Coexistence of Hydropower Plants and Natura 2000 Fish Species: A Case Study of the Danube Longbarbel Gudgeon and Cactus Roach in the Impounded Sava River (Slovenia)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Environmental Data
2.3. Fish Sampling
2.4. Data Analyses
3. Results
3.1. Environmental Conditions
3.2. Fish Composition
4. Discussion
5. Conclusions
- The use of habitat-specific sampling methods (bottom trawling, electrofishing by wading and from a boat), along with 24/7 video surveillance in the fish pass during the main migration period, contributed to a more holistic understanding of the fish community composition in the Brežice HPP system, including both target species: Danube longbarbel gudgeon and cactus roach although fish sampling was conducted only during the summer and daytime.
- Our findings provide evidence that impounded rivers, when complemented by well-designed mitigation measures, can sustain rheophilic fish species, including the Danube longbarbel gudgeon and the cactus roach. Maintaining rheophilic habitat within the impoundment, combined with a well-functioning river-like side channel, is crucial for the bottom-dwelling Danube longbarbel gudgeon and migratory cactus roach.
- At Brežice HPP, adjustments to the management of water inflow to the fish pass are required to ensure optimal hydraulic conditions during operation. The inlet should be designed to maintain a uniform water level along its entire length up to the control gates at the outlet of the technical section of the fish pass. This water level must align with the current impoundment level to ensure consistent energy and flow conditions at the fish pass inlet, regardless of whether the control gates are open or closed.
- In summer, when high surface water temperatures occur in the lower part of the Brežice HPP impoundment, the new technical solution for the water inlet should also allow inflow from deeper layers where the water temperature does not exceed 25 °C.
- Our findings indicate that the presence of various target rheophilic fish species may require species-specific measures, as was evident in our study, where several rheophilic species are present within the Brežice HPP system.
- Applying a knowledge co-creation approach, which requires productive interaction among scientists, managers and policy makers, could help to find the best solutions for sustainable water ecosystem management.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HPP | Hydropower plant |
| N2K | Natura 2000 |
| NPP | Nuclear power Plant |
| HD | Habitats Directive |
| EU | European Union |
References
- Schleker, T.; Fjeldstad, H.-P. Hydropower and Fish—Report and Messages from Workshop on Research and Innovation in the Context of the European Policy Framework. Sci. Total Environ. 2019, 647, 1368–1372. [Google Scholar] [CrossRef] [PubMed]
- Tockner, K.; Uehlinger, U.; Robinson, C.T.; Tonolla, D.; Siber, R.; Peter, F.D. Introduction to European rivers. In Rivers of Europe, 1st ed.; Tockner, K., Robinson, C.T., Uehlinger, U., Eds.; Academic Press Publisher: London, UK, 2008; pp. 1–21. [Google Scholar]
- Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 2019, 12, 7–21. [Google Scholar] [CrossRef]
- Chen, Q.; Li, Q.; Lin, Y.; Zhang, J.; Xia, J.; Ni, J.; Cooke, S.J.; Best, J.; He, S.; Feng, T.; et al. River damming impacts on fish habitat and associated conservation measures. Rev. Geophys. 2023, 61, e2023RG000819. [Google Scholar] [CrossRef]
- Antonio, R.R.; Agostinho, A.A.; Pelicice, F.M.; Bailly, D.; Okada, E.K.; Dias, J.H.P. Blockage of migration routes by dam construction: Can migratory fish find alternative routes? Neotrop. Ichthyol. 2007, 5, 177–184. [Google Scholar] [CrossRef]
- Liermann, C.R.; Nilsson, C.; Robertson, J.; Ng, Y. Implications of dam obstruction for global freshwater fish diversity. BioScience 2012, 62, 539–548. [Google Scholar] [CrossRef]
- Gleick, P.H. Environmental consequences of hydroelectric development: The role of facility size and type. Energy 1992, 17, 735–747. [Google Scholar] [CrossRef]
- Vardakas, L.; Perdikaris, C.; Freyhof, J.; Zimmerman, B.; Ford, M.; Vlachopoulos, K.; Koutsikos, N.; Karaouzas, I.; Chamoglou, M.; Kalogianni, E. Global Patterns and Drivers of Freshwater Fish Extinctions: Can We Learn from Our Losses? Glob. Change Biol. 2025, 31, e70244. [Google Scholar] [CrossRef]
- WWF. Living Planet Report 2020—Bending the Curve of Biodiversity Loss; Almond, R.E.A., Grooten, M., Petersen, T., Eds.; WWF: Gland, Switzerland, 2020; 159p, Available online: https://wwfin.awsassets.panda.org/downloads/lpr_2020_full_report.pdf (accessed on 25 October 2025).
- Directive, E.B. European Council Directive 79/409/EEC of 2 April 1979 on the conservation of wild birds. Off. J. Eur. Communities 1979, 103, 1–18. [Google Scholar]
- Directive, H. European Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Off. J. Eur. Communities 1992, 206, 7–50. [Google Scholar]
- Commission Staff Working Document. Environmental Implementation Review. Country Report—SLOVENIA. 2025. Available online: https://ec.europa.eu/transparency/documents-register/detail?ref=SWD(2025)324&lang=en (accessed on 10 July 2025).
- Natura 2000 Forests in Slovenia. 2024. Available online: https://natura2000.gov.si/fileadmin/user_upload/Slike/Natura2000_v_Sloveniji/Infografika_Gozdovi_Nature_2000.pdf (accessed on 26 October 2025). (In Slovene)
- Natura 2000 Areas. 2024. Available online: https://natura2000.gov.si/natura-2000/natura-2000-v-sloveniji/ (accessed on 26 October 2025). (In Slovene)
- Povž, M.; Gregori, A.; Gregori, M. Freshwater Fish and Lampreys in Slovenia; Zavod Umbra: Ljubljana, Slovenia, 2015; p. 293. (In Slovene) [Google Scholar]
- Povž, M.; Jakšič, G.; Piria, M. The Updated List of the Non-Native Freshwater Fishes in Slovenia with Note of their Potential Impact in Inland Waters. Pak. J. Zool. Suppl. Ser. 2018, 13, 1–7. [Google Scholar]
- Dußling, U.; Berg, R.; Klinger, H.; Wolter, C. Assessing the ecological status of river systems using fish assemblages. In Handbuch Angewandte Limnologie; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp. 1–84. [Google Scholar]
- Kottelat, M.; Freyhof, J. Handbook of European Freshwater Fishes; Publications Kottelat: Cornol, Switzerland, 2007; p. 646. [Google Scholar]
- Povž, M.; Sket, B. Our Freshwater Fish; Mladinska knjiga: Ljubljana, Slovenia, 1990; p. 376. (In Slovene) [Google Scholar]
- Ćaleta, M.; Buj, I.; Mrakovčić, M.; Mustafić, P.; Zanella, D.; Marčić, Z.; Duplić, A.; Mihinjač, T.; Katavić, I. Endemic Fishes of Croatia; Croatian Environment Agency: Zagreb, Croatia, 2015; p. 116. [Google Scholar]
- Bless, R. Threatened fishes of the world: Gobio uranoscopus (Agassiz, 1828) (Cyprinidae). Environ. Biol. Fishes 1997, 49, 20. [Google Scholar] [CrossRef]
- Talabishka, E.; Didenko, A.; Velykopolskiy, I. Some biological data on cactus roach, Rutilus virgo (Heckel), in rivers of the Transcarpathian region of Ukraine. Arch. Pol. Fish. 2015, 23, 67–77. [Google Scholar] [CrossRef]
- Barbarossa, V.; Schmitt, R.J.P.; Huijbregts, M.A.J.; Zarfl, C.; King, H.; Schipper, A.M. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl. Acad. Sci. USA 2020, 117, 3648–3655. [Google Scholar] [CrossRef]
- van Treeck, R.; Radinger, J.; Smialek, N.; Pander, J.; Geist, J.; Mueller, M.; Wolter, C. Comparative assessment of hydropower risks for fishes using the novel European fish hazard Index. Sustain. Energy Technol. Assess. 2022, 51, 101906. [Google Scholar] [CrossRef]
- Akstinas, V.; Virbickas, T.; Meilutyte-Lukauskiene, D.; Sarauskiene, D.; Vezza, P.; Kriauciuniene, J.; Rakauskas, V.; Steponenas, A.; Jurgelenaite, A.; Jakimavičius, D.; et al. Multicomponent assessment of the impact of hydropower cascade on fish metrics. Sci. Total Environ. 2024, 906, 167541. [Google Scholar] [CrossRef] [PubMed]
- Schilt, C.R. Developing fish passage and protection at hydropower dams. Appl. Anim. Behav. Sci. 2007, 104, 295–325. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, H.; Gessner, J.; Congiu, L.; Haxton, T.J.; Jeppesen, E.; Svenningj, J.-C.; Xie, P. To save sturgeons, we need river channels around hydropower dams. Proc. Natl. Acad. Sci. USA 2023, 120, e221786120. [Google Scholar] [CrossRef]
- Hydrological Data Archive—Daily Data; Slovenian Environment Agency: Ljubljana, Slovenia. Available online: https://vode.arso.gov.si/hidarhiv/pov_arhiv_tab.php (accessed on 10 May 2025).
- Kenig, M. Bathymetric measurements of the impoundment of the Hydroelectric powerplant Brežice. In Report 2021; Partner: Brežice, Slovenia, 2021; p. 16. (In Slovene) [Google Scholar]
- Olajos, P.; Kiss, B.; Sallai, Z.; E-KECE. Elektromos Fenékháló. Patent Pending. 2021. p. 8. Available online: https://www.globeecology.hu/wp-content/uploads/e-kece.pdf (accessed on 10 May 2025).
- Szalóky, Z.; György, A.I.; Tóth, B.; Sevcsik, A.; Specziár, A.; Csányi, B.; Szekeres, J.; Eros, T. Application of an electrified benthic frame trawl for sampling fish in a very large European river (the Danube River)—Is offshore monitoring necessary? Fish. Res. 2014, 151, 12–19. [Google Scholar] [CrossRef]
- Nelva, A.; Persat, H.; Chessel, D. Une nouvelle méthode d’étude des peuplements ichtyologiques dans les grands cours d’eau par échantillonnage ponctuel d’abondance. C R Hebd. Seances Acad. Sci. Sér. D Sci. Nat. 1979, 289, 1295–1298. [Google Scholar]
- Persat, H.; Copp, G.H. Electric fishing and point abundance sampling for ichthyology of large rivers. In Development in Electric Fishing; Cowx, I.G., Ed.; Blackwell: Oxford, UK, 1990; pp. 197–209. [Google Scholar]
- Grenouillet, G.; Pont, D.; Olivier, J.M. Habitat occupancy pattern of juvenile fishes in a large lowland river: Interactions with macrophytes. Arch. Für Hydrobiol. 2000, 149, 307–326. [Google Scholar] [CrossRef]
- Coop, G.H. The David Noakes article that debunked the misguided belief that absolute numbers of fish can be captured in fresh waters: A lesson for early-career scientists. Environ. Biol. Fish 2023, 106, 811–816. [Google Scholar] [CrossRef]
- Peterlin, M.; Urbanič, G. A lakeshore modification index and its association with benthic invertebrates in alpine lakes. Ecohydrology 2013, 6, 297–311. [Google Scholar] [CrossRef]
- Urbanič, G. A Littoral Fauna Index for assessing the impact of lakeshore alterations in Alpine lakes. Ecohydrology 2014, 7, 703–716. [Google Scholar] [CrossRef]
- Perrow, M.D.; Winfield, I.J.; Tomlinson, M.L.; Hardwood, A.J.P. Designing a Methodology for Surveying Fish Populations in Freshwater Lakes (NECR230); Natural England: York, UK, 2017; p. 61. [Google Scholar]
- SIST EN 14011; Water Quality—Sampling of Fish with Electricity. British Standards Institution: London, UK, 2003; p. 16.
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- EU. Regulation (EU) No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the Prevention and Management of the Introduction and Spread of Invasive Alien Species. Off. J. Eur. Union 2014, 317, 35–55. [Google Scholar]
- Urbanič, G. Ecological status assessment of rivers in Slovenia—An overview. Nat. Slov. 2011, 13, 5–16. [Google Scholar] [CrossRef]
- Urbanič, G. Hydromorphological degradation impact on benthic invertebrates in large rivers in Slovenia. Hydrobiologia 2014, 729, 191–207. [Google Scholar] [CrossRef]
- Keulartz, J. European nature conservation and restoration policy—Problems and perspectives. Restor. Ecol. 2009, 17, 446–450. [Google Scholar] [CrossRef]
- Šumer, S.; Povž, M.; Podgornik, S.; Kosi, G. Ichthyological Research on the Sava River from HPP Vrhovo to NPP Krško; Fisheries Research Institute of Slovenia: Ljubljana, Slovenia, 2004; p. 68. (In Slovene) [Google Scholar]
- Habeković, D.; Homen, Z.; Fašaić, K. Ichthyofauna of a part of the Sava River. Ribar. Jugosl. 1990, 45, 8–14. (In Croatian) [Google Scholar]
- Zajicek, P.; Wolter, C. The gain of additional sampling methods for the fish-based assessment of large rivers. Fish. Res. 2018, 197, 15–24. [Google Scholar] [CrossRef]
- Pont, D.; Meulenbroek, P.; Bammer, V.; Dejean, T.; Erős, T.; Jean, P.; Lenhardt, M.; Nagel, C.; Pekarik, L.; Schabus, M.; et al. Quantitative monitoring of diverse fish communities on a large scale combining eDNA metabarcoding and qPCR. Mol. Ecol. Resour. 2023, 23, 396–409. [Google Scholar] [CrossRef]
- Deng, C.; Huang, S.; Chen, B.; Huang, R.; Zhang, J.; Xiao, Z.; Ma, C.; Wang, Z.; Liu, X. eDNA Metabarcoding Reveals Homogenization of Fish in Fujiang Segments Isolated by Cascading Hydroelectric Stations. Animals 2025, 15, 2031. [Google Scholar] [CrossRef]
- The European Green Deal; European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; European Green Deal; European Commission: Brussel, Belgium, 2019; pp. 1–24. [Google Scholar]
- Government of the Republic of Slovenia. Integrated National Energy and Climate Plan of the Republic of Slovenia. 2020. Available online: https://energy.ec.europa.eu/system/files/2020-06/si_final_necp_main_en_0.pdf (accessed on 11 July 2025).
- Nielsen, N.; Szabo-Meszaros, M. (Eds.) A Roadmap for Best Practice Management on Hydropower and Fish—IEA Hydro Report on Annex XIII Hydropower and Fish; Zenodo: Genève, Switzerland, 2022; p. 170. [Google Scholar] [CrossRef]
- Cortina-Segarra, J.; García-Sánchez, I.; Grace, M.; Andrés, P.; Baker, S.; Bullock, C.; Decleer, K.; Dicks, L.V.; Fisher, J.L.; Frouz, J.; et al. Barriers to Ecological Restoration in Europe: Expert Perspectives. Restor. Ecol. 2021, 29, e13346. [Google Scholar] [CrossRef]
- Urbanič, G.; Politti, E.; Rodríguez-Gonzálz, P.M.; Payne, R.; Schook, D.; Alves, M.H.; Anđelković, A.; Bruno, D.; Chilikova-Lubomirova, M.; Di Lonardo, S.; et al. Riparian Zones—From Policy Neglected to Policy Integrated. Front. Environ. Sci. 2022, 10, 868527. [Google Scholar] [CrossRef]










| Characteristics | Value |
|---|---|
| Upstream catchment | 7848 km2 |
| Average annual water discharge | 207 m3/s |
| HPP type | Run-of-river HPP |
| HPP in a cascade | 5th |
| Number of installed vertical units | 3 |
| Turbine | Kaplan turbine |
| Turbine nominal flow | 500 m3/s |
| Installed capacity | 47.4 MW |
| Average annual production | 161 GWh |
| Length of the impoundment | 12.6 km |
| Maximum depth of the impoundment | 18 m |
| Impoundment surface area | 3.17 km2 |
| Impoundment storage capacity | 19.3 million m3 |
| Fish pass facility | yes |
| Discharge through the fish pass facility | 0.5–0.8 m3/s |
| Fish Sampling Method | Impoundment | Fish Pass Facility | ||
|---|---|---|---|---|
| Bottom | Nearshore | Technical Part | River Like Side Channel | |
| Electric bottom trawling | x | |||
| Electrofishing-wading | x | |||
| Electrofishing-boat | x | |||
| Video surveillance | x | |||
| Common Name | Scientific Name | Code | Habitat | ||||
|---|---|---|---|---|---|---|---|
| Bottom_imp1 | Bottom_imp2 | Nearshore_imp1 | Nearshore_imp2 | Fish Pass | |||
| Total number of species | 16 | 15 | 10 | 7 | 20 | ||
| White bream | Abramis bjoerkna | Abr_bjo | 0.33 | 0.12 | |||
| Freshwater bream | Abramis brama | Abr_bra | 3.22 | ||||
| Schneider | Alburnoides bipunctata 3 | Als_bip | 56.56 | 24.26 | 22.60 | ||
| Bleak | Alburnus alburnus | Alb_alb | 0.44 | 0.18 | 0.66 | 6.21 | |
| Stone loach | Barbatula barbatula 3 | Bab_bab | 0.33 | ||||
| Danube barbel | Barbus balcanicus 1,3 | x | |||||
| Common barbel | Barbus barbus 3 | Bar_bar | 9.44 | 0.04 | 0.33 | 18.51 | |
| Prussian carp | Carassius gibelio 2 | Car_gib | 3.11 | 8.21 | 30.49 | 18.08 | 11.82 |
| Nase | Chondrostoma nasus 3 | Cho_nas | 1.33 | 0.33 | |||
| Balkan loach | Cobitis elongata 1,3 | Cob_ela | 0.33 | 0.50 | |||
| Danubian spined loach | Cobitis elongatoides 1,3 | Cob_els | 3.88 | 2.18 | 2.96 | ||
| Barje sculpin | Cottus metae 3 | Cot_met | 0.44 | ||||
| Common carp | Cyprinus carpio | Cyp_car | 0.89 | 0.96 | 1.38 | ||
| Northern pike | Esox lucius | Eso_luc | 0.22 | x | |||
| Balkan gudgeon | Gobio obtusirostris 3 | Gob_obt | 0.04 | 0.12 | |||
| Ruffe | Gymnocephalus cernua | Gym_cer | 2.44 | 45.10 | |||
| Pumpkinseed | Lepomis gibbosus 2 | Lep_gib | 3.49 | 0.29 | |||
| European perch | Perca fluviatilis | Per_flu | 0.33 | x | |||
| Stone moroko | Pseudorasbora parva 2 | Pse_par | 1.18 | 9.84 | 56.64 | 1.28 | |
| European bitterling | Rhodeus amarus 1 | Rho_ama | 1.67 | 0.48 | 24.92 | 19.17 | 1.10 |
| Danube longbarbel gudgeon | Romanogobio uranoscopus 1,3 | Rom_ura | 0.33 | ||||
| Danube whitefin gudgeon | Romanogobio vladykovi 1,3 | Rom_vla | 20.89 | 36.01 | 0.66 | 0.14 | |
| Common roach | Rutilus rutilus | Rut_rut | 0.30 | ||||
| Cactus roach | Rutilus virgo 1,3 | Rut_vir | 0.67 | 1.07 | |||
| Balkan spined loach | Sabaneyewia balcanica 1 | Sab_aur | 1.00 | 0.30 | |||
| Zander | Sander lucioperca | San_luc | 0.11 | ||||
| Wels catfish | Silurus glanis | Sil_gla | 0.22 | 0.04 | 0.12 | ||
| Chub | Squalius cephalus 3 | Squ_cep | 0.11 | 7.87 | 0.22 | 30.31 | |
| Tench | Tinca tinca | Tin_tin | 0.04 | 0.22 | |||
| Vimba bream | Vimba vimba 3 | Vim_vim | 0.11 | 0.85 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbanič, G.; Vidmar, A.; Zanella, D.; Ćaleta, M.; Karlović, R.; Pavlin Urbanič, M.; Kryžanowski, A. Coexistence of Hydropower Plants and Natura 2000 Fish Species: A Case Study of the Danube Longbarbel Gudgeon and Cactus Roach in the Impounded Sava River (Slovenia). Sustainability 2025, 17, 9730. https://doi.org/10.3390/su17219730
Urbanič G, Vidmar A, Zanella D, Ćaleta M, Karlović R, Pavlin Urbanič M, Kryžanowski A. Coexistence of Hydropower Plants and Natura 2000 Fish Species: A Case Study of the Danube Longbarbel Gudgeon and Cactus Roach in the Impounded Sava River (Slovenia). Sustainability. 2025; 17(21):9730. https://doi.org/10.3390/su17219730
Chicago/Turabian StyleUrbanič, Gorazd, Andrej Vidmar, Davor Zanella, Marko Ćaleta, Roman Karlović, Maja Pavlin Urbanič, and Andrej Kryžanowski. 2025. "Coexistence of Hydropower Plants and Natura 2000 Fish Species: A Case Study of the Danube Longbarbel Gudgeon and Cactus Roach in the Impounded Sava River (Slovenia)" Sustainability 17, no. 21: 9730. https://doi.org/10.3390/su17219730
APA StyleUrbanič, G., Vidmar, A., Zanella, D., Ćaleta, M., Karlović, R., Pavlin Urbanič, M., & Kryžanowski, A. (2025). Coexistence of Hydropower Plants and Natura 2000 Fish Species: A Case Study of the Danube Longbarbel Gudgeon and Cactus Roach in the Impounded Sava River (Slovenia). Sustainability, 17(21), 9730. https://doi.org/10.3390/su17219730

