Sustainability Risk Management and Financial Distress: The Moderating Role of Financial Performance in Saudi Firms
Abstract
1. Introduction
2. Literature Review and Hypotheses Development
2.1. Conceptual Background
2.2. Theoretical Framework
2.3. Hypotheses’ Development
2.3.1. Sustainability Risk Management and Firm’s Financial Distress
2.3.2. Firm Performance, Sustainability Risk Management, and Firm’s Financial Distress
3. Research Design and Methodology
3.1. Data Collection
3.2. Variables’ Measurements
3.2.1. The Independent Variable
3.2.2. The Dependent Variable
3.2.3. The Moderator Variable
3.2.4. The Control Variables
3.3. General Linear Models
4. Empirical Results
4.1. Descriptive Analysis
4.2. ANOVA Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SRM | Sustainability Risk Management |
FFD | Firm’s Financial Distress |
ESG | Environmental, Social, & Governance |
ERM | Enterprise Risk Management |
COSO | Committee of Sponsoring Organizations of the Treadway Commission |
ROA | Return on Asset |
CSR | Corporate social report |
References
- Koundouri, P.; Pittis, N.; Plataniotis, A. The impact of ESG performance on the financial performance of European area companies: An empirical examination. Environ. Sci. Proc. 2022, 15, 13. [Google Scholar] [CrossRef]
- Zhang, L. The impact of ESG performance on the financial performance of companies: Evidence from China’s Shanghai and Shenzhen A-share listed companies. Front. Environ. Sci. 2025, 13, 1507151. [Google Scholar] [CrossRef]
- KPMG. ERM’s Role in ESG: How Enterprise Risk Management Can Help Companies Craft and Execute ESG Strategies. 2023. Available online: https://kpmg.com/kpmg-us/content/dam/kpmg/pdf/2023/erms-role-in-esg-pov-whitepaper-v3.pdf (accessed on 30 July 2025).
- Khan, M.; Hussain, D.; Mehmood, W. Why do firms adopt enterprise risk management (ERM)? Empirical evidence from France. Manag. Decis. 2016, 54, 1886–1907. [Google Scholar] [CrossRef]
- Anton, S.; Nucu, A. Enterprise risk management: A literature review and agenda for future research. J. Risk Financ. Manag. 2020, 13, 281. [Google Scholar] [CrossRef]
- Oti-Frimpong, J.; Gyedu, S. Enterprise Risk Management (ERM): A bibliometric review and future agenda. Int. J. Rec. Res. Commer. Econ. Manag. 2023, 10, 122–140. [Google Scholar] [CrossRef]
- Antunes, J.; Wanke, P.; Fonseca, T.; Tan, Y. Do ESG Risk scores influence financial distress? Evidence from a dynamic NDEA approach. Sustainability 2023, 15, 7560. [Google Scholar] [CrossRef]
- Habib, A.; Costa, M.; Huang, H.; Bhuiyan, M.; Sun, L. Determinants and consequences of financial distress: Review of the empirical literature. Account. Finance 2020, 60, 1023–1075. [Google Scholar] [CrossRef]
- Saudi Exchange (Tadawul). Environmental, Social, & Governance, (ESG) Guidelines. 2018. Available online: https://www.saudiexchange.sa/wps/portal/saudiexchange/listing/issuer-guides/esg-guidelines (accessed on 4 September 2025).
- Capital Market Authority (CMA). Corporate Governance Regulations. 2023. Available online: https://cma.gov.sa/en/RulesRegulations/Regulations/Documents/CorporateGovernanceRegulations1.pdf (accessed on 4 September 2025).
- Saudi Arabia Vision 2030. Available online: https://www.vision2030.gov.sa/ (accessed on 4 September 2025).
- Bouattour, A.; Kalai, M.; Helali, K. The non-linear relationship between ESG performance and bank stability in the digital era: New evidence from a regime-switching approach. Humanit. Soc. Sci. Commun. 2024, 11, 1445. [Google Scholar] [CrossRef]
- Boubaker, S.; Cellier, A.; Manita, R.; Saeed, A. Does corporate social responsibility reduce financial distress risk? Econ. Model. 2020, 91, 835–851. [Google Scholar] [CrossRef]
- Seefloth, M.; Siedler, F.; Kayser, C.; Retsch, B.; Zülch, H. Sustainability performance and its impact on financial distress risk—Evidence from STOXX Europe 600. Bus. Strategy Environ. 2025, 34, 5699–5741. [Google Scholar] [CrossRef]
- Shi, Y.; Li, X.; Asal, M. Impact of sustainability on financial distress in the air transport industry: The moderating effect of Asia–Pacific. Financ. Innov. 2023, 9, 97. [Google Scholar] [CrossRef]
- Zhou, F.; Chen, H.; Tang, S.; Lee, C.; Lin, C. Integrating ESG into financial distress models: The role of financial report quality and innovation in the Chinese market. Int. Rev. Econ. Financ. 2025, 101, 104135. [Google Scholar] [CrossRef]
- Citterio, A.; King, T. The role of Environmental, Social, and Governance (ESG) in predicting bank financial distress. Finance Res. Lett. 2023, 51, 103411. [Google Scholar] [CrossRef]
- Ding, L.; Cui, Z.; Li, J. Risk management and corporate ESG performance: The mediating effect of financial performance. Finance Res. Lett. 2024, 69, 106274. [Google Scholar] [CrossRef]
- Grygiel-Tomaszewska, A.; Turek, J. The role of ESG in default early warning. Bus. Adm. Q./Kwart. Nauk. Przedsieb. 2021, 62, 25–39. [Google Scholar] [CrossRef]
- Betz, F.; Oprică, S.; Peltonen, T.; Sarlin, P. Predicting distress in European banks. J. Bank. Financ. 2014, 45, 225–241. [Google Scholar] [CrossRef]
- Jia-Liu, Z. Cross-country study on the determinants of bank financial distress. RAE Rev. Adm. Empresas 2015, 55, 593–603. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, L.; Lu, X.; Zhang, Z. Determinants of financial distress in large financial institutions: Evidence from US bank holding companies. Contemp. Econ. Policy 2016, 34, 250–267. [Google Scholar] [CrossRef]
- Saleem, R.; Hussain, A.; Ibraheem, R. Banking Industry Specific Determinants of Financial Distress: Empirical Evidence from ASEAN Countries. iRASD J. Econ. 2020, 2, 113–123. [Google Scholar] [CrossRef]
- Syed, M.; Al-Mohamad, J.; Khaki, A.; Ali, S. Financial Distress, Survival and Performance of Saudi Arabian Companies. In Proceedings of the International Conference on Sustainable Islamic Business and Finance (SIBF), Bahrain, 24–25 September 2023. [Google Scholar] [CrossRef]
- Almubarak, W.I.; Chebbi, K.; Ammer, M.A. Unveiling the connection among ESG, earnings management, and financial distress: Insights from an emerging market. Sustainability 2023, 15, 12348. [Google Scholar] [CrossRef]
- United Nations. The Global Compact. Who Cares Wins: Connecting the Financial Markets to a Changing World? United Nations: New York, NY, USA, 2004. Available online: https://www.unglobalcompact.org/docs/issues_doc/Financial_markets/who_cares_who_wins.pdf (accessed on 25 March 2025).
- Dienes, D.; Sassen, R.; Fisher, J. What are the drivers of sustainability reporting? A systematic review. Sustain. Account. Manag. Policy J. 2016, 7, 154–189. [Google Scholar] [CrossRef]
- Moodaley, W.; Telukdarie, A. Greenwashing, sustainability reporting, and artificial intelligence: A systematic literature review. Sustainability 2023, 15, 1481. [Google Scholar] [CrossRef]
- Greif, L.; Röckel, F.; Kimmig, A.; Ovtcharova, J. A systematic review of current AI techniques used in the context of the SDGs. Int. J. Environ. Res. 2025, 19, 1. [Google Scholar] [CrossRef]
- Regona, M.; Yigitcanlar, T.; Hon, C.; Teo, M. Artificial intelligence and sustainable development goals: Systematic literature review of the construction industry. Sustain. Cities Soc. 2024, 108, 105499. [Google Scholar] [CrossRef]
- Sætra, H. A framework for evaluating and disclosing the ESG related impacts of AI with the SDGs. Sustainability 2021, 13, 8503. [Google Scholar] [CrossRef]
- Bhatt, D.; Panda, A. Synchronization between sustainable development goals and 5Ps—A way forward. Clio 2020, 6, 388–394. Available online: https://www.researchgate.net/publication/341111432 (accessed on 31 March 2025).
- Kulkov, I.; Kulkova, J.; Rohrbeck, R.; Menvielle, L.; Kaartemo, V.; Makkonen, H. Artificial intelligence—Driven sustainable development: Examining organizational, technical, and processing approaches to achieving global goals. Sustain. Dev. 2024, 32, 2253–2267. [Google Scholar] [CrossRef]
- Mienye, I.; Sun, Y.; Ileberi, E. Artificial intelligence and sustainable development in Africa: A comprehensive review. Mach. Learn. Appl. 2024, 18, 100591. [Google Scholar] [CrossRef]
- Tremblay, D.; Fortier, F.; Boucher, J.; Riffon, O.; Villeneuve, C. Sustainable development goal interactions: An analysis based on the five pillars of the 2030 agenda. Sustain. Dev. 2020, 28, 1584–1596. [Google Scholar] [CrossRef]
- Raz, T.; Hillson, D. Comparative Review of Risk Management Standards. Risk Manag. 2005, 7, 53–66. [Google Scholar] [CrossRef]
- Chairani, C.; Siregar, S. The effect of enterprise risk management on financial performance and firm value: The role of environmental, social and governance performance. Meditari Account. Res. 2021, 29, 647–670. [Google Scholar] [CrossRef]
- Landi, G.; Iandolo, F.; Renzi, A.; Rey, A. Embedding sustainability in risk management: The impact of environmental, social, and governance ratings on corporate financial risk. Corp. Soc. Responsib. Environ. Manag. 2022, 29, 1096–1107. [Google Scholar] [CrossRef]
- Shah, S.; Lai, F.; Shad, M.; Hamad, S.; Ellili, N. Exploring the effect of enterprise risk management for ESG risks towards green growth. Int. J. Product. Perform. Manag. 2025, 74, 224–249. [Google Scholar] [CrossRef]
- Morningstar Sustainalytics. 2025. Sustainability Risk Rating for Tesla Inc. Available online: https://www.sustainalytics.com (accessed on 24 January 2025).
- Gentry, J.; Vaidyanathan, R.; Lee, H. A Weighted Cash Conversion Cycle. Financ. Manag. 1990, 19, 90–99. Available online: https://www.jstor.org/stable/3666040 (accessed on 7 July 2025). [CrossRef]
- Kordestani, G.; Bakhtiari, M.; Biglari, V. Ability of combinations of cash flow components to predict financial distress. Bus. Theory Pract. 2011, 12, 277–285. [Google Scholar] [CrossRef]
- Luthfiyanti, N.; Dahlia, L. The effect of enterprise risk management on financial distress. J. Account. Audit. Bus. 2020, 3, 30–41. [Google Scholar] [CrossRef]
- Lim, H.; Mali, D. Does market performance (Tobin’s Q) have a negative effect on credit ratings? Evidence from South Korea. Asia-Pac. Financ. Mark. 2024, 31, 53–80. [Google Scholar] [CrossRef]
- Yazdanfar, D.; Öhman, P. Financial distress determinants among SMEs: Empirical evidence from Sweden. J. Econ. Stud. 2020, 47, 547–560. [Google Scholar] [CrossRef]
- Jaafar, M.N.; Muhamat, A.A.; Alwi, S.F.; Karim, N.A.; Rahman, S.A. Determinants of financial distress among the companies practise note 17 listed in Bursa Malaysia. Int. J. Acad. Res. Bus. Soc. Sci. 2018, 8, 798–809. [Google Scholar] [CrossRef]
- Kebede, T.; Tesfaye, G.; Erana, O. Determinants of financial distress: Evidence from insurance companies in Ethiopia. J. Innov. Entrep. 2024, 13, 17. [Google Scholar] [CrossRef]
- Leng, J.; Ozkan, A.; Ozkan, N.; Trzeciakiewicz, A. CEO overconfidence and the probability of corporate failure: Evidence from the United Kingdom. Eur. J. Financ. 2021, 27, 1210–1234. [Google Scholar] [CrossRef]
- Del Gesso, C.; Lodhi, R. Theories underlying environmental, social and governance (ESG) disclosure: A systematic review of accounting studies. J. Account. Lit. 2025, 47, 433–461. [Google Scholar] [CrossRef]
- Reber, B.; Gold, A.; Gold, S. ESG disclosure and idiosyncratic risk in initial public offerings. J. Bus. Ethics 2022, 179, 867–886. [Google Scholar] [CrossRef]
- Baldini, M.; Maso, L.; Liberatore, G.; Mazzi, F.; Terzani, S. Role of country-and firm-level determinants in environmental, social, and governance disclosure. J. Bus. Ethics 2018, 150, 79–98. [Google Scholar] [CrossRef]
- Galbreath, J. ESG in focus: The Australian evidence. J. Bus. Ethics 2013, 118, 529–541. [Google Scholar] [CrossRef]
- Freeman, R.E. Strategic Management: A Stakeholder Approach; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Eklemet, I.; Mac-Carthy, J.; Gyamera, E. Moderating role of risk management between risk exposure and bank performance: Application of GMM Model. Theor. Econ. Lett. 2024, 14, 363–389. [Google Scholar] [CrossRef]
- Bolognesi, E.; Burchi, A.; Goodell, J.; Paltrinieri, A. Stakeholders and regulatory pressure on ESG disclosure. Int. Rev. Financ. Anal. 2025, 103, 104145. [Google Scholar] [CrossRef]
- Habib, A.; Oláh, J.; Khan, M.; Luboš, S. Does integration of ESG disclosure and green financing improve firm performance: Practical applications of stakeholders theory. Heliyon 2025, 11, e41996. [Google Scholar] [CrossRef]
- Talan, G.; Sharma, G.; Pereira, V.; Muschert, G. From ESG to holistic value addition: Rethinking sustainable investment from the lens of stakeholder theory. Int. Rev. Econ. Financ. 2024, 96, 103530. [Google Scholar] [CrossRef]
- Liu, Y. Dynamic Capabilities: A Theoretical Review and Reflection. In Proceedings of the 5th International Conference on Economic Management and Green Development; Springer Nature: Singapore, 2022; pp. 245–251. [Google Scholar] [CrossRef]
- Kero, C.; Bogale, A. A systematic review of resource-based view and dynamic capabilities of firms and future research avenues. Int. J. Sustain. Dev. Plan. 2023, 18, 3137–3153. [Google Scholar] [CrossRef]
- Teece, D.; Pisano, G. The Dynamic Capabilities of Firms: An Introduction. Ind. Corp. Change 1994, 3, 537–556. [Google Scholar] [CrossRef]
- Teece, D.; Peteraf, M.; Leih, S. Dynamic Capabilities and Organizational Agility: Risk, Uncertainty, and Strategy in the Innovation Economy. Calif. Manag. Rev. 2016, 58, 13–35. [Google Scholar] [CrossRef]
- Nair, A.; Rustambekov, E.; McShane, M.; Fainshmidt, S. Enterprise risk management as a dynamic capability: A test of its effectiveness during a crisis. Manag. Decis. Econ. 2014, 35, 555–566. [Google Scholar] [CrossRef]
- Saddam, S.; Nizar, N.; Ariffin, N.; Abas, N. The effects of dynamic capabilities on firm’s financial performance. Inf. Manag. Bus. Rev. 2023, 15, 37–45. [Google Scholar] [CrossRef]
- González, L.; Santomil, P.; Herrera, A. The effect of enterprise risk management on the risk and the performance of Spanish listed companies. Eur. Res. Manag. Bus. Econ. 2020, 26, 111–120. [Google Scholar] [CrossRef]
- Al-Amri, K.; Davydov, Y. Testing the effectiveness of ERM: Evidence from operational losses. J. Econ. Bus. 2016, 87, 70–82. [Google Scholar] [CrossRef]
- Lundqvist, S.; Vilhelmsson, A. Enterprise risk management and default risk: Evidence from the banking industry. J. Risk Insur. 2018, 85, 127–157. [Google Scholar] [CrossRef]
- Purnanandam, A. Financial Distress and Corporate Risk Management: Theory and Evidence. J. Financ. Econ. 2008, 87, 706–739. [Google Scholar] [CrossRef]
- Liu, J.; Deng, G.; Yan, J.; Ma, S. Unraveling the impact of climate policy uncertainty on corporate default risk: Evidence from China. Finance Res. Lett. 2023, 58, 104385. [Google Scholar] [CrossRef]
- Vuong, G.; Van Nguyen, P.; Barky, W.; Nguyen, M. Stock return volatility and financial distress: Moderating roles of ownership structure, managerial ability, and financial constraints. Int. Rev. Econ. Financ. 2024, 91, 634–652. [Google Scholar] [CrossRef]
- Cohen, G. ESG risks and corporate survival. Environ. Syst. Decis. 2023, 43, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Suprabha, K.; Sreepriya, J.; Prasad, K. The impact of ESG disclosure on mitigating financial distress: Exploring the moderating role of firm life cycle. Int. J. Discl. Gov. 2024, 22, 577–590. [Google Scholar] [CrossRef]
- Lohmann, C.; Möllenhoff, S.; Lehner, S. On the Relationship between Financial Distress and ESG Scores. Corp. Soc. Responsib. Environ Manag. 2025, 32, 6377–6401. [Google Scholar] [CrossRef]
- Singh, S.; Tejasmayee, P.; Gautam, R.; Rastogi, S. Impact of ESG on financial distress in the healthcare sector using debt-equity ratio as a moderator. In Proceedings of the 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), Manama, Bahrain, 28–29 January 2024; IEEE: New York, NY, USA, 2024; pp. 1533–1538. [Google Scholar] [CrossRef]
- Mselmi, N.; Lahiani, A.; Hamza, T. Financial distress prediction: The case of French small and medium-sized firms. Int. Rev. Financ. Anal. 2017, 50, 67–80. [Google Scholar] [CrossRef]
- Sehgal, S.; Mishra, R.; Deisting, F.; Vashisht, R. On the determinants and prediction of corporate financial distress in India. Manag. Financ. 2021, 47, 1428–1447. [Google Scholar] [CrossRef]
- Isayas, Y. Financial distress and its determinants: Evidence from insurance companies in Ethiopia. Cogent Bus. Manag. 2021, 8, 1951110. [Google Scholar] [CrossRef]
- Gunawan, B.; Putra, H. Determinant of financial distress. Empirical study of manufacturing companies Listed on the Indonesia Stock Exchange and Malaysia Stock Exchange Period 2017–2018. Adv. Econ. Bus. Manag. Res. 2021, 176, 113–120. [Google Scholar] [CrossRef]
- Finishtya, F.C. The Role of Cash Flow of Operational, Profitability, and Financial Leverage in Predicting Financial Distress on Manufacturing Company in Indonesia. J. Apl. Manaj. 2019, 17, 110–117. [Google Scholar] [CrossRef]
- Hawach, F.; Requejo, I. Financial distress likelihood of European SMEs in times of economic policy uncertainty: The role of family ownership and performance aspirations. Int. Rev. Financ. Anal. 2025, 105, 104418. [Google Scholar] [CrossRef]
- Cao, J.; Dong, D.; Yue, S. Institutional investors’ site visits and firms’ financial distress. Res. Int. Bus. Financ. 2024, 67, 102150. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, S.; Fan, Y.; Shi, Y. Financial flexibility, firm performance, and financial distress: A comparative study of China and the US during pandemics. Int. Rev. Finan. Anal. 2024, 96, 103706. [Google Scholar] [CrossRef]
- Gryko, J. Managing of Financial Flexibility. In Contemporary Trends in Accounting, Finance and Financial Institutions; Choudhry, T., Mizerka, J., Eds.; Springer Proceedings in Business and Economics Series; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Sheng, X.; An, Y. The nonlinear impact of financial flexibility on corporate sustainability: Empirical evidence from the Chinese manufacturing industry. Heliyon 2024, 10, e27825. [Google Scholar] [CrossRef] [PubMed]
- Al-Shaer, H.; Albitar, K.; Derouiche, I.; Hussainey, K. The role of CEO power and audit committees in cybersecurity risk management. Int. J. Account. 2025, 129, S102–S138. [Google Scholar] [CrossRef]
- Farrell, M.; Gallagher, R. The valuation implications of enterprise risk management maturity. J. Risk Insur. 2015, 83, 625–657. [Google Scholar] [CrossRef]
- Resende, S.; Monje-Amor, A.; Calvo, N. Enterprise risk management and firm performance: The mediating role of corporate social responsibility in the European Union region. Corp. Soc. Responsib. Environ. Manag. 2024, 31, 2852–2864. [Google Scholar] [CrossRef]
- Saeidi, P.; Saeidi, S.; Gutierrez, L.; Streimikiene, D.; Alrasheedi, M.; Saeidi, S.; Mardani, A. The influence of enterprise risk management on firm performance with the moderating effect of intellectual capital dimensions. Econ. Res.-Ekon. Istraž. 2021, 34, 122–151. [Google Scholar] [CrossRef]
- Truant, E.; Corazza, L.; Scagnelli, S. Sustainability and risk disclosure: An exploratory study on sustainability reports. Sustainability 2017, 9, 636. [Google Scholar] [CrossRef]
- Farhana, I.; Rahmawaty; Basri, H. The determinants of going concern audit opinion: An empirical study on Non-Bank financial institutions listed in Indonesian stock exchange 2008-2014. J. Account. Financ. Audit. Stud. 2017, 3, 32–51. [Google Scholar] [CrossRef]
- Gutierrez, E.; Krupa, J.; Minutti-Meza, M.; Vulcheva, M. Are Going Concern Opinions Incrementally Informative over Default? Rev. Account. Stud. 2020, 25, 1344–1381. [Google Scholar] [CrossRef]
- Yeh, C.; Chi, D.; Lin, Y. Going-Concern Prediction Using Hybrid Random Forests & Rough Set Approach. Inf. Sci. 2014, 254, 98–110. [Google Scholar] [CrossRef]
- Emerson, R. Regression and effect size. J. Vis. Impair. Blind. 2023, 117, 191–192. [Google Scholar] [CrossRef]
- Schoot, R.; Miočević, M. Small Sample Size Solutions: A Guide for Applied Researchers and Practitioners; Routledge Publishing: Abingdon, UK, 2020; ISBN 978-1000760941. [Google Scholar]
- Lenth, R. Some practical guidelines for effective sample size determination. Am. Stat. 2001, 55, 187–193. [Google Scholar] [CrossRef]
- Riani, D.; Meutia, M.; Ismawati, I. Bank efficiency and productivity: Role of risk and ESG disclosure. Rev. Econ. Financ. 2023, 21, 2333–2343. Available online: https://refpress.org/wp-content/uploads/2024/01/Riani_REF.pdf (accessed on 6 January 2025).
- Tang, C.H.; Liu, H.C.; Lee, Y.H.; Hsu, Y.T. ESG risk, economic policy uncertainty, and the downside risk: Evidence from US firms. N. Am. J. Econ. Financ. 2025, 75, 102293. [Google Scholar] [CrossRef]
- Vezeteu, C.D.; Stănciulescu, R.I. ESG Risks and Financial Performance. Analysis of Romanian-Listed Companies. Proc. Int. Conf. Bus. Excell. 2024, 18, 2196–2210. [Google Scholar] [CrossRef]
- Altman, E. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J. Financ. 1968, 23, 589–609. [Google Scholar] [CrossRef]
- Habib, A. Do business strategies and environmental, social, and governance (ESG) performance mitigate the likelihood of financial distress? A multiple mediation model. Heliyon 2023, 9, e17847. [Google Scholar] [CrossRef]
- Maxwell, S.E. Sample size and multiple regression analysis. Psychol. Methods 2000, 5, 434–458. [Google Scholar] [CrossRef]
- Aguinis, H.; Glavas, A. What we know and don’t know About corporate social responsibility: A review and research agenda. J. Manag. 2012, 38, 932–968. [Google Scholar] [CrossRef]
- Eccles, R.; Ioannou, I.; Serafeim, G. The impact of corporate sustainability on organizational processes and performance. Manag. Sci. 2014, 60, 2835–2857. [Google Scholar] [CrossRef]
- Wang, H.; Choi, J.; Li, J. Too little or too much? Untangling the relationship between corporate philanthropy and firm financial performance. Organ. Sci. 2008, 19, 143–159. Available online: https://www.jstor.org/stable/25146168 (accessed on 10 July 2025). [CrossRef]
- Wang, H.; Lu, W.; Ye, M.; Chau, K.; Zhang, X. The curvilinear relationship between corporate social performance and corporate financial performance: Evidence from the international construction industry. J. Clean. Prod. 2016, 137, 1313–1322. [Google Scholar] [CrossRef]
- Barnett, M.L.; Salomon, R.M. Beyond dichotomy: The curvilinear relationship between social responsibility and financial performance. Strateg. Manag. J. 2006, 27, 1101–1122. [Google Scholar] [CrossRef]
- Barnett, M.L.; Salomon, R.M. Does it pay to be really good? Addressing the shape of the relationship between social and financial performance. Strateg. Manag. J. 2012, 33, 1304–1320. [Google Scholar] [CrossRef]
- Bromiley, P.; McShane, M.; Nair, A.; Rustambekov, E. Enterprise risk management: Review, critique, and research directions. Long Range Plan. 2015, 48, 265–276. [Google Scholar] [CrossRef]
- Dao, M.; Pham, T. Audit Tenure, Auditor Specialization and Audit Report Lag. Manag. Audit. J. 2014, 29, 490–512. [Google Scholar] [CrossRef]
- Hassan, Y. Determinants of Audit Report Lag: Evidence from Palestine. J. Account. Emerg. Econ. 2016, 6, 13–32. [Google Scholar] [CrossRef]
- Whitworth, J.; Lambert, T. Office-Level Characteristics of the Big 4 and Audit Report Timeliness. Audit. J. Pract. Theory 2014, 33, 129–152. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, X.; Yi, J.; Wang, Y. Bias correction in species distribution models based on geographic and environmental characteristics. Ecol. Inform. 2024, 81, 102604. [Google Scholar] [CrossRef]
- Rao, T. Understanding Survivorship Bias: Implications for Research and Decision-Making. J. Emerg. Technol. Innov. Res. 2024, 11, 604–612. [Google Scholar]
- Ferriani, F.; Natoli, F. ESG risks in times of COVID-19. Appl. Econ. Lett. 2020, 28, 1537–1541. [Google Scholar] [CrossRef]
- Teng, X.; Wang, Y.; Wang, A.; Chang, B.G.; Wu, K.S. Environmental, social, governance risk and corporate sustainable growth nexus: Quantile regression approach. Int. J. Environ. Res. Public Health 2021, 18, 10865. [Google Scholar] [CrossRef]
- Berg, F.; Kölbel, J.F.; Rigobon, R. Aggregate confusion: The divergence of ESG ratings. Rev. Financ. 2022, 26, 1315–1344. [Google Scholar] [CrossRef]
- Christensen, D.M.; Serafeim, G.; Sikochi, A. Why is corporate virtue in the eye of the beholder? The case of ESG ratings. Account. Rev. 2022, 97, 147–175. [Google Scholar] [CrossRef]
ERM | SRM | ESG | |
---|---|---|---|
Definition | ERM is defined as a process conducted at the strategy level by the board of directors. It is designed to identify and manage potential risks within the firm in alignment with its risk appetite, thereby providing reasonable assurance of the firm’s ability to achieve its strategic objectives. | SRM is identified as the extent to which a firm effectively mitigates its ESG exposures through the implementation of appropriate policies and initiatives, and the degree to which these actions are reflected in its realized ESG performance. | There is no specific definition for ESG. However, the concept emerged following the United Nations’ growing interest in sustainability, which led to the categorization of sustainability into three pillars: environment, society, and governance. These pillars assess how well a company performs in terms of sustainability, as evaluated by different stakeholders. |
Scope | It focuses on managing all types of risks that threaten the achievement of the firm’s objectives, such as strategic, financial, operational, and compliance risks. | It focuses on managing sustainability risks, including environmental, social, and governance risks. | It emphasizes the evaluation of a company’s performance through a sustainability perspective. Essentially, it represents the flip side of effective SRM. Many rating agencies, including Morningstar Sustainalytics, evaluate a firm’s sustainability performance by providing metrics like the ESG score. They also assess related sustainability risks, such as the ESG score risk. |
Main objectives | It aims to manage risk holistically, covering all types of risk that could prevent the firm from achieving its long- and short-term objectives. In other words, it aims to enhance the firm’s ability to achieve its strategy. | It aims to manage sustainability risk, specifically improving the firm’s overall sustainability performance ESG score. | It assesses firms’ performance in terms of sustainability and transparently discloses information to assist stakeholders such as customers, investors, financial analysts, and decision-makers. |
Relationship | The overall umbrella encompasses the management of all types of risks, including sustainability risks. | It should be managed within the broader framework of ERM, where it constitutes an integral element. Simultaneously, it is viewed as a component of the ESG risk score, functioning as the inverse indicator of the ESG score. | It includes SRM as a component of the ESG risk score to assess the firm’s non-financial performance related to sustainability dimensions. |
Firms | No. | Total |
---|---|---|
Total numbers of listed firms in Tadawul stock market for 2023 | 231 | |
(-) Banks | (12) | |
(-) Insurance firms | (26) | |
(-) financial services firms | (9) | |
(-) Real estate investments trust | (18) | |
= Total number of firms excluded from research sample | (65) | |
(-) firms with missing data | (89) | |
= Final research’s sample | 77 |
Model. 1 | Model. 2 | Model. 3 | ||||
---|---|---|---|---|---|---|
F tests: Linear multiple regression: Fixed model, R2 deviation from zero: | ||||||
A priori: Compute required sample size: given α, power, and effect size | ||||||
Input Parameters | ||||||
Effect size f2 | 0.03 a | 0.03 | 0.27 | 0.27 | 0.71 | 0.71 |
α err prob | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Power (1–β err prob) | 0.90 b | 0.80 | 0.90 | 0.80 | 0.90 | 0.80 |
Number of predictors | 2 | 2 | 7 | 7 | 10 | 10 |
Output Parameters | ||||||
Noncentrality Parameters λ | 12.75 | 9.75 | 20.52 | 16.47 | 28.4 | 24.14 |
Critical F | 3.02 | 3.02 | 2.15 | 2.19 | 2.177 | 2.27 |
Numerator df | 2 | 2 | 7 | 7 | 10 | 10 |
Denominator df | 422 | 322 | 68 | 53 | 29 | 23 |
Total sample size | 425 | 325 | 76 | 61 | 40 | 34 |
Actual power | 0.90 | 0.80 | 0.90 | 0.80 | 0.91 | 0.82 |
Variable Type | Variable Name & Symbol | Measurement | Citations |
---|---|---|---|
Dependent Variable | Firm’s Financial Distress (FFD) | Z-Score according to the model of Altman (1968): [0.012 (working capital/total assets) + 0.014 (retained earnings/total assets) + 0.033 (EBIT/total assets) + 0.006 (market value of equity/total debt) + 0.999 (sales/total assets)]. | [13,73,98,99] |
Independent Variable | Sustainability Risk Management (SRM) | The risk management score is categorized into five ordinal levels: 0, 25, 50, 75, and 100. A score of 100 (level 5—very strong) reflects that the firm has a very strong policy. A score of 75 (Level 4-Strong) reflects that the firm has a strong policy. While a score of 50 (Level 3-Adequate) indicates that the firm has an adequate policy. For a score of 25 (Level 2-Weak), it indicates that the firm has a weak policy. Finally, a score of 0 (level 1—no policy) reflects the fact that the firm does not have any policy for SRM. Our sample does not indicate Saudi firms belonging to the first or last levels of SRM. Specifically, the second (strong), third (adequate), and fourth (weak) levels were obtained. For the purposes of simplification, we refer to these levels as high, medium, and low, respectively. Accordingly, SRM is measured as an ordinal categorical and takes the distinct values 3, 2, and 1 for high, medium, and low levels, respectively. The lowest group of SRM is treated as the reference group because it is the group that contains the largest number of firms. | [40] |
Moderator Variable | Firm Performance (ROA) | Net income divided by total assets | [46,75,76] |
Control Variables | Firm Size | Ln total assets | [13,16,45] |
Current ratio | Current assets/current liabilities | [46,76,77] | |
Quick Liquidity Ratio (Quick Ratio) | (Cash + receivables)/current liabilities | [75] | |
Asset Tangibility (Asset Ratio) | Fixed assets/total assets | [76] | |
Leverage | Total debt/total assets | [45,46] |
No. | Variable | Mean | Std. Dev | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | FFD | −0.66 | 0.51 | 1 | ||||||||||||
2 | High. SRM | 0.05 | 0.22 | 0.12 | 1 | |||||||||||
3 | Med. SRM | 0.38 | 0.49 | −0.14 | −0.18 | 1 | ||||||||||
4 | Low. SRM | 0.57 | 0.5 | 0.09 | −0.27 * | −0.90 ** | 1 | |||||||||
5 | ROA | 0.05 | 0.08 | −0.40 ** | −0.16 | 0.16 | −0.08 | 1 | ||||||||
6 | Firm size | 22.36 | 1.59 | 0.21 | 0.33 ** | 0.36 ** | −0.50 ** | 0.09 | 1 | |||||||
7 | Current | 1.97 | 1.57 | 0.05 | −0.05 | −0.18 | 0.2 | 0.16 | −0.15 | 1 | ||||||
8 | Ratio | 1 | 1.06 | 0.02 | −0.04 | −0.12 | 0.14 | 0.14 | −0.16 | 0.71 ** | 1 | |||||
9 | Quick Ratio | 0.37 | 0.25 | 0.32 ** | −0.01 | −0.08 | 0.09 | −0.14 | 0.23 * | 0.16 | 0.04 | 1 | ||||
10 | Asset Ratio | 0.44 | 0.21 | −0.27 * | 0.04 | 0.32 ** | −0.33 ** | −0.05 | 0.13 | −0.62 ** | −0.47 ** | −0.25 * | 1 | |||
11 | Leverage | −0.00 | 0.01 | 0.03 | −0.13 | 0.02 | 0.03 | 0.10 | 0.15 | 0.03 | 0.01 | −0.13 | 0.06 | 1 | ||
12 | ROA × High. SRM | 0.03 | 0.06 | −0.39 ** | −0.11 | 0.60 ** | −0.54 ** | 0.53 ** | 0.23 * | −0.07 | −0.08 | −0.14 | 0.07 | 0.01 | 1 | |
13 | ROA × Med. SRM | 0.03 | 0.51 | −0.16 | −0.09 | −0.30 ** | 0.33 ** | 0.73 ** | −0.09 | 0.24 * | 0.23 * | −0.03 | −0.12 | 0.01 | −0.18 | 1 |
Variable | SRM Levels | Mean | Std. Dev | Minimum | Maximum |
---|---|---|---|---|---|
FFD | High | −0.40 | 0.17 | −0.50 | −0.15 |
Med | −0.76 | 0.58 | −2.64 | −0.09 | |
Low | −0.63 | 0.46 | −2.17 | −0.14 | |
ROA | High | −0.00 | 0.032 | −0.05 | 0.03 |
Med | 0.07 | 0.07 | −0.11 | 0.24 | |
Low | 0.05 | 0.086 | −0.34 | 0.18 | |
Firm size | High | 24.58 | 2.25 | 21.38 | 26.41 |
Med | 23.09 | 1.72 | 20.09 | 28.54 | |
Low | 21.69 | 0.96 | 18.82 | 24.01 | |
Current Ratio | High | 1.64 | 0.25 | 1.39 | 1.91 |
Med | 1.60 | 0.81 | 0.45 | 3.69 | |
Low | 2.24 | 1.94 | 0.32 | 10.10 | |
Quick Ratio | High | 0.81 | 0.12 | 0.72 | 0.98 |
Med | 0.83 | 0.61 | 0.09 | 2.30 | |
Low | 1.13 | 1.31 | 0.10 | 6.46 | |
Asset Ratio | High | 0.36 | 0.16 | 0.19 | 0.58 |
Med | 0.34 | 0.27 | 0.00 | 0.92 | |
Low | 0.39 | 0.25 | 0.00 | 0.81 | |
Leverage | High | 0.47 | 0.12 | 0.34 | 0.62 |
Med | 0.53 | 0.18 | 0.15 | 0.89 | |
Low | 0.38 | 0.22 | 0.02 | 0.83 | |
ROA × SRM | High | −0.00 | 0.03 | −0.05 | 0.03 |
Med | 0.07 | 0.07 | −0.11 | 0.24 | |
Low | 0.05 | 0.09 | −0.34 | 0.18 |
Variable | F. Statistic | df1 | df2 | Sig |
---|---|---|---|---|
FFD | 3.8 | 2 | 14.96 | 0.05 |
ROA | 5.62 | 2 | 12.82 | 0.02 |
Firm size | 9.89 | 2 | 7.62 | 0.01 |
Current Ratio | 1.97 | 2 | 25.29 | 0.16 |
Quick Ratio | 1.19 | 2 | 39.28 | 0.32 |
Asset Ratio | 0.25 | 2 | 9.51 | 0.78 |
Leverage | 4.58 | 2 | 9.88 | 0.04 |
ROA × SRM | 5.08 | 2 | 8.27 | 0.04 |
Variable | Mean Differences (Medium–High) | Mean Differences (Medium–Low) | Mean Differences (Low−High) |
---|---|---|---|
FFD | −0.36 * | −0.13 | −0.23 |
ROA | 0.07 * | 0.02 | 0.05 |
Firm size | −1.49 | 1.40 * | 2.89 |
Current Ratio | 0.04 | −0.64 | −0.60 |
Quick Ratio | 0.03 | −0.29 | −0.32 |
Asset Ratio | −0.02 | −0.05 | −0.03 |
Leverage | 0.05 | 0.14 * | 0.09 |
ROA × SRM | 0.15 | 0.09 * | 0.06 |
Level | No. of Firms | Percent | |
---|---|---|---|
SRM | 3 | 4 | 5.20% |
2 | 29 | 37.70% | |
1 | 44 | 57.10% | |
Total | 77 | 100% |
Source | Model (1) SRM & FFD | Model (2) SRM, FFD, & Control Variables | Model (3) SRM, FFD, Control Variables & ROA × SRM | |||
---|---|---|---|---|---|---|
Type III Sum of Squares. (F) | Sig | Type III Sum of Squares. (F) | Sig | Type III Sum of Squares. (F) | Sig | |
Corrected Model | 0.59 (1.17) | 0.32 | 4.08 (2.63) | 0.02 | 8.02 (4.66) | 0.00 |
Intercept | 10.30 (40.5) | 0.00 | 0.73 (3.31) | 0.07 | 0.76 (4.40) | 0.04 |
SRM | 0.59 (1.17) | 0.32 | 0.32 (0.72) | 0.49 | 0.14 (0.42) | 0.66 |
Firm size | 0.52 (2.36) | 0.13 | 0.77 (4.48) | 0.04 | ||
Current Ratio | 0.23 (1.05) | 0.31 | 0.14 (0.79) | 0.38 | ||
Quick Ratio | 0.00 (0.01) | 0.91 | 0.00 (0.00) | 0.97 | ||
Asset Ratio | 0.77 (3.47) | 0.07 | 0.21 (1.22) | 0.27 | ||
Leverage | 0.99 (4.45) | 0.04 | 1.53 (8.87) | 0.00 | ||
ROA | 0.68 (3.93) | 0.05 | ||||
ROA × High. SRM | 0.06 (0.32) | 0.57 | ||||
ROA × Med. SRM | 1.02 (5.90) | 0.02 | ||||
Error | 18.79 | 15.31 | 11.36 | |||
Total | 53.23 | 53.23 | 53.23 | |||
Corrected Total | 19.38 | 19.38 | 19.38 | |||
R2 | 0.03 | 0.21 | 0.41 | |||
Adjusted R2 | 0.00 | 0.13 | 0.33 |
Model (1) SRM & FFD | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameter Estimates | Bootstrap a for Parameter Estimates | ||||||||||
95% Confidence Interval | BC a 95% Confidence Interval | ||||||||||
Parameter | Coeff. (t) | Sig. | Lower Bound | Upper Bound | Partial Eta Squared | Observed Power | VIF | Coeff | Sig (2-tailed) | Lower | Upper |
Intercept | −0.40 (−1.57) | 0.12 | −0.90 | 0.11 | 0.03 | 0.34 | −0.40 | 0.00 b | −0.50 b | −0.15 b | |
High. SRM | −0.23 (−0.87) | 0.39 | −0.75 | 0.30 | 0.01 | 0.14 | 1.03 | −0.23 | 0.03 b | −0.48 b | −0.04 b |
Med. SRM | −0.36 (−1.34) | 0.19 | −0.90 | 0.18 | 0.02 | 0.26 | 1.03 | −0.36 | 0.02 b | −0.65 b | −0.11 b |
Low. SRM | 0 (.) | . | . | . | . | . | 0 | . b | . b |
Model (2) SRM, FFD, & Control Variables | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameter Estimates | Bootstrap a for Parameter Estimates | ||||||||||
95% Confidence Interval | BC a 95% Confidence Interval | ||||||||||
Parameter | Coeff. (t) | Sig. | Lower Bound | Upper Bound | Partial Eta Squared | Observed Power | VIF | Coeff | Sig (2-tailed) | Lower | Upper |
Intercept | −1.73 (−1.59) | 0.12 | −3.905 | 0.44 | 0.04 | 0.35 | −1.73 | 0.14 b | −4.41 b | 0.14 b | |
High. SRM | −0.09 (−0.31) | 0.76 | −0.638 | 0.47 | 0.00 | 0.06 | 1.36 | −0.09 | 0.68 b | −0.58 b | 0.51 b |
Med. SRM | −0.22 (−0.83) | 0.41 | −0.73 | 0.30 | 0.01 | 0.13 | 1.47 | −0.22 | 0.25 b | −0.67 b | 0.31 b |
Low. SRM | 0 (.) | . | . | . | . | . | 0 | 0 b,c | 0 b | ||
Firm size | 0.07 (1.54) | 0.13 | −0.02 | 0.15 | 0.03 | 0.33 | 1.59 | 0.07 | 0.13 b | −0.01 b | 0.18 b |
Current Ratio | −0.06 (−1.03) | 0.31 | −0.17 | 0.05 | 0.02 | 0.17 | 2.63 | −0.06 | 0.29 b | −0.26 b | −0.01 b |
Quick Ratio | 0.01 (0.12) | 0.91 | −0.14 | 0.16 | 0.00 | 0.05 | 2.07 | 0.01 | 0.90 b | −0.15 b | 0.50 b |
Asset Ratio | 0.44 (1.86) | 0.07 | −0.03 | 0.91 | 0.05 | 0.45 | 1.20 | 0.44 | 0.05 b | 0.05 b | 0.88 b |
Leverage | −0.74 (−2.11) | 0.04 | −1.44 | −0.04 | 0.06 | 0.55 | 1.84 | −0.74 | 0.08 | −1.43 b | −0.16 b |
Model (3) SRM, FFD, Control Variables & ROA × SRM | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameter Estimates | Bootstrap a for Parameter Estimates | ||||||||||
95% Confidence Interval | BC a 95% Confidence Interval | ||||||||||
Parameter | Coeff. (t) | Sig. | Lower Bound | Upper Bound | Partial Eta Squared | Observed Power | VIF | Coeff | Sig (2-tailed) | Lower | Upper |
Intercept | −0.2.04 (−1.98) | 0.05 | −4.095 | 0.021 | 0.06 | 0.50 | −2.04 | 0.09 b | −4.86 b | 0.11 b | |
High. SRM | 0.01 (0.04) | 0.97 | −0.504 | 0.526 | 0.00 | 0.05 | 1.46 | 0.01 | 0.97 b | −0.35 b | 0.71b |
Med. SRM | 0.14 (0.55) | 0.58 | −0.358 | 0.630 | 0.01 | 0.05 | 2.36 | 0.14 | −0.21 b | 0.78 b | |
Low. SRM | 0 (.) | . | . | . | . | 0.08 | 0 | 0 b,c | 0 b | ||
Firm size | 0.09 (2.12) | 0.04 | 0.005 | 0.165 | 0.06 | . | 1.80 | 0.09 | 0.05 b | 0.01 b | 0.18 b |
Current Ratio | −0.04 (−0.89) | 0.38 | −0.144 | 0.055 | 0.01 | 0.60 | 2.70 | −0.04 | 0.32 b | −0.26 b | 0.02 b |
Quick Ratio | −0.00 (−0.04) | 0.97 | −0.132 | 0.128 | 0.00 | 0.14 | 2.11 | −0.00 | 0.97 b | −0.10 b | 0.22 b |
Asset Ratio | 0.24 (1.10) | 0.27 | −0.195 | 0.678 | 0.02 | 0.05 | 1.33 | 0.24 | 0.27 b | −0.23 b | 0.62 b |
Leverage | −0.95(−2.98) | 0.00 | −1.592 | −0.314 | 0.12 | 0.20 | 1.96 | −0.95 | 0.03 b | −1.80 b | −0.19 b |
ROA | −1.53(−1.98) | 0.05 | −3.074 | 0.010 | 0.06 | 0.84 | 1.70 | −1.53 | 0.08 b | −3.79 b | 0.41 b |
ROA × High. SRM | 4.53 (0.57) | 0.57 | −11.384 | 20.443 | 0.01 | 0.50 | 1.14 | 4.53 | 0.62 b | −1352 b | 371.82 b |
ROA × Med. SRM | −3.30(−2.43) | 0.02 | −6.004 | −0.585 | 0.08 | 0.09 | 2.46 | −3.30 | 0.04 b | −6.76 b | 0.21 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdellattif, D.H.E.; Nomer, A.R.M.; Eldawayaty, D.M.A. Sustainability Risk Management and Financial Distress: The Moderating Role of Financial Performance in Saudi Firms. Sustainability 2025, 17, 9401. https://doi.org/10.3390/su17219401
Abdellattif DHE, Nomer ARM, Eldawayaty DMA. Sustainability Risk Management and Financial Distress: The Moderating Role of Financial Performance in Saudi Firms. Sustainability. 2025; 17(21):9401. https://doi.org/10.3390/su17219401
Chicago/Turabian StyleAbdellattif, Doaa Hafez Emam, Amina Ramadan Mouhamed Nomer, and Dalida Mohamed Adel Eldawayaty. 2025. "Sustainability Risk Management and Financial Distress: The Moderating Role of Financial Performance in Saudi Firms" Sustainability 17, no. 21: 9401. https://doi.org/10.3390/su17219401
APA StyleAbdellattif, D. H. E., Nomer, A. R. M., & Eldawayaty, D. M. A. (2025). Sustainability Risk Management and Financial Distress: The Moderating Role of Financial Performance in Saudi Firms. Sustainability, 17(21), 9401. https://doi.org/10.3390/su17219401