Effects of Manufacturing Agglomeration on Pollutant Emissions: The Role of Energy Intensity in China
Abstract
1. Introduction
2. Literature Review
2.1. MA and EI
2.2. MA and PE
3. Theoretical Analysis and Hypothesis
3.1. Mechanisms Linking MA and PE
3.2. Mechanisms Linking MA, EI and PE
4. Research Design
4.1. Methodology
4.1.1. Model Specification
4.1.2. Mediating Effect Model
4.2. Variables Selected
4.2.1. Explained Variable
4.2.2. Core Explanatory Variable
4.2.3. Mediating Variable
4.2.4. Control Variables
4.3. Data Source
4.4. Endogeneity and Instrumental Variables
5. Empirical Results
5.1. Panel Stationarity Test
5.2. Regression Results of MA on PE
5.2.1. Baseline Model
5.2.2. Robustness Test
5.3. Mediating Effect of EI
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Z.; Lv, L.; Yang, M. The effect of political influence on corporate social donations: Evidence from party-building reform in China. Int. Rev. Econ. Financ. 2024, 93, 1483–1493. [Google Scholar] [CrossRef]
- Yuan, H.; Li, J.; Zhang, Z. Does the cultural consumption policy reduce carbon emission intensity in China? Humanit. Soc. Sci. Commun. 2025, 12, 642. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Industrial structure, technical progress and carbon intensity in China’s provinces. Renew. Sustain. Energy Rev. 2018, 81, 2935–2946. [Google Scholar] [CrossRef]
- Guo, X.; Xiao, B.; Song, L. What cause the decline of energy intensity in China’s cities? A comprehensive panel-data analysis. J. Clean. Prod. 2019, 233, 1298–1313. [Google Scholar] [CrossRef]
- Bu, M.; Li, S.; Jiang, L. Foreign direct investment and energy intensity in China: Firm-level evidence. Energy Econ. 2019, 80, 366–376. [Google Scholar] [CrossRef]
- Health Effects Institute. State of Global Air 2018: Special Report on Global Exposure to Air Pollution and Its Disease Burden; Health Effects Institute: Boston, MA, USA, 2018. [Google Scholar]
- Liao, L.; Du, M.; Kong, S. The effect of clean heating policy on individual health: Evidence from China. China Econ. Rev. 2024, 89, 102309. [Google Scholar] [CrossRef]
- World Health Organization. Burden of Disease from Household Air Pollution for 2012; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Andersson, M.; Larsson, J.P.; Wernberg, J. The economic microgeography of diversity and specialization externalities: Firm-level evidence from Swedish cities. Res. Policy 2019, 48, 1385–1398. [Google Scholar] [CrossRef]
- Yuan, H.; Feng, Y.; Lee, C.-C.; Cen, Y. How does manufacturing agglomeration affect green economic efficiency? Energy Econ. 2020, 92, 104944. [Google Scholar] [CrossRef]
- Belderbos, R.; Fukao, K.; Ikeuchi, K.; Van Hove, J. Does industry agglomeration attract productive firms? The role of product markets in adverse selection. J. Reg. Sci. 2025, 65, 698–717. [Google Scholar] [CrossRef]
- Cermeño, A.L. The driving forces of service localization during the twentieth century: Evidence from the United States. Eur. Rev. Econ. Hist. 2019, 23, 145–174. [Google Scholar] [CrossRef]
- Kwon, S.Y.; Ma, Y.; Zimmermann, K. 100 years of rising corporate concentration. Am. Econ. Rev. 2024, 114, 2111–2140. [Google Scholar] [CrossRef]
- Guan, X.; Wei, H.; Lu, S.; Su, H. Mismatch distribution of population and industry in China: Pattern, problems and driving factors. Appl. Geogr. 2018, 97, 61–74. [Google Scholar] [CrossRef]
- Chen, S. Energy consumption, CO2 emission and sustainable development in Chinese industry. Econ. Res. J. 2009, 4, 41–55. [Google Scholar]
- Ellison, G.; Glaeser, E.L.; Kerr, W.R. What causes industry agglomeration? Evidence from coagglomeration patterns. Am. Econ. Rev. 2010, 100, 1195–1213. [Google Scholar] [CrossRef]
- Peters, J.C. Dynamic agglomeration economies and learning by working in specialised regions. J. Econ. Geogr. 2020, 20, 629–651. [Google Scholar] [CrossRef]
- Zheng, Q.; Lin, B. Impact of industrial agglomeration on energy efficiency in China’s paper industry. J. Clean. Prod. 2018, 184, 1072–1080. [Google Scholar] [CrossRef]
- Kim, Y.R.; Williams, A.M.; Park, S.; Chen, J.L. Spatial spillovers of agglomeration economies and productivity in the tourism industry: The case of the UK. Tour. Manag. 2021, 82, 104201. [Google Scholar] [CrossRef]
- Singh, D. Cluster space among labor productivity, urbanization, and agglomeration of industries in Hungary. J. Knowl. Econ. 2022, 13, 1008–1027. [Google Scholar] [CrossRef]
- Özgüzel, C. Agglomeration effects in a developing economy: Evidence from Turkey. J. Econ. Geogr. 2023, 23, 823–846. [Google Scholar] [CrossRef]
- Cerina, F.; Mureddu, F. Is agglomeration really good for growth? Global efficiency, interregional equity and uneven growth. J. Urban Econ. 2014, 84, 9–22. [Google Scholar] [CrossRef]
- Han, F.; Xie, R.; Lu, Y.; Fang, J.; Liu, Y. The effects of urban agglomeration economies on carbon emissions: Evidence from Chinese cities. J. Clean. Prod. 2018, 172, 1096–1110. [Google Scholar] [CrossRef]
- Otsuka, A.; Goto, M.; Sueyoshi, T. Energy efficiency and agglomeration economies: The case of Japanese manufacturing industries. Reg. Sci. Policy Pract. 2014, 6, 195–212. [Google Scholar] [CrossRef]
- Tanaka, K.; Managi, S. Industrial agglomeration effect for energy efficiency in Japanese production plants. Energy Policy 2021, 156, 112442. [Google Scholar] [CrossRef]
- Wang, J.; Sun, F.; Lv, K.; Li, W.; Luo, L. Industrial agglomeration and firm energy intensity: How important is spatial proximity? Energy Econ. 2022, 112, 106155. [Google Scholar] [CrossRef]
- Zhao, H.; Lin, B. Will agglomeration improve the energy efficiency in China’s textile industry: Evidence and policy implications. Appl. Energy 2019, 237, 326–337. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, Y.; Yang, T. The impact of transportation infrastructure and industrial agglomeration on energy efficiency: Evidence from China’s industrial sectors. J. Clean. Prod. 2020, 244, 118708. [Google Scholar] [CrossRef]
- Lan, F.; Sun, L.; Pu, W. Research on the influence of manufacturing agglomeration modes on regional carbon emission and spatial effect in China. Econ. Model. 2021, 96, 346–352. [Google Scholar] [CrossRef]
- Sun, P.; Yuan, Y. Industrial Agglomeration and Environmental Degradation: Empirical Evidence in Chinese Cities. Pac. Econ. Rev. 2015, 20, 544–568. [Google Scholar] [CrossRef]
- Ye, C.; Sun, C.; Chen, L. New evidence for the impact of financial agglomeration on urbanization from a spatial econometrics analysis. J. Clean. Prod. 2018, 200, 65–73. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, T.; Liu, L.; Zhang, Y. Heterogeneous industrial agglomeration, technological innovation and haze pollution. China Econ. Rev. 2022, 77, 101880. [Google Scholar] [CrossRef]
- Krugman, P. Space: The Final Frontier. J. Econ. Perspect. 1998, 12, 161–174. [Google Scholar] [CrossRef]
- Ehrenfeld, J. Putting a Spotlight on Metaphors and Analogies in Industrial Ecology. J. Ind. Ecol. 2003, 7, 1–4. [Google Scholar] [CrossRef]
- Zeng, D.-Z.; Zhao, L. Pollution havens and industrial agglomeration. J. Environ. Econ. Manag. 2009, 58, 141–153. [Google Scholar] [CrossRef]
- Fang, J.; Tang, X.; Xie, R.; Han, F. The effect of manufacturing agglomerations on smog pollution. Struct. Change Econ. Dyn. 2020, 54, 92–101. [Google Scholar] [CrossRef]
- Jiang, Y.; Zheng, J. Economic Growth or Environmental Sustainability? Drivers of Pollution in the Yangtze River Delta Urban Agglomeration in China. Emerg. Mark. Financ. Trade 2017, 53, 2625–2643. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, W.; Ma, D.; Zhang, C. Carbon emissions and optimal scale of China’s manufacturing agglomeration under heterogeneous environmental regulation. J. Clean. Prod. 2018, 176, 140–150. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X. Industrial agglomeration, technological innovation and carbon productivity: Evidence from China. Resour. Conserv. Recycl. 2021, 166, 105330. [Google Scholar] [CrossRef]
- Krugman, P. History and Industry Location: The Case of the Manufacturing Belt. Am. Econ. Rev. 1991, 81, 80–83. [Google Scholar]
- Marshall, A. Principles of Economics, 8th ed.; Macmillan: London, UK, 1920. [Google Scholar]
- Head, K.; Ries, J.; Swenson, D. Agglomeration benefits and location choice: Evidence from Japanese manufacturing investments in the United States. J. Int. Econ. 1995, 38, 223–247. [Google Scholar] [CrossRef]
- Porter, M.E. Clusters and the New Economics of Competition. Harv. Bus. Rev. 1998, 76, 77–90. [Google Scholar]
- Dong, B.; Gong, J.; Zhao, X. FDI and environmental regulation: Pollution haven or a race to the top? J. Regul. Econ. 2012, 41, 216–237. [Google Scholar] [CrossRef]
- Malizia, E.E.; Ke, S. The influence of economic diversity on unemployment and stability. J. Reg. Sci. 1993, 33, 221–235. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, A.; Su, H.; Su, S.; Chen, F.; Wang, W.; Weng, M. Does the establishment of development zones really improve industrial land use efficiency? Implications for China’s high-quality development policy. Land Use Policy 2020, 90, 104265. [Google Scholar] [CrossRef]
- Fan, C.C.; Scott, A.J. Industrial Agglomeration and Development: A Survey of Spatial Economic Issues in East Asia and a Statistical Analysis of Chinese Regions. Econ. Geogr. 2003, 79, 295–319. [Google Scholar] [CrossRef]
- Goel, R.K.; Nelson, M.A. Do external quality certifications improve firms’ conduct? International evidence from manufacturing and service industries. Q. Rev. Econ. Financ. 2020, 76, 97–104. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, M.; Zhou, Y.; Wang, P.; Sheng, J.; He, K.; Wei, Y.-M.; Xie, R. Exploring the effect of industrial structure adjustment on interprovincial green development efficiency in China: A novel integrated approach. Energy Policy 2019, 134, 110946. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, M.; Yu, N. Internet Use and Lower Life Satisfaction: The Mediating Effect of Environmental Quality Perception. Ecological Economics 2020, 176, 106725. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Personal. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, F.; Huang, L.; Peng, K.; Wang, X. Does industrial upgrading promote eco-efficiency?—A panel space estimation based on Chinese evidence. Energy Policy 2021, 154, 112286. [Google Scholar] [CrossRef]
- Machado, F.L.V.; Halmenschlager, V.; Abdallah, P.R.; Teixeira, G.d.S.; Sumaila, U.R. The relation between fishing subsidies and CO2 emissions in the fisheries sector. Ecol. Econ. 2021, 185, 107057. [Google Scholar] [CrossRef]
- Li, X.; Lu, Y.; Huang, R. Whether foreign direct investment can promote high-quality economic development under environmental regulation: Evidence from the Yangtze River Economic Belt, China. Environ. Sci. Pollut. Res. 2021, 28, 21674–21683. [Google Scholar] [CrossRef]
- Tan, R.; Lin, B. What factors lead to the decline of energy intensity in China’s energy intensive industries? Energy Econ. 2018, 71, 213–221. [Google Scholar] [CrossRef]
- Lin, B.; Wang, Y. Inconsistency of economic growth and electricity consumption in China: A panel VAR approach. J. Clean. Prod. 2019, 229, 144–156. [Google Scholar] [CrossRef]
- Feng, Y.; Yuan, H.; Liu, Y.; Zhang, S. Does new-type urbanization policy promote green energy efficiency? Evidence from a quasi-natural experiment in China. Energy Econ. 2023, 124, 106752. [Google Scholar] [CrossRef]
- Liu, T.Y.; Lee, C.C. Convergence of the world’s energy use. Resour. Energy Econ. 2020, 62, 101199. [Google Scholar] [CrossRef]
- Wang, C.; Guo, Y.; Shao, S.; Fan, M.; Chen, S. Regional carbon imbalance within China: An application of the Kaya-Zenga index. J. Environ. Manag. 2020, 262, 110378. [Google Scholar] [CrossRef]
- Rahman, M.M.; Nepal, R.; Alam, K. Impacts of human capital, exports, economic growth and energy consumption on CO2 emissions of a cross-sectionally dependent panel: Evidence from the newly industrialized countries (NICs). Environ. Sci. Policy 2021, 121, 24–36. [Google Scholar] [CrossRef]
- Jia, R.; Shao, S.; Yang, L. High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach. Energy Econ. 2021, 99, 105271. [Google Scholar] [CrossRef]
- Chen, S.; Liang, E.; Liu, C. “Size-dependent” environmental regulations and spatial labor allocation. J. Environ. Econ. Manag. 2025, 132, 103158. [Google Scholar] [CrossRef]
- Shapiro, J.S.; Walker, R. Why Is Pollution from US Manufacturing Declining? The Roles of Environmental Regulation, Productivity, and Trade. Am. Econ. Rev. 2018, 108, 3814–3854. [Google Scholar] [CrossRef]
- Sankar, A.; Coggins, J.S.; Goodkind, A.L. Effectiveness of air pollution standards in reducing mortality in India. Resour. Energy Econ. 2020, 62, 101188. [Google Scholar] [CrossRef]
- Yang, Z.; Shao, S.; Fan, M.; Yang, L. Wage distortion and green technological progress: A directed technological progress perspective. Ecol. Econ. 2021, 181, 106912. [Google Scholar] [CrossRef]
- Yuan, H.; Zou, L.; Feng, Y. How to achieve emission reduction without hindering economic growth? The role of judicial quality. Ecol. Econ. 2023, 209, 107839. [Google Scholar] [CrossRef]
- Miao, Z.; Baležentis, T.; Tian, Z.; Shao, S.; Geng, Y.; Wu, R. Environmental Performance and Regulation Effect of China’s Atmospheric Pollutant Emissions: Evidence from “Three Regions and Ten Urban Agglomerations”. Environ. Resour. Econ. 2019, 74, 211–242. [Google Scholar] [CrossRef]
- Barone, G.; Narciso, G. Organized crime and business subsidies: Where does the money go? J. Urban Econ. 2015, 86, 98–110. [Google Scholar] [CrossRef]
- Li, B.; Lu, Y. Geographic concentration and vertical disintegration: Evidence from China. J. Urban Econ. 2009, 65, 294–304. [Google Scholar] [CrossRef]
- Nunn, N.; Qian, N. US Food Aid and Civil Conflict. Am. Econ. Rev. 2014, 104, 1630–1666. [Google Scholar] [CrossRef]
- Davidson, R.; MacKinnon, J.G. Estimation and Inference in Econometrics, 2nd ed.; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Staiger, D.; Stock, J.H. Instrumental Variables Regression with Weak Instruments. Natl. Bur. Econ. Res. 1997, 65, 557–586. [Google Scholar] [CrossRef]
- Mitchell, S. London calling? Agglomeration economies in literature since 1700. J. Urban Econ. 2019, 112, 16–32. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, Z.; Zhang, H. Does industrial agglomeration promote the increase of energy efficiency in China? J. Clean. Prod. 2017, 164, 30–37. [Google Scholar] [CrossRef]
- Zhao, J.; Dong, X.; Dong, K. How does producer services’ agglomeration promote carbon reduction?: The case of China. Econ. Model. 2021, 104, 105624. [Google Scholar] [CrossRef]
- Wang, J.; Dong, X.; Dong, K. How does ICT agglomeration affect carbon emissions? The case of Yangtze River Delta urban agglomeration in China. Energy Econ. 2022, 111, 106107. [Google Scholar] [CrossRef]
- Qu, C.; Shao, J.; Shi, Z. Does financial agglomeration promote the increase of energy efficiency in China? Energy Policy 2020, 146, 111810. [Google Scholar] [CrossRef]
- Bo, S.; Liu, C.; Zhou, Y. Military investment and the rise of industrial clusters: Evidence from China’s self-strengthening movement. J. Dev. Econ. 2023, 161, 103015. [Google Scholar] [CrossRef]
- Currie, J.; Voorheis, J.; Walker, R. What caused racial disparities in particulate exposure to fall? New evidence from the Clean Air Act and satellite-based measures of air quality. Am. Econ. Rev. 2023, 113, 71–97. [Google Scholar] [CrossRef]
- Ren, S.; Zhao, L.; Zhang, P.; Yu, M.; Chen, X. Pollution reduction effects of new transregional power transmission systems: Evidence from ultra-high-voltage projects of China. J. Dev. Econ. 2025, 179, 103641. [Google Scholar] [CrossRef]
- Fan, H.; Graff Zivin, J.; Kou, Z.; Liu, X.; Wang, H. Going green in China: Firms’ responses to stricter environmental regulations. Can. J. Econ. 2025, 58, 385–410. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Yao, X. Effects of industrial agglomeration on haze pollution: A Chinese city-level study. Energy Policy 2021, 148, 111928. [Google Scholar] [CrossRef]




| Types | Variables | Definition | Symbol | Unit |
|---|---|---|---|---|
| Explained variable | Pollutant emission | Entropy Model | PE | - |
| Core explanatory variable | Manufacturing agglomeration | Location quotient index | MA_LQ | - |
| HHI | MA_HHI | - | ||
| Mediating variable | Energy intensity | The ratio of total annual electricity consumption to GDP | EI | KWH/yuan |
| Control variables | Economic development level | Per capital gross domestic product | EDL | Yuan |
| Industrial structure | Proportions of the tertiary industry output value on the second industry output value | IST | - | |
| Environmental regulation | Entropy Model | EVR | - | |
| Industrialization level | Proportion of the added value of secondary industry to GDP | INL | % | |
| Population density | Population per square kilometer | PDT | Person per km2 |
| Variable | Harris–Tzavalis Test | Im–Pesaran–Shin Test | ||
|---|---|---|---|---|
| Intercept | Intercept and Trend | Intercept | Intercept and Trend | |
| lnPE | 0.714 *** | 0.259 *** | 4.901 | −4.029 *** |
| lnMA_LQ | 0.648 *** | 0.373 *** | −3.016 *** | −7.238 *** |
| lnPGDP | 0.156 *** | −0.007 *** | −21.048 *** | −17.460 *** |
| lnIS | 0.825 *** | 0.512 *** | −1.719 ** | −1.245 *** |
| lnER | 0.545 *** | 0.221 *** | −9.128 *** | −15.083 *** |
| lnIND | 0.791 | 0.541 | −1.633 * | −3.035 *** |
| lnPD | 0.524 *** | 0.060 *** | 0.437 | −3.416 *** |
| Variables | (1) | (2) | ||
|---|---|---|---|---|
| Coefficient | T Value | Coefficient | T Value | |
| IV | 0.035 *** | 10.49 | 0.027 *** | 7.72 |
| Control variables | N | Y | ||
| City FE | Y | Y | ||
| Year FE | Y | Y | ||
| Davidson–MacKinnon test | 57.353 *** | 54.484 *** | ||
| Underidentification test Anderson canon. corr. LM statistic | 129.21 *** | 81.56 *** | ||
| Weak identification test Cragg–Donald Wald F statistic | 133.35 *** | 82.93 *** | ||
| Weak-instrument-robust inference Anderson–Rubin Wald test | 66.44 *** | 61.24 *** | ||
| Obs. | 4018 | 4018 | 4018 | 4018 |
| Number of cities | 287 | 287 | 287 | 287 |
| Variables | OLS | 2SLS | ||
|---|---|---|---|---|
| (1) | (2) | (3) | (4) | |
| lnMA_LQ | −0.011 ** | −0.010 *** | −0.123 *** | −0.150 *** |
| (−3.81) | (−3.56) | (−6.80) | (−6.07) | |
| (lnEDL)2 | 0.005 *** | 0.005 *** | ||
| (6.00) | (4.20) | |||
| lnEDL | −0.096 *** | −0.084 *** | ||
| (−5.88) | (−4.02) | |||
| lnINL | −0.019 *** | 0.006 | ||
| (−2.79) | (0.64) | |||
| lnIST | −0.012 ** | −0.019 *** | ||
| (−2.55) | (−3.09) | |||
| lnEVR | 0.007 | 0.025 *** | ||
| (1.28) | (3.30) | |||
| lnPDT | 0.025 * | 0.083 *** | ||
| (1.79) | (4.07) | |||
| City FE | Y | Y | Y | Y |
| Year FE | Y | Y | Y | Y |
| Obs. | 4018 | 4018 | 4018 | 4018 |
| Number of cities | 287 | 287 | 287 | 287 |
| Variables | (1) | (2) | (3) | (4) |
|---|---|---|---|---|
| lnMA_LQ | −0.094 *** | −0.043 *** | −0.150 *** | |
| (−5.22) | (−3.06) | (−6.30) | ||
| lnMA_HHI | −0.046 *** | |||
| (−6.30) | ||||
| (lnEDL)2 | 0.009 *** | 0.005 *** | 0.006 *** | 0.005 *** |
| (7.19) | (5.53) | (6.83) | (4.36) | |
| lnEDL | −0.160 *** | −0.091 *** | −0.116 *** | −0.084 *** |
| (−7.10) | (−5.20) | (−6.60) | (−4.17) | |
| lnINL | 0.010 | 0.007 | −0.015 ** | 0.006 |
| (1.01) | (0.97) | (−2.08) | (0.67) | |
| lnIST | −0.012 ** | −0.010 ** | −0.017 *** | −0.019 *** |
| (−2.10) | (−2.57) | (−3.51) | (−3.21) | |
| lnEVR | 0.012 * | 0.022 *** | 0.016 *** | 0.025 *** |
| (1.84) | (3.86) | (2.79) | (3.42) | |
| lnPDT | 0.090 *** | 0.064 *** | 0.022 | 0.083 *** |
| (4.44) | (3.98) | (1.29) | (4.22) | |
| City FE | Y | Y | Y | Y |
| Year FE | Y | Y | Y | Y |
| Underidentification test Anderson canon. corr. LM statistic | 123.46 *** | 71.42 *** | 154.52 *** | 87.832 |
| Weak identification test Cragg–Donald Wald F statistic | 127.00 *** | 72.42 *** | 160.33 *** | 82.934 |
| Weak-instrument-robust inference Anderson–Rubin Wald test | 61.24 *** | 39.78 *** | 9.57 *** | - |
| Obs. | 4018 | 4018 | 4018 | 4018 |
| Number of cities | 287 | 287 | 287 | 287 |
| Variables | (1) | (2) | (3) |
|---|---|---|---|
| lnPE | lnEI | lnPE | |
| lnMA_LQ | −0.150 *** | −0.373 ** | −0.152 *** |
| (−6.07) | (−2.39) | (−5.99) | |
| lnEI | −0.006 ** | ||
| (−2.09) | |||
| (lnEDL)2 | 0.005 *** | 0.035 *** | 0.005 *** |
| (4.20) | (4.98) | (4.37) | |
| lnEDL | −0.084 *** | −0.430 *** | −0.087 *** |
| (−4.02) | (−3.23) | (−4.13) | |
| lnINL | 0.006 | −0.256 *** | 0.005 |
| (0.64) | (−4.18) | (0.48) | |
| lnIST | −0.019 *** | −0.182 *** | −0.020 *** |
| (−3.09) | (−4.77) | (−3.23) | |
| lnEVR | 0.025 *** | −0.158 *** | 0.024 *** |
| (3.30) | (−3.29) | (3.18) | |
| lnPDT | 0.083 *** | −0.350 *** | 0.081 *** |
| (4.07) | (−2.70) | (3.98) | |
| City FE | Y | Y | Y |
| Year FE | Y | Y | Y |
| Obs. | 4018 | 4018 | 4018 |
| Number of cities | 287 | 287 | 287 |
| Sobel test | Z = 2.038, p-value = 0.042 | ||
| Variables | Alternative Proxy Variables | Smoothing the Data Series | ||||
|---|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | (6) | |
| lnMA_LQ | −0.150 *** | −0.373 ** | −0.152 *** | |||
| (−6.07) | (−2.39) | (−5.99) | ||||
| lnMA_HHI | −0.046 *** | −0.115 ** | −0.047 *** | |||
| (−6.30) | (−2.42) | (−6.22) | ||||
| lnEI | −0.008 ** | −0.006 ** | ||||
| (−2.57) | (−2.09) | |||||
| (lnEDL)2 | 0.009 *** | 0.045 *** | 0.009 *** | 0.005 *** | 0.035 *** | 0.005 *** |
| (7.19) | (5.81) | (7.20) | (4.20) | (4.98) | (4.37) | |
| lnEDL | −0.160 *** | −0.618 *** | −0.165 *** | −0.084 *** | −0.430 *** | −0.087 *** |
| (−7.10) | (−4.24) | (−7.11) | (−4.02) | (−3.23) | (−4.13) | |
| lnINL | 0.010 | −0.248 *** | 0.008 | 0.006 | −0.256 *** | 0.005 |
| (1.01) | (−3.99) | (0.81) | (0.64) | (−4.18) | (0.48) | |
| lnIST | −0.012 ** | −0.165 *** | −0.013 ** | −0.019 *** | −0.182 *** | −0.020 *** |
| (−2.10) | (−4.49) | (−2.31) | (−3.09) | (−4.77) | (−3.23) | |
| lnEVR | 0.012 * | −0.189 *** | 0.011 | 0.025 *** | −0.158 *** | 0.024 *** |
| (1.84) | (−4.37) | (1.61) | (3.30) | (−3.29) | (3.18) | |
| lnPDT | 0.090 *** | −0.333 ** | 0.087 *** | 0.083 *** | −0.350 *** | 0.081 *** |
| (4.44) | (−2.54) | (4.35) | (4.07) | (−2.70) | (3.98) | |
| City FE | Y | Y | Y | Y | Y | Y |
| Year FE | Y | Y | Y | Y | Y | Y |
| Obs. | 4018 | 4018 | 4018 | 4018 | 4018 | 4018 |
| Number of cities | 287 | 287 | 287 | 287 | 287 | 287 |
| Variables | (1) | (2) | (3) | (4) |
|---|---|---|---|---|
| lnMA_LQ | −0.150 *** | −0.152 *** | −0.148 *** | |
| (−6.07) | (−5.99) | (−6.00) | ||
| lnEI | 0.003 * | −0.006 ** | −0.006 ** | |
| (1.71) | (−2.09) | (−2.04) | ||
| INTER | 0.001 ** | |||
| (2.50) | ||||
| (lnEDL)2 | 0.005 *** | 0.005 *** | 0.005 *** | 0.005 *** |
| (4.20) | (5.88) | (4.37) | (4.46) | |
| lnEDL | −0.084 *** | −0.095 *** | −0.087 *** | −0.089 *** |
| (−4.02) | (−5.84) | (−4.13) | (−4.25) | |
| lnINL | 0.006 | −0.019 *** | 0.005 | 0.005 |
| (0.64) | (−2.89) | (0.48) | (0.52) | |
| lnIST | −0.019 *** | −0.011 ** | −0.020 *** | −0.018 *** |
| (−3.09) | (−2.32) | (−3.23) | (−3.01) | |
| lnEVR | 0.025 *** | 0.006 | 0.024 *** | 0.023 *** |
| (3.30) | (1.17) | (3.18) | (3.14) | |
| lnPDT | 0.083 *** | 0.022 | 0.081 *** | 0.075 *** |
| (4.07) | (1.61) | (3.98) | (3.78) | |
| City FE | Y | Y | Y | Y |
| Year FE | Y | Y | Y | Y |
| Obs. | 4018 | 4018 | 4018 | 4018 |
| Number of cities | 287 | 287 | 287 | 287 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Yuan, H. Effects of Manufacturing Agglomeration on Pollutant Emissions: The Role of Energy Intensity in China. Sustainability 2025, 17, 11225. https://doi.org/10.3390/su172411225
Feng Y, Yuan H. Effects of Manufacturing Agglomeration on Pollutant Emissions: The Role of Energy Intensity in China. Sustainability. 2025; 17(24):11225. https://doi.org/10.3390/su172411225
Chicago/Turabian StyleFeng, Yidai, and Huaxi Yuan. 2025. "Effects of Manufacturing Agglomeration on Pollutant Emissions: The Role of Energy Intensity in China" Sustainability 17, no. 24: 11225. https://doi.org/10.3390/su172411225
APA StyleFeng, Y., & Yuan, H. (2025). Effects of Manufacturing Agglomeration on Pollutant Emissions: The Role of Energy Intensity in China. Sustainability, 17(24), 11225. https://doi.org/10.3390/su172411225

