Cross-Linked Fungal Biotemplate Enables Highly Efficient Nanomaterial Recovery and Reutilization as Porous Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recycling Nano-Fe2O3 from an Aqueous Solution Using Neurospora crassa
2.2. Activation of Nano-Fe2O3-Enriched Neurospora crassa to Magnetic Porous Carbon Composite
2.3. Characterization of Nano-Fe2O3-Enriched Neurospora crassa and Magnetic Porous Carbon Composite
2.4. Electrochemical Energy Storage Capability of Magnetic Porous Carbon Composite
2.5. Organic Pollutant Removal Capacity of Magnetic Porous Carbon Composite
3. Results and Discussions
3.1. Recycling of Nano-Fe2O3 from Aqueous Solution Using Neurospora crassa
3.2. Activation and Characterization of Nano-Fe2O3-Enriched Neurospora crassa
3.3. Electrochemical Energy Storage Capability of the Magnetic Porous Carbon Composite
3.4. Adsorption Capacity of TCS onto Magnetic Porous Carbon Composite
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NC | Neurospora crassa fungus |
FeNC | Fe2O3-enriched Neurospora crassa fungus |
FePC | Magnetic porous carbon composite |
References
- Khatoon, U.; Aditya, V. An Overview on the Role of Government Initiatives in Nanotechnology Innovation for Sustainable Economic Development and Research Progress. Sustainability 2025, 17, 1250. [Google Scholar] [CrossRef]
- Chaikittisilp, W.; Yamauchi, Y.; Ariga, K. Material Evolution with Nanotechnology, Nanoarchitectonics, and Materials Informatics: What will be the Next Paradigm Shift in Nanoporous Materials? Adv. Mater. 2022, 34, 2107212. [Google Scholar]
- Hussain, Z.; Saleem, A.; Gao, L. From Waste to Innovation: Silver-doped Silicate Ink Coating from Waste Coal Fly Ash for Hydrophobic Antimicrobial Fabric and Water-Oil Separation. Waste Manag. 2025, 194, 238–248. [Google Scholar] [PubMed]
- Cao, J.; Wu, Q.; Liu, X.; Zhu, X.; Huang, C.; Wang, X.; Song, Y. Mechanistic insight on nanomaterial-induced reactive oxygen species formation. J. Environ. Sci. 2024, 151, 200–210. [Google Scholar]
- Sun, T.Y.; Bornhoft, N.A.; Hungerbuhler, K.; Nowack, B. Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials. Environ. Sci. Technol. 2016, 50, 4701–4711. [Google Scholar]
- Mazari, S.A.; Ali, E.; Abro, R.; Khan, F.S.A.; Ahmed, I.; Ahmed, M.; Nizamuddin, S.; Siddiqui, T.H.; Hossain, N.; Mubarak, N.M.; et al. Nanomaterials: Applications, Waste-Handling, Environmental Toxicities, and Future Challenges—A review. J. Environ. Chem. Eng. 2021, 9, 105028. [Google Scholar]
- Abbas, Q.; Yousaf, B.; Ullah, H.; Ali, M.U.; Ok, Y.S.; Rinklebe, J. Environmental Transformation and Nano-toxicity of Engineered Nano-particles (ENPs) in Aquatic and Terrestrial Organisms. Crit. Rev. Environ. Sci. Tec. 2020, 50, 2523–2581. [Google Scholar]
- Asmatulu, E.; Andalib, M.N.; Subeshan, B.; Abedin, F. Impact of nanomaterials on human health: A review. Environ. Chem. Lett. 2022, 20, 2509–2529. [Google Scholar]
- Medici, S.; Peana, M.; Nurchi, V.M.; Zoroddu, M.A. Medical uses of silver: History, myths, and scientific evidence. J. Med. Chem. 2019, 62, 5923–5943. [Google Scholar]
- Dutta, T.; Kim, K.H.; Deep, A.; Szulejko, J.E.; Vellingiri, K.; Kumar, S.; Kwon, E.E.; Yun, S.T. Recovery of Nanomaterials from Battery and Electronic Wastes: A New Paradigm of Environmental Waste Management. Renew. Sustain. Energy Rev. 2018, 82, 3694–3704. [Google Scholar]
- Barasarathi, J.; Abdullah, P.S.; Uche, E.C. Application of magnetic carbon nanocomposite from agro-waste for the removal of pollutants from water and wastewater. Chemosphere 2022, 305, 135384. [Google Scholar]
- Leonel, A.G.; Mansur, A.A.P.; Mansur, H.S. Advanced Functional Nanostructures based on Magnetic Iron Oxide Nanomaterials for Water Remediation: A Review. Water Res. 2021, 190, 116693. [Google Scholar] [PubMed]
- Wang, X.; Chen, X.; Zhou, R.H.; Hu, P.Y.; Huang, K.; Chen, P.P. Filter-Assisted Separation of Multiple Nanomaterials: Mechanism and Application in Atomic/Mass Spectrometry/Fluorescence Label-Free Multimode Bioassays. Anal. Chem. 2021, 93, 3889–3897. [Google Scholar]
- Chen, L.; Zhang, X.; Zhang, M.; Zhu, Y.H.; Zhuo, R. Removal of heavy-metal pollutants by white rot fungi: Mechanisms, achievements, and perspectives. J. Clean. Prod. 2022, 354, 131681. [Google Scholar]
- Shi, L.; Zhao, X.; Zhong, K.C.; Jia, Q.Y.; Shen, Z.G.; Zou, J.W.; Chen, Y.H. Physiological Mechanism of the Response to Cr(VI) in the Aerobic Denitrifying Ectomycorrhizal Fungus Pisolithus sp.1. J. Hazard. Mater. 2022, 429, 128318. [Google Scholar]
- He, N.; Hu, L.; Jiang, C.Y.Z.; Li, M.K. Remediation of Chromium, Zinc, Arsenic, Lead and Antimony Contaminated Acidic Mine Soil Based on Induced Phosphate Precipitation. Sci. Total Environ. 2022, 850, 157995. [Google Scholar] [PubMed]
- Liang, J.; Zhang, X.; Li, H.D.; Wen, C.X.; Tian, L.L.; Chen, X.M.; Li, Z. Constructing Two-Dimensional (2D) Heterostructure Channels with Engineered Biomembrane and Graphene for Precise Scandium Sieving. Adv. Mater. 2024, 36, 2404629. [Google Scholar]
- Zhang, L.Y.; Zhang, M.C.; Liu, G.P.; Jin, W.Q.; Li, X.Y. Fungal Cell Wall-Graphene Oxide Microcomposite Membrane for Organic Solvent Nanofiltration. Adv. Funct. Mater. 2021, 31, 2100110. [Google Scholar]
- Wang, P.; Ye, H.; Yin, Y.X.; Chen, H.; Bian, Y.B.; Wang, Z.R.; Cao, F.F.; Guo, Y.G. Fungi-Enabled Synthesis of Ultrahigh-Surface-Area Porous Carbon. Adv. Mater. 2019, 31, 1805134. [Google Scholar]
- Appiah-Ntiamoah, R.; Baye, A.F.; Kim, H. ZnO–ZnFe2O4/Fe3O4/Carbon Nanocomposites for Ultrasensitive and Selective Dopamine Detection. ACS Appl. Nano Mater. 2022, 5, 4754–4766. [Google Scholar]
- Wei, X.; Li, X.D.; Tang, L.; Yu, J.F.; Deng, J.Q.; Luo, T.; Liang, J.; Chen, X.W.; Zhou, Y.Y. Exploring the Role of Fe Species from Biochar-iron Composites in the Removal and Long-term Immobilization of SeO42− Against Competing Oxyanions. J. Hazard. Mater. 2021, 418, 126311. [Google Scholar] [CrossRef]
- Chidhambaram, N.; Kay, S.J.J.; Priyadharshini, S.; Meenakshi, R.; Sakthivel, P.; Dhanbalan, S.; Shanavas, S.; Kamaraj, S.; Thirumurugan, A. Magnetic nanomaterials as catalysts for syngas production and conversion. Catalysts 2023, 13, 440. [Google Scholar] [CrossRef]
- Winkler, R.; Ciria, M.; Ahmad, M.; Plank, H.; Marcuello, C. A review of the current state of magnetic force microscopy to unravel the magnetic properties of nanomaterials applied in biological systems and future directions for quantum technologies. Nanomaterials 2023, 13, 2585. [Google Scholar] [CrossRef] [PubMed]
- Huggins, T.M.; Whiteley, J.M.; Love, C.T.; Lee, K.; Lee, S.-H.; Ren, Z.J.; Biffinger, J.C. Controlled Growth of Nanostructured Biotemplates with Cobalt and Nitrogen Codoping as a Binderless Lithium-Ion Battery Anode. ACS Appl. Mater. Inter. 2016, 8, 26868–26877. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.W.; Jia, C.; Shen, M.H.; Zhang, S.C.; Zhu, X.D. Enhancement of Adsorption and Energy Storage Capacity of Biomass-based N-doped Porous Carbon via Cyclic Carbothermal Reduction Triggered by Nitrogen Dopants. Carbon 2019, 155, 403–409. [Google Scholar] [CrossRef]
- Zhao, Y.; An, H.Z.; Feng, J.; Ren, Y.M.; Ma, J. Impact of Crystal Types of AgFeO Nanoparticles on the Peroxymonosulfate Activation in the Water. Environ. Sci. Technol. 2019, 53, 4500–4510. [Google Scholar] [CrossRef]
- Xue, C.; Peng, Y.; Zheng, B.; Fang, Z.; Wang, Y.; Yi, Y. Sodium salt promoted the generation of nano zero valent iron by carbothermal reduction: For activating peroxydisulfate to degrade antibiotic. Bioresour. Technol. 2024, 402, 130755. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Yang, W.M.; Cheng, L.S.; Cao, W.Y.; Sain, M.N.; Tan, J.; Wang, A.; Jia, H.B. Carbon Fibers With High Electrical Conductivity: Laser Irradiation of Mesophase Pitch Filaments Obtains High Graphitization Degree. ACS Sustain. Chem. Eng. 2020, 8, 17629–17638. [Google Scholar] [CrossRef]
- Rehman, A.; Nazir, G.; Rhee, K.Y.; Park, S.J. Valorization of Orange Peel Waste to Tunable Heteroatom-doped Hydrochar-Derived Microporous Carbons for Selective CO2 Adsorption and Separation. Sci. Total Environ. 2022, 849, 157805. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, Q.; Wang, J.; Zhao, Y. Recent insights in synthesis and energy storage applications of porous carbon derived from biomass waste: A review. Int. J. Hydrogen Energy 2022, 47, 39338–39363. [Google Scholar] [CrossRef]
- Ghosh, S.; Barg, S.; Jeong, S.M.; Ostrikov, K. Heteroatom-Doped and Oxygen-Functionalized Nanocarbons for High-Performance Supercapacitors. Adv. Energy Mater. 2020, 10, 2001239. [Google Scholar]
- Li, Y.X.; Zhang, H.N.; Chen, Y.T.; Huang, L.; Lin, Z.; Cai, Z.W. Core-Shell Structured Magnetic Covalent Organic Framework Nanocomposites for Triclosan and Triclocarban Adsorption. ACS Appl. Mater. Interfaces 2019, 11, 22492–22500. [Google Scholar] [PubMed]
- Huo, X.; Jia, C.; Shi, S.; Teng, T.; Zhou, S.; Hua, M.; Zhu, X.; Zhang, S.; Xu, Q. One-step synthesis of high-performance N/S co-doped porous carbon material for environmental remediation. Processes 2022, 10, 1359. [Google Scholar] [CrossRef]
- Yoo, D.K.; An, H.J.; Khan, N.A.; Hwang, G.T.; Jhung, S.H. Record-high Adsorption Capacities of Polyaniline-derived Porous Carbons for The Removal of Personal Care Products from Water. Chem. Eng. J. 2018, 352, 71–78. [Google Scholar]
- Jiang, Y.F.; Zhang, Z.W.; Zhang, Y.G.; Zhou, X.; Wang, L.L.; Yasin, A.; Zhang, L.T. Bioresource Derived Porous Carbon from Cottonseed Hull for Removal of Triclosan and Electrochemical Application. RSC Adv. 2018, 8, 42405–42414. [Google Scholar] [PubMed]
- Czech, B.; Konczak, M.; Rakowska, M.; Oleszczuk, P. Engineered Biochars from Organic Wastes for the Adsorption of Diclofenac, Naproxen and Triclosan from Water Systems. J. Clean. Prod. 2021, 288, 125686. [Google Scholar]
- Guo, S.; Zou, Z.; Chen, Y.; Long, X.; Liu, M.; Li, X.; Tan, J.; Chen, R. Synergistic effect of hydrogen bonding and π-π interaction for enhanced adsorption of rhodamine B from water using corn straw biochar. Environ. Pollut. 2023, 320, 121060. [Google Scholar]
- Zhu, X.D.; Liu, Y.C.; Qian, F.; Zhou, C.; Zhang, S.C.; Chen, J.M. Preparation of Magnetic Porous Carbon from Waste Hydrochar by Simultaneous Activation and Magnetization for Tetracycline Removal. Bioresour. Technol. 2014, 154, 209–214. [Google Scholar]
- Liu, Y.C.; Zhu, X.D.; Qian, F.; Zhang, S.C.; Chen, J.M. Magnetic Activated Carbon Prepared from Rice Straw-derived Hydrochar for Triclosan Removal. Rsc. Adv. 2014, 4, 63620–63626. [Google Scholar]
- Liu, W.-J.; Tian, K.; He, Y.-R.; Jiang, H.; Yu, H.-Q. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage. Environ. Sci. Technol. 2014, 48, 13951–13959. [Google Scholar]
- Liu, W.-J.; Tian, K.; Ling, L.L.; Yu, H.-Q.; Jiang, H. Use of nutrient rich hydrophytes to create N, P-dually doped porous carbon with robust energy storage performance. Environ. Sci. Technol. 2016, 50, 12421–12428. [Google Scholar] [PubMed]
- Zhi, M.; Yang, F.; Meng, F.; Li, M.; Manivannan, A.; Wu, N. Effects of Pore Structure on Performance of An Activated-carbon Supercapacitor Electrode Recycled from Scrap Waste Tires. ACS Sustainable Chem. Eng. 2014, 2, 1592–1598. [Google Scholar]
- Elmouwahidi, A.; Zapata-Benabithe, Z.; Carrasco-Marín, F.; Moreno-Castilla, C. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour. Technol. 2012, 111, 185–190. [Google Scholar] [PubMed]
- Subramanian, V.; Luo, C.; Stephan, A.; Nahm, K.; Thomas, S.; Wei, B. Supercapacitors from activated carbon derived from banana fibers. J. Phys. Chem. C 2007, 111, 7527–7531. [Google Scholar]
- Yu, M.; Han, Y.; Li, J.; Wang, L. CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors. Chem. Eng. J. 2017, 317, 493–502. [Google Scholar]
- Lin, G.; Ma, R.; Zhou, Y.; Liu, Q.; Dong, X.; Wang, J. KOH activation of biomass-derived nitrogen-doped carbons for supercapacitor and electrocatalytic oxygen reduction. Electrochim. Acta 2018, 261, 49–57. [Google Scholar]
- Momodu, D.; Madito, M.; Barzegar, F.; Bello, A.; Khaleed, A.; Olaniyan, O.; Dangbegnon, J.; Manyala, N. Activated carbon derived from tree bark biomass with promising material properties for supercapacitors. J. Solid State Electrochem. 2017, 21, 859–872. [Google Scholar]
- Cho, H.H.; Huang, H.; Schwab, K. Effects of Solution Chemistry on the Adsorption of Ibuprofen and Triclosan onto Carbon Nanotubes. Langmuir 2011, 27, 12960–12967. [Google Scholar]
- Behera, S.K.; Oh, S.Y.; Park, H.S. Sorption of Triclosan onto Activated Carbon, Kaolinite and Montmorillonite: Effects of pH, Ionic Strength, and Humic Acid. J. Hazard Mater. 2010, 179, 684–691. [Google Scholar]
Sample | Yield (%) | SBET (m2/g) | Smic (m2/g) | Smic/SDFT (m2/g) | VT (cm3/g) | Ash (%) | C (%) | N (%) | Fe (g/kg) | P (g/kg) |
---|---|---|---|---|---|---|---|---|---|---|
FePC-0 | 37.4 | 872.6 | 644.1 | 96.2 | 0.40 | 3.41 | 66.4 | 6.45 | 0.980 | 3.01 |
FePC-50 | 37.2 | 935.8 | 649.7 | 94.4 | 0.44 | 4.82 | 65.2 | 7.33 | 9.68 | 11.4 |
FePC-100 | 36.5 | 1053 | 778.4 | 96.1 | 0.50 | 5.56 | 67.6 | 7.39 | 13.4 | 11.6 |
FePC-250 | 35.6 | 1060 | 762.6 | 94.6 | 0.52 | 7.39 | 61.7 | 7.21 | 19.0 | 11.3 |
FePC-500 | 27.9 | 1147 | 1009 | 93.7 | 0.61 | 11.1 | 62.1 | 7.04 | 44.8 | 7.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Yu, F. Cross-Linked Fungal Biotemplate Enables Highly Efficient Nanomaterial Recovery and Reutilization as Porous Carbon. Sustainability 2025, 17, 3084. https://doi.org/10.3390/su17073084
Luo J, Yu F. Cross-Linked Fungal Biotemplate Enables Highly Efficient Nanomaterial Recovery and Reutilization as Porous Carbon. Sustainability. 2025; 17(7):3084. https://doi.org/10.3390/su17073084
Chicago/Turabian StyleLuo, Jiewen, and Fengbo Yu. 2025. "Cross-Linked Fungal Biotemplate Enables Highly Efficient Nanomaterial Recovery and Reutilization as Porous Carbon" Sustainability 17, no. 7: 3084. https://doi.org/10.3390/su17073084
APA StyleLuo, J., & Yu, F. (2025). Cross-Linked Fungal Biotemplate Enables Highly Efficient Nanomaterial Recovery and Reutilization as Porous Carbon. Sustainability, 17(7), 3084. https://doi.org/10.3390/su17073084