Assessing the Water Quality of Rivers of a Small Town in Wangwenzhuang, Tianjin, China, Using the PCA–WQImin Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Lab Analysis
2.3. Methods
2.3.1. Principal Component Analysis
2.3.2. WQImin Calculation
2.3.3. Statistical Analysis
3. Results and Discussion
3.1. Statistical Characteristics of the Water Quality Factors
3.2. Water Quality Assessment Results
3.2.1. Pearson Correlation Coefficients
3.2.2. Results of Principal Component Analysis
3.2.3. Water Quality Assessment Results Based on the WQImin
3.3. Discussion
3.3.1. Parameter Selection for WQImin Establishment
3.3.2. Analysis of Water Quality Characteristics and Their Impact Sources
3.3.3. Impact of Water Quality on the Regional Economy and Society
3.3.4. Improving Water Quality Management in the Future
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Liu, S.; Sykes, O.; Wang, C. Characteristic development model: A transformation for the sustainable development of small towns in China. Sustainability 2019, 11, 3753. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Y.; Deng, X.; Hui, E.C.M. Development of characteristic towns in China. Habitat Int. 2018, 77, 21–31. [Google Scholar]
- Liu, X.; Li, G.; Liu, Z.; Guo, W.; Gao, N. Water pollution characteristics and assessment of lower reaches in Haihe River Basin. Procedia Environ. Sci. 2010, 2, 199–206. [Google Scholar]
- Sun, X.; Zhang, H.; Zhong, M.; Wang, Z.; Liang, X.; Huang, T.; Huang, H. Analyses on the Temporal and Spatial Characteristics of Water Quality in a Seagoing River Using Multivariate Statistical Techniques: A Case Study in the Duliujian River, China. Int. J. Environ. Res. Public Health 2019, 16, 1020. [Google Scholar]
- Nong, X.; Shao, D.; Zhong, H.; Liang, J. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Res. 2020, 178, 115781. [Google Scholar]
- Hammoumi, D.; Al-Aizari, H.S.; Alaraidh, I.A.; Okla, M.K.; Assal, M.E.; Al-Aizari, A.R.; Moshab, M.S.; Chakiri, S.; Bejjaji, Z. Seasonal variations and assessment of surface water quality using water quality index (WQI) and principal component analysis (PCA): A case study. Sustainability 2024, 16, 5644. [Google Scholar] [CrossRef]
- Fatima, S.U.; Khan, M.A.; Siddiqui, F.; Mahmood, N.; Salman, N.; Alamgir, A.; Shaukat, S.S. Geospatial assessment of water quality using principal components analysis (PCA) and water quality index (WQI) in Basho Valley, Gilgit Baltistan (Northern Areas of Pakistan). Environ. Monit. Assess. 2022, 194, 151. [Google Scholar]
- Liu, J.-Y.; Feng, Y.; Yang, X.-C.; Zhang, Y.; Li, D.-S.; Liu, F.-d. Identification of Bacterial Flora and Metabolic Function of Sediments in Different Channels of Duliujian River Basin, Tianjin. Huanjing Kexue 2022, 43, 3635–3644. (In Chinese) [Google Scholar]
- Dou, Y.; Zhou, W.L. Community characteristics of phytoplankton and eutrophication assessment in Tianjin section, downstream of Haihe River Basin. J. Freshw. Ecol. 2022, 37, 525–542. [Google Scholar]
- Liu, Q.; Liu, D.; Zhang, Y.; Wang, Y.; Xing, M. Study on spatial distribution of pollutants and total amount reduction in the Duliujian River (Tianjin, China). Water Supply 2020, 20, 1380–1395. [Google Scholar]
- Tyagi, S.; Sharma, B.; Singh, P. Water Quality Assessment in Terms of Water Quality Index. J. Am. Water Resour. 2013, 1, 34–38. [Google Scholar]
- Uddin, M.G.; Nash, S.; Olbert, A.I. A review of water quality index models and their use for assessing surface water quality. Ecol. Indic. 2021, 122, 107218. [Google Scholar]
- Uddin, M.G.; Nash, S.; Rahman, A.; Olbert, A. A comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessment. Water Res. 2022, 219, 118532. [Google Scholar] [PubMed]
- Krishna Kumar, S.; Logeshkumaran, A.; Magesh, N.; Godson, P.S.; Chandrasekar, N. Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India. Appl. Water Sci. 2015, 5, 335–343. [Google Scholar]
- Kannel, P.R.; Lee, S.; Lee, Y.-S.; Kanel, S.R.; Khan, S.P. Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environ. Monit. Assess. 2007, 132, 93–110. [Google Scholar]
- Tripathi, M.; Singal, S.K. Use of Principal Component Analysis for parameter selection for development of a novel Water Quality Index: A case study of river Ganga India. Ecol. Indic. 2019, 96, 430–436. [Google Scholar]
- Ghoderao, S.B.; Meshram, S.G.; Meshram, C. Development and evaluation of a water quality index for groundwater quality assessment in parts of Jabalpur District, Madhya Pradesh, India. Water Supply 2022, 22, 6002–6012. [Google Scholar]
- Gara, T.; Fengting, L.; Nhapi, I.; Makate, C.; Gumindoga, W. Health safety of drinking water supplied in Africa: A closer look using applicable water-quality standards as a measure. Exposure 2018, 10, 117–128. [Google Scholar]
- Yuan, X.; Lu, Z.; Shu, L.; Qian, Y.; Tan, S.; Zhou, Y.; Li, Y.; Quan, Q. A spatiotemporal analysis of water quality characteristics in the first-level tributaries in Nanchong Section of Jialing River. Desalin. Water Treat. 2022, 254, 238–250. [Google Scholar]
- Nica-Badea, D.; Tataru, T. Water quality and spatial assessment of physicochemical parameters. Pharmacophore 2023, 14, 40–47. [Google Scholar]
- Xu, L.; Hao, G.; Li, S.; Song, F.; Zhao, Y.; Guo, P. Prediction and sensitivity analysis of chlorophyll a based on a support vector machine regression algorithm. Environ. Monit. Assess. 2023, 195, 698. [Google Scholar] [PubMed]
- Yongo, E.; Mutethya, E.; Jin, F.; Zhang, P.; Lek, S.; Mo, L.; Li, J.; Guo, Z. Spatio-temporal variation in water quality and phytoplankton community structure in Changwang, Meishe, and Wuyuan Rivers in Hainan Island, China. Environ. Monit. Assess. 2023, 195, 905. [Google Scholar] [PubMed]
- Nayak, B.; Panda, P.K. A Comprehensive Review of Water Quality Analysis. Int. J. Image Graph. 2024, 2650033. [Google Scholar]
- HJ 494–2009; Water Quality–Guidance on Sampling Techniques. Ministry of Ecology and Environment: Beijing, China, 2009. (In Chinese)
- HJ 493-2009; Technical Regulations for the Preservation and Management of Water Samples. Ministry of Ecology and Environment: Beijing, China, 2009. (In Chinese)
- HJ 91.2-2022; Technical Specifications for Surface Water Environmental Quality Monitoring. Ministry of Ecology and Environment: Beijing, China, 2022. (In Chinese)
- GB3838-2002; Environmental Quality Standards for Surface Water. Ministry of Ecology and Environment: Beijing, China, 2002. (In Chinese)
- Hasan, B.M.S.; Abdulazeez, A.M. A Review of Principal Component Analysis Algorithm for Dimensionality Reduction. Appl. Soft Comput. 2021, 2, 20–30. [Google Scholar]
- Gao, J.; Deng, G.; Jiang, H.; Wen, Y.; Zhu, S.; He, C.; Shi, C.; Cao, Y. Water quality pollution assessment and source apportionment of lake wetlands: A case study of Xianghai Lake in the Northeast China Plain. J. Environ. Manag. 2023, 344, 118398. [Google Scholar]
- Chen, K.; Liu, Q.; Jiang, Q.; Hou, X.; Gao, W. Source apportionment of surface water pollution in North Anhui Plain, Eastern China, using APCS-MLR model combined with GIS approach and socioeconomic parameters. Ecol. Indic. 2022, 143, 109324. [Google Scholar]
- Zhang, H.; Cheng, S.; Li, H.; Fu, K.; Xu, Y. Groundwater pollution source identification and apportionment using PMF and PCA-APCA-MLR receptor models in a typical mixed land-use area in Southwestern China. Sci. Total Environ. 2020, 741, 140383. [Google Scholar]
- Ma, Z.; Li, H.; Ye, Z.; Wen, J.; Hu, Y.; Liu, Y. Application of modified water quality index (WQI) in the assessment of coastal water quality in main aquaculture areas of Dalian, China. Mar. Pollut. Bull. 2020, 157, 111285. [Google Scholar]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar]
- Sun, X.; Li, X.; Tang, S.; Lin, K.; Zhao, T.; Chen, X. A review on algal-bacterial symbiosis system for aquaculture tail water treatment. Sci. Total Environ. 2022, 847, 157620. [Google Scholar]
- Qi, D.; Wu, Q.; Zhu, J. Nitrogen and phosphorus losses from paddy fields and the yield of rice with different water and nitrogen management practices. Sci. Rep. 2020, 10, 9734. [Google Scholar]
- Tian, J.; Ji, J.; Liu, Z.; Huang, J.; Xue, W. Effect evaluation of decentralized domestic sewage treatment facilities in rural areas–A case study of Nantong City, China. Water Sci. Technol. 2023, 88, 711–722. [Google Scholar] [PubMed]
- Salim, I.; Sajjad, R.U.; Paule-Mercado, M.C.; Memon, S.A.; Lee, B.-Y.; Sukhbaatar, C.; Lee, C.-H. Comparison of two receptor models PCA-MLR and PMF for source identification and apportionment of pollution carried by runoff from catchment and sub-watershed areas with mixed land cover in South Korea. Sci. Total Environ. 2019, 663, 764–775. [Google Scholar] [PubMed]
- Yang, Z.; Zou, L.; Xia, J.; Qiao, Y.; Bai, F.; Wang, Q.; Cai, D. Spatiotemporal variation characteristics and source identification of water pollution: Insights from urban water system. Ecol. Indic. 2022, 139, 108892. [Google Scholar]
- Ren, X.; Zhang, H.; Xie, G.; Hu, Y.; Tian, X.; Gao, D.; Guo, S.; Li, A.; Chen, S. New insights into pollution source analysis using receptor models in the upper Yangtze river basin: Effects of land use on source identification and apportionment. Chemosphere 2023, 334, 138967. [Google Scholar]
- Hou, W.; Sun, S.; Wang, M.; Li, X.; Zhang, N.; Xin, X.; Sun, L.; Li, W.; Jia, R. Assessing water quality of five typical reservoirs in lower reaches of Yellow River, China: Using a water quality index method. Ecol. Indic. 2016, 61, 309–316. [Google Scholar]
- Hou, X.; Xu, Z.; Tang, C.; Zhang, S. Spatial distributions of nitrogen and phosphorus losses in a basin and responses to best management practices—Jialing River Basin case study. Agric. Water Manag. 2021, 255, 107048. [Google Scholar]
- Xu, J.; Mo, Y.; Tang, H.; Wang, K.; Ji, Q.; Zhang, P.; Wang, Y.-G.; Jin, G.; Li, L. Distribution, transfer process and influence factors of phosphorus at sediment-water interface in the Huaihe River. J. Hydrol.-Reg. Stud. 2022, 612, 128079. [Google Scholar]
- Li, P.; Qian, H.; Wu, J.; Chen, J.; Zhang, Y.; Zhang, H. Occurrence and hydrogeochemistry of fluoride in alluvial aquifer of Weihe River, China. Environ. Earth Sci. 2014, 71, 3133–3145. [Google Scholar]
- Rashid, A.; Guan, D.-X.; Farooqi, A.; Khan, S.; Zahir, S.; Jehan, S.; Khattak, S.A.; Khan, M.S.; Khan, R. Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan. Sci. Total Environ. 2018, 635, 203–215. [Google Scholar]
- DB12/889-2019; Discharge Standard of Water Pollutants for Rural Sewage Treatment Facilities. Tianjin Municipal Bureau of Ecological Environment: Tianjin, China, 2019. (In Chinese)
- Cao, L.; Wang, W.; Yang, Y.; Yang, C.; Yuan, Z.; Xiong, S.; Diana, J. Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environ. Sci. Pollut. Res.-Int. 2007, 14, 452–462. [Google Scholar] [PubMed]
- SC/T9101-2007; Emission Requirements for Freshwater Pond Aquacultur. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2007. (In Chinese)
- Chen, P.; Zhao, W.; Chen, D.; Huang, Z.; Zhang, C.; Zheng, X. Research progress on integrated treatment technologies of rural domestic sewage: A review. Water 2022, 14, 2439. [Google Scholar] [CrossRef]
- Huang, Y.; Li, P.; Li, H.; Zhang, B.; He, Y. To centralize or to decentralize? A systematic framework for optimizing rural wastewater treatment planning. J. Environ. Manag. 2021, 300, 113673. [Google Scholar]
- Zhao, W.; Liu, Y.; Guo, D.; Zou, D. Development application of rural domestic sewage treatment project in cold areas of Northeast China: Opportunities and challenges. J. Water Process. Eng. 2023, 56, 104326. [Google Scholar]
- Bo, Y.; Wen, W. Treatment and technology of domestic sewage for improvement of rural environment in China. J. King Saud Univ.-Sci. 2022, 34, 102181. [Google Scholar]
- Wang, J.; Chen, G.; Fu, Z.; Qiao, H.; Liu, F. Assessing wetland nitrogen removal and reed (Phragmites australis) nutrient responses for the selection of optimal harvest time. J. Environ. Manag. 2021, 280, 111783. [Google Scholar]
- Yang, Q.; Mei, J.; Tang, X.; Wang, T.; Long, K.; Liu, Y.; Li, Y.; Yu, X.; Yao, W.; Wu, Z. Assessing the suitability of three purple soils for aquaculture by physiological responses in freshwater bivalves (Hyriopsis cumingii). Aquaculture 2023, 575, 739765. [Google Scholar]
- Xu, F.; Wang, Y.; Shi, Q.; Wu, Y.; Zhang, Z.; Shi, X. Unraveling the pharmaceutical footprint and risks of combining different aquaculture modes and tailwater treatment systems. Aquaculture 2025, 596, 741763. [Google Scholar]
Catchment Area | Point Source Pollutants | Non-Point Source Pollutants | ||
---|---|---|---|---|
Industrial Wastewater Discharge (t a−1) | Domestic Wastewater Discharge (t a−1) | Crop Agriculture Planted (km2) | Agriculture on Aquatic (km2) | |
JXCA | 1600 | 40,720 | 0.28 | 0.29 |
XCCA | 30 | 123,172 | 3.58 | 3.52 |
CLCA | 24,200 | 57,594 | 6.74 | 4.10 |
MJCA | 487,196 | 1,640,640 | 7.36 | 1.82 |
Level | Unit | ) | I | II | III | IV | V | |
---|---|---|---|---|---|---|---|---|
Parameter | ① = 20 | = 40 | = 60 | = 80 | ||||
DO | mg·L−1 | 4 | 7.5 | 6 | 5 | 3 | 2 | |
NH4+-N | mg·L−1 | 3 | 0.15 | 0.5 | 1.0 | 1.5 | 2.0 | |
TN | mg·L−1 | 2 | 0.2 | 0.5 | 1.0 | 1.5 | 2.0 | |
TP | mg·L−1 | 4 | 0.02 | 0.1 | 0.2 | 0.3 | 0.4 | |
CODMn | mg·L−1 | 3 | 2 | 4 | 6 | 10 | 15 | |
CODCr | mg·L−1 | 3 | 15 | 15 | 20 | 30 | 40 | |
BOD5 | mg·L−1 | 3 | 3 | 3 | 4 | 6 | 10 | |
F− | mg·L−1 | 2 | 1.0 | 1.0 | 1.0 | 1.5 | 1.5 |
Parameters | Units | Annual Mean Value ± s.d. | Dry Season Mean Value ± s.d. | Wet Season Mean Value ± s.d. | Max | Min |
---|---|---|---|---|---|---|
DO | mg·L−1 | 5.99 ± 1.33 | 6.21 ± 1.11 | 5.78 ± 1.49 | 8.8 | 1.67 |
NH4+-N | mg·L−1 | 0.38 ± 0.24 | 0.36 ± 0.19 | 0.39 ± 0.28 | 1.95 | 0.14 |
TN | mg·L−1 | 4.44 ± 4.58 | 5.50 ± 4.82 | 3.45 ± 4.14 | 16.2 | 0.54 |
TP | mg·L−1 | 0.39 ± 0.5 | 0.52 ± 0.68 | 0.27 ± 0.17 | 2.66 | 0.08 |
BOD5 | mg·L−1 | 5.23 ± 2.2 | 4.92 ± 2.22 | 5.53 ± 2.15 | 12.6 | 1.55 |
CODMn | mg·L−1 | 7.67 ± 3.84 | 7.03 ± 3.2 | 8.27 ± 4.29 | 28.9 | 0.33 |
CODCr | mg·L−1 | 28.13 ± 13.33 | 25.45 ± 11.89 | 30.63 ± 14.19 | 105 | 13 |
F− | mg·L−1 | 0.95 ± 0.33 | 1.05 ± 0.36 | 0.86 ± 0.26 | 1.8 | 0.31 |
Parameters (Annual) | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
DO | 0.01 | 0.19 | −0.12 | 0.30 |
NH4+-N | 0.60 | 0.24 | −0.49 | −0.06 |
TN | −0.29 | 0.64 | 0.86 | 0.23 |
TP | 0.25 | −0.04 | −0.27 | 0.90 |
BOD5 | 0.86 | −0.05 | 0.10 | −0.08 |
CODMn | 0.81 | 0.08 | 0.23 | −0.04 |
CODCr | 0.93 | 0.14 | 0.05 | −0.06 |
F− | −0.13 | 0.84 | 0.00 | −0.17 |
Eigenvalue | 2.79 | 1.25 | 1.13 | 0.99 |
Percentage of variance (%) | 34.81 | 15.56 | 14.13 | 12.33 |
Cumulative (%) | 34.81 | 50.37 | 64.50 | 76.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Zhai, H.; Han, S.; Tian, Y.; Liu, J. Assessing the Water Quality of Rivers of a Small Town in Wangwenzhuang, Tianjin, China, Using the PCA–WQImin Method. Sustainability 2025, 17, 3035. https://doi.org/10.3390/su17073035
Yuan H, Zhai H, Han S, Tian Y, Liu J. Assessing the Water Quality of Rivers of a Small Town in Wangwenzhuang, Tianjin, China, Using the PCA–WQImin Method. Sustainability. 2025; 17(7):3035. https://doi.org/10.3390/su17073035
Chicago/Turabian StyleYuan, Hui, Haojie Zhai, Shaoqiang Han, Ye Tian, and Jiahong Liu. 2025. "Assessing the Water Quality of Rivers of a Small Town in Wangwenzhuang, Tianjin, China, Using the PCA–WQImin Method" Sustainability 17, no. 7: 3035. https://doi.org/10.3390/su17073035
APA StyleYuan, H., Zhai, H., Han, S., Tian, Y., & Liu, J. (2025). Assessing the Water Quality of Rivers of a Small Town in Wangwenzhuang, Tianjin, China, Using the PCA–WQImin Method. Sustainability, 17(7), 3035. https://doi.org/10.3390/su17073035