wang, Z.; Tian, R.; Wang, X.; Liu, X. Recyclable Waste Image Recognition Based on Deep Learning. Resour. Conserv. Recycl. 2021, 171, 105636. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Q.; Zhao, J.; Shen, H.; Xiong, X. Fault Diagnosis of Rotating Machinery under Noisy Environment Conditions Based on a 1-D Convolutional Autoencoder and 1-D Convolutional Neural Network. Sensors 2019, 19, 972. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.L.; Chen, W.C.; Wang, C.T.; Lin, Y.H. Recycling Waste Classification Using Optimized Convolutional Neural Network. Resour. Conserv. Recycl. 2021, 164, 105132. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Q.; Zhang, X.; Bao, Q.; Su, J.; Liu, X. Waste Image Classification Based on Transfer Learning and Convolutional Neural Network. Waste Manag. 2021, 135, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Sharma, S.; Uddin, M.; Chen, C.-L.; Wu, C.-M.; Soni, P.; Chaudhary, S. Waste Classification for Sustainable Development Using Image Recognition with Deep Learning Neural Network Models. Sustainability 2022, 14, 7222. [Google Scholar] [CrossRef]
- Shi, C.; Tan, C.; Wang, T.; Wang, L. A Waste Classification Method Based on a Multilayer Hybrid Convolution Neural Network. Appl. Sci. 2021, 11, 8572. [Google Scholar] [CrossRef]
- Bin Islam, S.; Sumon, S.I.; Majid, M.E.; Kashem, S.B.A.; Nashbat, M.; Ashraf, A.; Khandakar, A.; Kunju, A.K.A.; Hasan-Zia, M.; Chowdhury, M.E. ECCDN-Net: A Deep Learning-Based Technique for Efficient Organic and Recyclable Waste Classification. Waste Manag. 2025, 193, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Keskin, E.F.; İşleyen, O.; Demirhan, H.; Keskin, Ş.R. Trash Classification Using Deep Learning Models. In Proceedings of the 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE), Las Vegas, NV, USA, 24–27 July 2023; pp. 318–323. [Google Scholar]
- Abdu, H.; Noor, M.H.M. Domestic Trash Classification with Transfer Learning Using VGG16. In Proceedings of the 2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 21–22 October 2022; pp. 137–141. [Google Scholar]
- Azis, F.A.; Suhaimi, H.; Abas, E. Waste Classification Using Convolutional Neural Network. In Proceedings of the 2020 2nd International Conference on Information Technology and Computer Communications, Kuala Lumpur, Malaysia, 12–14 August 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 9–13. [Google Scholar]
- Lin, K.; Zhao, Y.; Gao, X.; Zhang, M.; Zhao, C.; Peng, L.; Zhang, Q.; Zhou, T. Applying a Deep Residual Network Coupling with Transfer Learning for Recyclable Waste Sorting. Environ. Sci. Pollut. Res. 2022, 29, 91081–91095. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Xia, Z.; Yang, G.; Lv, Y. A Garbage Classification Method Based on a Small Convolution Neural Network. Sustainability 2022, 14, 14735. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Thung, G. Garythung/Trashnet: Dataset of Images of Trash; Torch-Based CNN for Garbage Image Classification. Available online: https://github.com/garythung/trashnet?tab=readme-ov-file (accessed on 20 December 2024).
- Xiaohoua. Garbage_HuaWei. Available online: https://www.kaggle.com/datasets/xiaohoua/garbage-huawei (accessed on 9 December 2024).
- Sekar, S. Waste Classification Data. Available online: https://www.kaggle.com/datasets/techsash/waste-classification-data (accessed on 20 December 2024).
- Kunwar, S. Garbage Dataset. Available online: https://www.kaggle.com/dsv/10182596 (accessed on 9 December 2024).
- Mohamed, M. Garbage Classification (12 Classes). Available online: https://www.kaggle.com/datasets/mostafaabla/garbage-classification (accessed on 20 December 2024).
- Garbage Pictures for Classification. Available online: https://www.kaggle.com/datasets/mascot9183/garbage-pictures-for-classification?select=Garbage+classification (accessed on 9 December 2024).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Nnamoko, N.; Barrowclough, J.; Procter, J. Solid Waste Image Classification Using Deep Convolutional Neural Network. Infrastructures 2022, 7, 47. [Google Scholar] [CrossRef]
- Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar]
- Suganda Girsang, A.; Pratama, H.; Santo Agustinus, L.P. Classification Organic and Inorganic Waste with Convolutional Neural Network Using Deep Learning. Int. J. Intell. Syst. Appl. Eng. 2023, 11, 343–348. [Google Scholar]
- Chhabra, M.; Sharan, B.; Elbarachi, M.; Kumar, M. Intelligent Waste Classification Approach Based on Improved Multi-Layered Convolutional Neural Network. Multimed. Tools Appl. 2024, 83, 84095–84120. [Google Scholar] [CrossRef]
Dataset Name | Link | Number of Images |
---|---|---|
TrashNet | https://github.com/garythung/trashnet, accessed on 21 December 2024 | 993 |
Garbage_HuaWei | https://www.kaggle.com/datasets/xiaohoua/garbage-huawei, accessed on 10 December 2024 | 548 |
Waste Classification data | https://www.kaggle.com/datasets/techsash/waste-classification-data, accessed on 21 December 2024 | 731 |
Garbage Dataset | https://www.kaggle.com/datasets/sumn2u/garbage-classification-v2, accessed on 10 December 2024 | 175 |
Garbage Classification (12 classes) | https://www.kaggle.com/datasets/mostafaabla/garbage-classification, accessed on 21 December 2024 | 275 |
Garbage Pictures for Classification | https://www.kaggle.com/datasets/mascot9183/garbage-pictures-for-classification, accessed on 10 December 2024 | 339 |
ImageDataGenerator | |
---|---|
Parameter | Value |
Rescale | 1./255 |
Rotation | [0, 5] |
Zoom | [0.0, 0.10] |
Width shift | [0.0, 0.1] |
Height shift | [0.0, 0.1] |
Shear range | [0.0, 0.5] |
Horizontal flip | True |
Vertical flip | True |
Fill mode | nearest |
Model | Parameters (M) | GFLOPS |
---|---|---|
R3sNet | 0.3 | 2.70 |
ResNet18 | 11.7 | 1.81 |
ResNet50 | 25.6 | 7.75 |
Hyperparameter | Value |
---|---|
Input | 224, 224, 3 |
Batch | 16 |
Activation | Sigmoid |
Optimizer | SGD |
learning_rate | 1 × 10−3 |
Epochs | 30 |
Dataset | Metric | R3sNet | Pretrained ResNet50 |
---|---|---|---|
Train | Accuracy | 0.8941 ± 0.0053 | 0.8026 ± 0.0109 |
Loss | 0.0701 ± 0.0027 | 0.4281 ± 0.0170 | |
Validation | Accuracy | 0.8901 ± 0.0156 | 0.8128 ± 0.0162 |
Loss | 0.0758 ± 0.0102 | 0.4267 ± 0.0211 | |
Test | Accuracy | 0.8633 ± 0.156 | 0.8167 ± 0.0115 |
Loss | 0.0965 ± 0.0109 | 0.4011 ± 0.0173 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Bello, M.; Romero-Juárez, V.M.; Fuentes-Pacheco, J.; Morales-Morales, C.; Marmolejo-Vega, C.V.; Zagal-Barrera, S.R.; Gutiérrez-Valencia, D.E.; Marmolejo-Duarte, C. R3sNet: Optimized Residual Neural Network Architecture for the Classification of Urban Solid Waste via Images. Sustainability 2025, 17, 3502. https://doi.org/10.3390/su17083502
Castro-Bello M, Romero-Juárez VM, Fuentes-Pacheco J, Morales-Morales C, Marmolejo-Vega CV, Zagal-Barrera SR, Gutiérrez-Valencia DE, Marmolejo-Duarte C. R3sNet: Optimized Residual Neural Network Architecture for the Classification of Urban Solid Waste via Images. Sustainability. 2025; 17(8):3502. https://doi.org/10.3390/su17083502
Chicago/Turabian StyleCastro-Bello, Mirna, V. M. Romero-Juárez, J. Fuentes-Pacheco, Cornelio Morales-Morales, Carlos V. Marmolejo-Vega, Sergio R. Zagal-Barrera, D. E. Gutiérrez-Valencia, and Carlos Marmolejo-Duarte. 2025. "R3sNet: Optimized Residual Neural Network Architecture for the Classification of Urban Solid Waste via Images" Sustainability 17, no. 8: 3502. https://doi.org/10.3390/su17083502
APA StyleCastro-Bello, M., Romero-Juárez, V. M., Fuentes-Pacheco, J., Morales-Morales, C., Marmolejo-Vega, C. V., Zagal-Barrera, S. R., Gutiérrez-Valencia, D. E., & Marmolejo-Duarte, C. (2025). R3sNet: Optimized Residual Neural Network Architecture for the Classification of Urban Solid Waste via Images. Sustainability, 17(8), 3502. https://doi.org/10.3390/su17083502