Artificial Intelligence in Tourism: A Systematic Literature Review and Future Research Agenda
Abstract
1. Introduction
2. Conceptual Background
AI in Tourism
3. Methodology
3.1. Review Design
3.2. Review Protocol
3.2.1. Assembling
3.2.2. Arranging
3.2.3. Assessing
4. Research Findings (RQ1 and RQ2)
4.1. Article and Yearly Publication Trends
4.2. Journal Publication Trends
4.3. Most Cited Publications
4.4. Model Specifications
4.4.1. Antecedent Variables
4.4.2. Mediating Variables
4.4.3. Moderating Variables
4.4.4. Outcome Variables
4.5. Theories for AI in Tourism Research
4.5.1. Technology Acceptance Model
4.5.2. Theory of Planned Behavior
4.5.3. Stimulus–Organism–Response Model
4.6. Contexts for AI in Tourism Research
4.7. Methods for AI in Tourism Research
4.8. Sustainability Impacts of AI in Tourism Research
5. Discussion
6. Future Research Agenda (RQ3)
6.1. New Theories
6.2. New Research Settings
6.3. New Constructs
6.4. New Methods
7. Implications of the Study
7.1. Theoretical Implications
7.2. Practical Implications
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gössling, S. Tourism, technology and ICT: A critical review of affordances and concessions. J. Sustain. Tour. 2021, 29, 733–750. [Google Scholar] [CrossRef]
- Tuo, Y.; Wu, J.; Zhao, J.; Si, X. Artificial intelligence in tourism: Insights and future research agenda. Tour. Rev. 2025, 80, 793–812. [Google Scholar]
- Wang, R.; Luo, J.; Huang, S.S. Developing an artificial intelligence framework for online destination image photos identification. J. Destin. Mark. Manag. 2020, 18, 100512. [Google Scholar] [CrossRef]
- Scarpi, D. Strangers or friends? Examining chatbot adoption in tourism through psychological ownership. Tour. Manag. 2024, 102, 104873. [Google Scholar]
- Wang, S.; Lim, W.M.; Cheah, J.H.; Lim, X.J. Working with robots: Trends and future directions. Technol. Forecast. Soc. Chang. 2025, 212, 123648. [Google Scholar] [CrossRef]
- Statista. Size of the Robotic Process Automation (RPA) Market Worldwide 2020–2030. Available online: https://www.statista.com/statistics/1259903/robotic-process-automation-market-size-worldwide/ (accessed on 19 August 2025).
- Fatima, J.K.; Khan, M.I.; Bahmannia, S.; Chatrath, S.K.; Dale, N.F.; Johns, R. Rapport with a chatbot? The underlying role of anthropomorphism in socio-cognitive perceptions of rapport and e-word of mouth. J. Retail. Consum. Serv. 2024, 77, 103666. [Google Scholar] [CrossRef]
- Statista. Use of AI for Travel Planning Worldwide 2024. Available online: https://www.statista.com/statistics/1558304/ai-use-travel-planning-worldwide/ (accessed on 19 August 2025).
- Gursoy, D.; Cai, R. Artificial intelligence: An overview of research trends and future directions. Int. J. Contemp. Hosp. Manag. 2025, 37, 1–17. [Google Scholar]
- Dogru, T.; Line, N.; Mody, M.; Hanks, L.; Abbott, J.A.; Acikgoz, F.; Zhang, T. Generative artificial intelligence in the hospitality and tourism industry: Developing a framework for future research. J. Hosp. Tour. Res. 2025, 49, 235–253. [Google Scholar]
- Ivanov, S.; Duglio, S.; Beltramo, R. Robots in tourism and sustainable development goals: Tourism agenda 2030 perspective article. Tour. Rev. 2023, 78, 352–360. [Google Scholar]
- Liu, Y.; Huang, K.; Bao, J.; Chen, K. Listen to the voices from home: An analysis of Chinese tourists’ sentiments regarding Australian destinations. Tour. Manag. 2019, 71, 337–347. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.; Kim, S.; Hailu, T.B. Effects of AI ChatGPT on travelers’ travel decision-making. Tour. Rev. 2024, 79, 1038–1057. [Google Scholar] [CrossRef]
- Goel, P.; Kaushik, N.; Sivathanu, B.; Pillai, R.; Vikas, J. Consumers’ adoption of artificial intelligence and robotics in hospitality and tourism sector: Literature review and future research agenda. Tour. Rev. 2022, 77, 1081–1096. [Google Scholar] [CrossRef]
- Samala, N.; Katkam, B.S.; Bellamkonda, R.S.; Rodriguez, R.V. Impact of AI and robotics in the tourism sector: A critical insight. J. Tour. Futures 2022, 8, 73–87. [Google Scholar] [CrossRef]
- Majid, G.M.; Tussyadiah, I.; Kim, Y.R.; Pal, A. Intelligent automation for sustainable tourism: A systematic review. J. Sustain. Tour. 2023, 31, 2421–2440. [Google Scholar] [CrossRef]
- Tussyadiah, I.P.; Zach, F.J.; Wang, J. Do travelers trust intelligent service robots? Ann. Tour. Res. 2020, 81, 102886. [Google Scholar] [CrossRef]
- Li, H.; Xi, J.; Hsu, C.H.; Yu, B.X.; Zheng, X.K. Generative artificial intelligence in tourism management: An integrative review and roadmap for future research. Tour. Manag. 2025, 110, 105179. [Google Scholar] [CrossRef]
- Saleh, M.I. Generative artificial intelligence in hospitality and tourism: Future capabilities, AI prompts and real-world applications. J. Hosp. Mark. Manag. 2025, 34, 467–498. [Google Scholar] [CrossRef]
- Prasanna, A.; Pushparaj, P.; Kushwaha, B.P. Conversational AI in Tourism: A systematic literature review using TCM and ADO framework. J. Hosp. Tour. Manag. 2025, 64, 101310. [Google Scholar] [CrossRef]
- Chen, Q.; Huang, D.; Miao, M. Service robot acceptance: Agenda for tourism and hospitality research. Tour. Rev. 2025, 80, 871–893. [Google Scholar] [CrossRef]
- Fouad, A.M.; Salem, I.E.; Fathy, E.A. Generative AI insights in tourism and hospitality: A comprehensive review and strategic research roadmap. Tour. Hosp. Res. 2024, 24, 14673584241293125. [Google Scholar] [CrossRef]
- Liao, J.; Wu, M.; Du, P.; Filieri, R.; He, K. The past, present, and future of AI in hospitality and tourism: A bibliometric analysis. Int. J. Contemp. Hosp. Manag. 2025, 37, 2287–2305. [Google Scholar] [CrossRef]
- Gössling, S.; Mei, X.Y. AI and sustainable tourism: An assessment of risks and opportunities for the SDGs. Curr. Issues Tour. 2025, 28, 1–14. [Google Scholar] [CrossRef]
- Paul, J.; Rosado-Serrano, A. Gradual internationalization vs born-global/international new venture models: A review and research agenda. Int. Mark. Rev. 2019, 36, 830–858. [Google Scholar] [CrossRef]
- Potluka, O.; Harten, S.; Kocks, A.; Dvorak, J. Digitalization in evaluations and evaluations of digitalization: The changing landscape of evaluations. Evaluation 2025, 31, 289–302. [Google Scholar] [CrossRef]
- Ivanov, S.; Webster, C. Automated decision-making: Hoteliers’ perceptions. Technol. Soc. 2024, 76, 102430. [Google Scholar] [CrossRef]
- Wirtz, J.; Zeithaml, V. Cost-effective service excellence. J. Acad. Mark. Sci. 2018, 46, 59–80. [Google Scholar] [CrossRef]
- WEF. World Economic Forum’s Global Risk Report. Available online: https://www3.weforum.org/docs/WEF_The_Global_Risks_Report_2024.pdf (accessed on 16 July 2025).
- Seyitoğlu, F.; Costa, C.; Martins, M.; Malta, A.M. The future of tourism and hospitality labour: Challenges, requirements, trends, skills and the impact of technology. Curr. Issues Tour. 2023, 26, 1–15. [Google Scholar] [CrossRef]
- Chesney, B.; Citron, D. Deep fakes: A looming challenge for privacy, democracy, and national security. Calif. Law Rev. 2019, 107, 1753. [Google Scholar] [CrossRef]
- Hall, C.M.; Cooper, C. Making tourism smart in the age of artificial intelligence. Curr. Issues Tour. 2025, 28, 1–5. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 2020, 7, 100777. [Google Scholar] [CrossRef]
- Paul, J.; Barari, M. Meta-analysis and traditional systematic literature reviews—What, why, when, where, and how? Psychol. Mark. 2022, 39, 1099–1115. [Google Scholar] [CrossRef]
- Paul, J.; Parthasarathy, S.; Gupta, P. Exporting challenges of SMEs: A review and future research agenda. J. World Bus. 2017, 52, 327–342. [Google Scholar] [CrossRef]
- Kraus, S.; Breier, M.; Dasí-Rodríguez, S. The art of crafting a systematic literature review in entrepreneurship research. Int. Entrep. Manag. J. 2020, 16, 1023–1042. [Google Scholar] [CrossRef]
- Lim, W.M.; Kumar, S.; Ali, F. Advancing knowledge through literature reviews: ‘What’, ‘why’, and ‘how to contribute’. Serv. Ind. J. 2022, 42, 481–513. [Google Scholar] [CrossRef]
- Paul, J.; Lim, W.M.; O’Cass, A.; Hao, A.W.; Bresciani, S. Scientific procedures and rationales for systematic literature reviews (SPAR-4-SLR). Int. J. Consum. Stud. 2021, 45, O1–O16. [Google Scholar] [CrossRef]
- Ghorbani, M.; Karampela, M.; Tonner, A. Consumers’ brand personality perceptions in a digital world: A systematic literature review and research agenda. Int. J. Consum. Stud. 2022, 46, 1960–1991. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Pillai, R.; Sivathanu, B. Adoption of AI-based chatbots for hospitality and tourism. Int. J. Contemp. Hosp. Manag. 2020, 32, 3199–3226. [Google Scholar] [CrossRef]
- Li, J.J.; Bonn, M.A.; Ye, B.H. Hotel employee’s artificial intelligence and robotics awareness and its impact on turnover intention: The moderating roles of perceived organizational support and competitive psychological climate. Tour. Manag. 2019, 73, 172–181. [Google Scholar] [CrossRef]
- de Kervenoael, R.; Hasan, R.; Schwob, A.; Goh, E. Leveraging human-robot interaction in hospitality services: Incorporating the role of perceived value, empathy, and information sharing into visitors’ intentions to use social robots. Tour. Manag. 2020, 78, 104042. [Google Scholar] [CrossRef]
- Kim, S.S.; Kim, J.; Badu-Baiden, F.; Giroux, M.; Choi, Y. Preference for robot service or human service in hotels? Impacts of the COVID-19 pandemic. Int. J. Hosp. Manag. 2021, 93, 102795. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, Y.; Li, C. Discovering the tourists’ behaviors and perceptions in a tourism destination by analyzing photos’ visual content with a computer deep learning model: The case of Beijing. Tour. Manag. 2019, 75, 595–608. [Google Scholar] [CrossRef]
- Lv, X.; Liu, Y.; Luo, J.; Liu, Y.; Li, C. Does a cute artificial intelligence assistant soften the blow? The impact of cuteness on customer tolerance of assistant service failure. Ann. Tour. Res. 2021, 87, 103114. [Google Scholar] [CrossRef]
- Park, S. Multifaceted trust in tourism service robots. Ann. Tour. Res. 2020, 81, 102888. [Google Scholar] [CrossRef]
- Chi, O.H.; Gursoy, D.; Chi, C.G. Tourists’ attitudes toward the use of artificially intelligent (AI) devices in tourism service delivery: Moderating role of service value seeking. J. Travel Res. 2022, 61, 170–185. [Google Scholar] [CrossRef]
- Huang, D.; Chen, Q.; Huang, J.; Kong, S.; Li, Z. Customer-robot interactions: Understanding customer experience with service robots. Int. J. Hosp. Manag. 2021, 99, 103078. [Google Scholar] [CrossRef]
- Akdim, K.; Belanche, D.; Flavián, M. Attitudes toward service robots: Analyses of explicit and implicit attitudes based on anthropomorphism and construal level theory. Int. J. Contemp. Hosp. Manag. 2023, 35, 2816–2837. [Google Scholar] [CrossRef]
- Christensen, J.; Hansen, J.M.; Wilson, P. Understanding the role and impact of Generative Artificial Intelligence (AI) hallucination within consumers’ tourism decision-making processes. Curr. Issues Tour. 2025, 28, 545–560. [Google Scholar] [CrossRef]
- Della Corte, V.; Sepe, F.; Gursoy, D.; Prisco, A. Role of trust in customer attitude and behaviour formation towards social service robots. Int. J. Hosp. Manag. 2023, 114, 103587. [Google Scholar] [CrossRef]
- Jha, S.; Gupta, S.; Mahajan, R. The effect of motivated consumer innovativeness on the intention to use chatbots in the travel and tourism sector. Asia Pac. J. Tour. Res. 2023, 28, 729–744. [Google Scholar] [CrossRef]
- Sujood Bano, N.; Siddiqui, S. Consumers’ intention towards the use of smart technologies in tourism and hospitality (T&H) industry: A deeper insight into the integration of TAM, TPB and trust. J. Hosp. Tour. Insights 2024, 7, 1412–1434. [Google Scholar]
- Yang, X.; Zhang, L.; Feng, Z. Personalized tourism recommendations and the E-tourism user experience. J. Travel Res. 2024, 63, 1183–1200. [Google Scholar] [CrossRef]
- Guan, X.; Zhang, L.; Liu, X.; Liu, Q. An eye for an eye: Exploring how human-robot service attributes affect customers’ negative electronic word-of-mouth. Int. J. Hosp. Manag. 2025, 127, 104104. [Google Scholar] [CrossRef]
- Seyfi, S.; Kim, M.J.; Nazifi, A.; Murdy, S.; Vo-Thanh, T. Understanding tourist barriers and personality influences in embracing generative AI for travel planning and decision-making. Int. J. Hosp. Manag. 2025, 126, 104105. [Google Scholar] [CrossRef]
- Batouei, A.; Nikbin, D.; Foroughi, B. Acceptance of ChatGPT as an auxiliary tool enhancing travel experience. J. Hosp. Tour. Insights 2025, 8, 1255319. [Google Scholar] [CrossRef]
- Duong, C.D.; Nguyen, T.H.; Ngo, T.V.N.; Pham, T.T.P.; Vu, A.T.; Dang, N.S. Using generative artificial intelligence (ChatGPT) for travel purposes: Parasocial interaction and tourists’ continuance intention. Tour. Rev. 2025, 80, 813–827. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.H.; Kim, S.S.; Koo, C.; Chung, N. Is a shorter reaction time always better? Empirical investigation of the impact of response speed on ChatGPT recommendations. Int. J. Hosp. Manag. 2025, 130, 104239. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.; Baek, T.H.; Kim, C. ChatGPT personalized and humorous recommendations. Ann. Tour. Res. 2025, 110, 103857. [Google Scholar] [CrossRef]
- Osei, B.A.; Cheng, M. Preferences and challenges towards the adoption of the fourth industrial revolution technologies by hotels: A multilevel concurrent mixed approach. Eur. J. Innov. Manag. 2024, 27, 1912–1937. [Google Scholar] [CrossRef]
- Rather, R.A. Does consumers’ reveal engagement behaviours in artificial intelligence (AI)-based technologies? The dynamics of perceived value and self-congruence. Int. J. Hosp. Manag. 2025, 126, 103989. [Google Scholar] [CrossRef]
- Khan, N.A. Artificial intelligence, self-efficacy and engagement in religious tourism: Evidence from Arbaeen pilgrimage. J. Hosp. Tour. Insights 2024, 7, 1660–1678. [Google Scholar] [CrossRef]
- Xu, X.A.; Liu, J. Artificial intelligence humor in service recovery. Ann. Tour. Res. 2022, 95, 103439. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Q.; Lu, J.; Wang, X.; Liu, L.; Feng, Y. Emotional expression by artificial intelligence chatbots to improve customer satisfaction: Underlying mechanism and boundary conditions. Tour. Manag. 2024, 100, 104835. [Google Scholar] [CrossRef]
- Wang, Y.; Miao, H.; Xiong, M.; Wang, Y. Do word-of-mouth-based conversational AI recommendations enhance tourism consumers’ acceptance? The moderating role of transparency. Curr. Issues Tour. 2025, 28, 1–20. [Google Scholar] [CrossRef]
- Li, H. Shedding light on new technology: How ambient luminance influences acceptance of AI technologies. Int. J. Hosp. Manag. 2025, 127, 104119. [Google Scholar] [CrossRef]
- Xu, X.A.; Wen, N.; Liu, J. Empathic accuracy in artificial intelligence service recovery. Tour. Rev. 2024, 79, 1058–1075. [Google Scholar] [CrossRef]
- Loureiro, S.M.C.; Bilro, R.G. The role of commitment amongst tourists and intelligent virtual assistants. J. Promot. Manag. 2022, 28, 175–188. [Google Scholar] [CrossRef]
- Jabeen, F.; Al Zaidi, S.; Al Dhaheri, M.H. Automation and artificial intelligence in hospitality and tourism. Tour. Rev. 2022, 77, 1043–1061. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef]
- Li, S.; Han, R.; Fu, T.; Chen, M.; Zhang, Y. Tourists’ behavioural intentions to use ChatGPT for tour route planning: An extended TAM model including rational and emotional factors. Curr. Issues Tour. 2025, 28, 2119–2135. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Han, H.; Kim, S.I.; Lee, J.S.; Jung, I. Understanding the drivers of consumers’ acceptance and use of service robots in the hotel industry. Int. J. Contemp. Hosp. Manag. 2025, 37, 541–559. [Google Scholar] [CrossRef]
- Shi, J.; Lee, M.; Girish, V.G.; Xiao, G.; Lee, C.K. Embracing the ChatGPT revolution: Unlocking new horizons for tourism. J. Hosp. Tour. Technol. 2024, 15, 433–448. [Google Scholar] [CrossRef]
- Mehrabian, A.; Russell, J.A. An Approach to Environmental Psychology, 1st ed.; The MIT Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Pham, H.C.; Duong, C.D.; Nguyen, G.K.H. What drives tourists’ continuance intention to use ChatGPT for travel services? A stimulus-organism-response perspective. J. Retail. Consum. Serv. 2024, 78, 103758. [Google Scholar] [CrossRef]
- Yang, Y.; Li, C.; Qu, Z. An AI-driven approach to sustainability: The effect of AI accent on tourists’ pro-environmental behavioral intentions. J. Hosp. Tour. Manag. 2025, 63, 478–487. [Google Scholar] [CrossRef]
- Fan, N.; Li, X.; Liu, C.; Fan, Z.P. The Power of AI-Generated Content: Evidence From the Peer-to-Peer Accommodation Market. J. Travel Res. 2025, 64, 00472875251332951. [Google Scholar] [CrossRef]
- Işık, C.; Islam, H.; Ongan, S.; Şengöz, A.; Usanmaz, B. Artificial intelligence (AI) interacted ESG-based sustainable tourism: Economic insights. Tour. Econ. 2025, 31, 13548166251346306. [Google Scholar] [CrossRef]
- Carrasco-García, P.M.; Frías-Jamilena, D.M.; Polo-Peña, A.I. Virtual tours: The effect of artificial intelligence and intelligent virtual environments on behavioral intention toward the tour and the tourist destination. Curr. Issues Tour. 2025, 28, 1–26. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.; Park, J.; Kim, C.; Jhang, J.; King, B. When ChatGPT gives incorrect answers: The impact of inaccurate information by generative AI on tourism decision-making. J. Travel Res. 2025, 64, 51–73. [Google Scholar] [CrossRef]
- Lee, M.; Kwon, W.; Back, K.J. Artificial intelligence for hospitality big data analytics: Developing a prediction model of restaurant review helpfulness for customer decision-making. Int. J. Contemp. Hosp. Manag. 2021, 33, 2117–2136. [Google Scholar] [CrossRef]
- Volchek, K.; Liu, A.; Song, H.; Buhalis, D. Forecasting tourist arrivals at attractions: Search engine empowered methodologies. Tour. Econ. 2019, 25, 425–447. [Google Scholar] [CrossRef]
- Husnain, M.; Zhang, Q.; Usman, M.; Hayat, K.; Shahzad, K.; Akhtar, M.W. How Chatbot negative experiences damage consumer-brand relationships in hospitality and tourism? A mixed-method examination. Int. J. Hosp. Manag. 2025, 126, 104076. [Google Scholar] [CrossRef]
- Majid, G.M.; Tussyadiah, I.; Kim, Y.R.; Chen, J.L. Promoting pro-environmental behaviour spillover through chatbots. J. Sustain. Tour. 2024, 32, 1–19. [Google Scholar] [CrossRef]
- Liu, A.; Ma, E.; Wang, Y.C.; Xu, S.; Grillo, T. AI and supportive technology experiences of customers with visual impairments in hotel, restaurant, and travel contexts. Int. J. Contemp. Hosp. Manag. 2024, 36, 274–291. [Google Scholar] [CrossRef]
- Xie, L.; Lei, S. The nonlinear effect of service robot anthropomorphism on customers’ usage intention: A privacy calculus perspective. Int. J. Hosp. Manag. 2022, 107, 103312. [Google Scholar] [CrossRef]
- Fang, C.H.; Lin, J.Y.; Lin, T.M. Exploring the impact of AI-translated hotel reviews: The roles of reviewer nationality, cosmopolitanism, and review dispersion. Asia Pac. J. Tour. Res. 2024, 30, 1266–1281. [Google Scholar] [CrossRef]
- Mo, Z.; Liu, M.T.; Ma, Y. How AI awareness can prompt service performance adaptivity and technologically-environmental mastery. Tour. Manag. 2024, 105, 104971. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Tornatzky, L.; Fleischer, M. The Process of Technology Innovation, 1st ed.; Lexington Books: Lexington, MA, USA, 1990. [Google Scholar]
- Vargo, S.L.; Lusch, R.F. The four service marketing myths: Remnants of a goods-based, manufacturing model. J. Serv. Res. 2004, 6, 324–335. [Google Scholar] [CrossRef]
- Pang, Q.; Wu, H.; Xiao, H.; Song, H.; Huang, S. Sustainable tourism paradigms across cultures: A continuum from Western to Eastern perspectives. J. Sustain. Tour. 2025, 33, 1235–1261. [Google Scholar] [CrossRef]
- Ali, F.; Yasar, B.; Ali, L.; Dogan, S. Antecedents and consequences of travelers’ trust towards personalized travel recommendations offered by ChatGPT. Int. J. Hosp. Manag. 2023, 114, 103588. [Google Scholar] [CrossRef]
- Kanbach, D.K.; Heiduk, L.; Blueher, G.; Schreiter, M.; Lahmann, A. The GenAI is out of the bottle: Generative artificial intelligence from a business model innovation perspective. Rev. Manag. Sci. 2024, 18, 1189–1220. [Google Scholar] [CrossRef]
- Reber, B.; Gold, A.; Gold, S. ESG disclosure and idiosyncratic risk in initial public offerings. J. Bus. Ethics 2022, 179, 867–886. [Google Scholar] [CrossRef]
- Wang, S.; Cheah, J.H.; Lim, X.J. Online shopping cart abandonment: A review and research agenda. Int. J. Consum. Stud. 2023, 47, 453–473. [Google Scholar] [CrossRef]
- Pruitt-Young, S. You Can Now Search for Flights on Google Based on Carbon Emissions. NPR. Available online: https://www.npr.org/2021/10/06/1043803529/google-flights-carbon-emissions-air-travel (accessed on 21 July 2025).
- WTTC. AI Set to Revolutionise Travel & Tourism, Says Latest WTTC Report. Available online: https://wttc.org/news/ai-set-to-revolutionise-travel-and-tourism-says-latest-wttc-report (accessed on 8 June 2025).
Journal Title | Publisher Name | TP | ABDC Ranking | WoS Impact Factor | Scopus CiteScore |
---|---|---|---|---|---|
Current Issues in Tourism | Taylor & Francis Online | 21 | A | 4.6 | 15.5 |
International Journal of Contemporary Hospitality Management | Emerald Group Publishing | 19 | A | 9.0 | 18.2 |
Tourism Management | Elsevier | 18 | A* | 12.4 | 26.5 |
Annals of Tourism Research | Elsevier | 17 | A* | 7.8 | 16.2 |
International Journal of Hospitality Management | Elsevier | 16 | A* | 8.3 | 20.7 |
Journal of Hospitality and Tourism Insights | Emerald Group Publishing | 15 | C | 4.8 | 8.3 |
Journal of Travel Research | Sage Publications | 15 | A* | 7.0 | 20.6 |
Asia Pacific Journal of Tourism Research | Taylor & Francis Online | 14 | A | 3.3 | 7.2 |
Tourism Review | Emerald Group Publishing | 12 | B | 7.9 | 18.0 |
Journal of Hospitality and Tourism Management | Elsevier | 11 | A | 7.8 | 14.9 |
TC | Title | Source | Year | CPY |
---|---|---|---|---|
662 | Adoption of AI-based chatbots for hospitality and tourism | Pillai and Sivathanu [41] | 2020 | 132.40 |
544 | Hotel employee’s artificial intelligence and robotics awareness and its impact on turnover intention: The moderating roles of perceived organizational support and competitive psychological climate | Li et al. [42] | 2019 | 90.67 |
443 | Leveraging human–robot interaction in hospitality services: Incorporating the role of perceived value, empathy, and information sharing into visitors’ intentions to use social robots | de Kervenoael et al. [43] | 2020 | 88.60 |
423 | Preference for robot service or human service in hotels? Impacts of the COVID-19 pandemic | Kim et al. [44] | 2021 | 105.75 |
267 | Discovering the tourists’ behaviors and perceptions in a tourism destination by analyzing photos’ visual content with a computer deep learning model: The case of Beijing | Zhang et al. [45] | 2019 | 44.50 |
257 | Does a cute artificial intelligence assistant soften the blow? The impact of cuteness on customer tolerance of assistant service failure | Lv et al. [46] | 2021 | 64.25 |
219 | Multifaceted trust in tourism service robots | Park [47] | 2020 | 43.80 |
178 | Tourists’ attitudes toward the use of artificially intelligent (AI) devices in tourism service delivery: moderating role of service value seeking | Chi et al. [48] | 2022 | 59.33 |
174 | Customer-robot interactions: Understanding customer experience with service robots | Huang et al. [49] | 2021 | 43.50 |
120 | Attitudes toward service robots: analyses of explicit and implicit attitudes based on anthropomorphism and construal level theory | Akdim et al. [50] | 2023 | 60.00 |
Context | Frequency | % of Articles |
---|---|---|
Samples 1 | ||
Users/tourists | 154 | 87.01% |
Employees | 15 | 8.47% |
Local residents | 5 | 2.82% |
Managers | 4 | 2.26% |
AI experts | 4 | 2.26% |
Tour guides | 3 | 1.69% |
Others (e.g., listed companies database) | 8 | 4.52% |
Platforms | ||
Online | 125 | 70.62% |
Offline | 10 | 5.65% |
Both online and offline | 42 | 23.73% |
Top ten countries 2 | ||
China | 70 | 39.55% |
United States | 30 | 16.95% |
South Korea | 10 | 5.65% |
United Kingdom | 9 | 5.08% |
India | 8 | 4.52% |
Australia | 4 | 2.26% |
Malaysia | 4 | 2.26% |
Singapore | 4 | 2.26% |
Spain | 4 | 2.26% |
Japan | 3 | 1.69% |
Methods | Frequency | Sample Articles |
---|---|---|
Qualitative Approach | 16 | |
Interview, grounded theory, content analysis (e.g., textual context) | Huang et al. (2021); Yang et al. (2025) [49,80] | |
Quantitative Approach | 134 | |
Regression analysis (e.g., hierarchical regression, logistic regression) | Fan et al. (2025); Işık et al. (2025) [81,82] | |
Structural equation modeling (e.g., PLS-SEM) | Christensen et al. (2025); Seyfi et al. (2025) [51,57] | |
Experimental (e.g., simulated experiment) | Carrasco-García et al. (2025); Kim et al. (2025) [83,84] | |
Other quantitative analyses (e.g., artificial neural network, random forest) | Lee et al. (2021); Volchek et al. (2019) [85,86] | |
Mixed Methods | 27 | |
Qualitative and quantitative | Kim et al. (2025); Husnain et al. (2025) [60,87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, Q.; Cui, Q.; Lan, T. Artificial Intelligence in Tourism: A Systematic Literature Review and Future Research Agenda. Sustainability 2025, 17, 9080. https://doi.org/10.3390/su17209080
Wang S, Wang Q, Cui Q, Lan T. Artificial Intelligence in Tourism: A Systematic Literature Review and Future Research Agenda. Sustainability. 2025; 17(20):9080. https://doi.org/10.3390/su17209080
Chicago/Turabian StyleWang, Siqi, Qingjin Wang, Qian Cui, and Tian Lan. 2025. "Artificial Intelligence in Tourism: A Systematic Literature Review and Future Research Agenda" Sustainability 17, no. 20: 9080. https://doi.org/10.3390/su17209080
APA StyleWang, S., Wang, Q., Cui, Q., & Lan, T. (2025). Artificial Intelligence in Tourism: A Systematic Literature Review and Future Research Agenda. Sustainability, 17(20), 9080. https://doi.org/10.3390/su17209080