You are currently viewing a new version of our website. To view the old version click .
Sustainability
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

11 November 2025

Non-Destructive Yield Prediction in Common Bean Using UAV-Based Spectral and Structural Metrics: Implications for Sustainable Crop Management

,
and
Programa de Ingeniería Topográfica y Geomática, Universidad del Quindío, Armenia 630004, Colombia
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Agricultural Engineering for Sustainable Development

Abstract

Early prediction of common bean (Phaseolus vulgaris L.) yield is essential for improving productivity in tropical agricultural systems. In this study, we integrated canopy structural metrics obtained with the Tracing Radiation and Architecture of Canopies (TRAC) system, unmanned aerial vehicle (UAV)-based multispectral measurements (normalized difference vegetation index—NDVI, projected canopy area), and phenological variables collected from stages R6 to R8 under non-limiting nitrogen conditions. Exploratory analyses (correlation, variance inflation factors—VIF), dimensionality reduction (principal component analysis—PCA), and regularized regression (Elastic Net/LASSO), combined with bootstrap stability selection, were applied to identify a parsimonious subset of robust predictors. The final model, composed of six variables, explained approximately 72% of the variability in plant-level grain yield, with acceptable errors (RMSE ≈ 10.67 g; MAE ≈ 7.91 g). The results demonstrate that combining early vigor, radiation interception, and canopy architecture provides complementary information beyond simple spectral indices. This non-destructive framework delivers an efficient model for early yield estimation and supports site-specific management decisions in common bean with high spatial resolution. By enhancing input-use efficiency and reducing waste, this approach contributes to sustainable development and aligns with the global Sustainable Development Goals (SDGs) for climate-resilient agriculture.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.