Dense Forests in the Brazilian State of Amapá Store the Highest Biomass in the Amazon Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Boundaries of Dense Ombrophilous Forest Types
2.3. Biomass Estimation
2.4. Validation and Determination of the Interpolation Model
2.5. Criteria for Validation and Model Selection
2.6. Modeling and Spatial Distribution of Biomass
2.7. Biomass Maps for Forest Types
2.8. Biomass in Protected Areas and Agriculture and Ranching Areas
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nogueira, E.M.; Fearnside, P.M.; Nelson, B.W.; Barbosa, R.I.; Keizer, E.W.H. Estimates of forest biomass in the Brazilian Amazon: New allometric equations and adjustments to biomass from wood-volume inventories. For. Ecol. Manag. 2008, 256, 1853–1867. [Google Scholar] [CrossRef]
- Nogueira, E.M.; Yanai, A.M.; Fonseca, F.O.R.; Fearnside, P.M. Carbon stock loss from deforestation through 2013 in Brazilian Amazonia. Glob. Chang. Biol. 2015, 21, 1271–1292. [Google Scholar] [CrossRef]
- Flores, B.M.; Montoya, E.; Sakschewski, B.; Nascimento, N.; Staal, A.; Betts, R.A.; Levis, C.; Lapola, D.M.; Esquível-Muelbert, A.; Jakovac, C.; et al. Critical Transitions in the Amazon Forest System. Nature 2024, 626, 555–564. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, X.; Wigneron, J.-P.; Ciais, P.; Brandt, M.; Fan, L.; Li, X.; Crowell, S.; Wu, X.; Doughty, R.; et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Chang. 2021, 11, 442–448. [Google Scholar] [CrossRef]
- Brienen, R.J.W.; Phillips, O.L.; Feldpausch, T.R.; Gloor, E.; Baker, T.R.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Lewis, S.L.; et al. Long-Term Decline of the Amazon Carbon Sink. Nature 2015, 519, 344–348. [Google Scholar] [CrossRef] [PubMed]
- de Gonçalves, L.G.G.; Borak, J.S.; Costa, M.H.; Saleska, S.R.; Baker, I.; Restrepo-Coupe, N.; Muza, M.N.; Poulter, B.; Verbeeck, H.; Fisher, J.B.; et al. Overview of the large-scale biosphere–atmosphere experiment in Amazonia data model intercomparison project (lba dmip). Agric. For. Meteorol. 2013, 182, 111–127. [Google Scholar] [CrossRef]
- Blundo, C.; Carilla, J.; Grau, R.; Malizia, A.; Malizia, L.; Osinaga-Acosta, O.; Bird, M.; Bradford, M.; Catchpole, D.; Ford, A.; et al. Taking the pulse of Earth’s tropical forests using networks of highly distributed plots. Biol. Conserv. 2021, 260, 108849. [Google Scholar]
- Ter Steege, H.; de Oliveira, S.M.; Pitman, N.C.A.; Sabatier, D.; Antonelli, A.; Guevara Andino, J.E.; Aymard, G.A.; Salomão, R.P. Towards a dynamic list of Amazonian tree species. Sci. Rep. 2019, 9, 3501. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Davies, S.J.; Bennett, A.C.; Gonzalez-Akre, E.B.; Muller-Landau, H.C.; Wright, S.J.; Abu Salim, K.; Almeyda Zambrano, A.M.; Alonso, A.; Baltzer, J.L.; et al. CTFS-ForestGEO: A worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 2015, 21, 528–549. [Google Scholar] [CrossRef]
- Chave, J.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S.; Perez, R. Error propagation and scaling for tropical forest biomass estimates. Philos. Trans. R. Soc. B 2024, 359, 409–420. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 2, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
- Fearnside, P.M. Global warming and tropical land-use change: Greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Clim. Chang. 2000, 46, 115–158. [Google Scholar] [CrossRef]
- Houghton, R.A. How well do we know the flux of CO2 from land-use change? Tellus B Chem. Phys. Meteorol. 2010, 62, 337–351. [Google Scholar] [CrossRef]
- Englund, O.; Sparovek, G.; Berndes, G.; Freitas, F.; Ometto, J.P.; Oliveira, P.V.C.; Costa, C., Jr.; Lapola, D. A new high-resolution nationwide aboveground carbon map for Brazil. Geo Geogr. Environ. 2017, 4, e00045. [Google Scholar] [CrossRef]
- Mamani, N.; Finer, M.; Ariñez, A.; Amazon carbon update, based on NASA’s GEDI mission. MAAP 2022, Report #199. Available online: https://maaproject.kinsta.cloud/?html2pdf=https://www.maapprogram.org/maap-199-amazon-carbon-update-based-on-nasas-gedi-mission/&media=print (accessed on 13 May 2025).
- Dionizio, E.A.; Giannini, T.C.; Gastauer, M.; Barbosa-Silva, R.G.; de Souza, R.L.F.; Nunes, S.; Ramos, S.J.; Andrino, C.O.; Cavalcante, R.B.L. Aboveground carbon stocks for different forest types in eastern Amazonia. Environ. Res. Commun. 2025, 7, 045006. [Google Scholar] [CrossRef]
- Ometto, J.P.; Gorgens, E.B.; de Souza Pereira, F.R.; Sato, L.; de Assis, M.L.R.; Cantinho, R.; Longo, M.; Jacon, A.D.; Keller, M. A biomass map of the Brazilian Amazon from multisource remote sensing. Sci. Data 2023, 10, 668. [Google Scholar] [CrossRef] [PubMed]
- Faria, L.D.d.; Matricardi, E.A.T.; Marimon, B.S.; Miguel, E.P.; Junior, B.H.M.; Oliveira, E.A.d.; Prestes, N.C.C.d.S.; Carvalho, O.L.F.d. Biomass prediction using sentinel-2 imagery and an artificial neural network in the Amazon/Cerrado transition tegion. Forests 2024, 15, 1599. [Google Scholar] [CrossRef]
- Jiang, X.; Li, G.; Lu, D.; Moran, E.; Batistella, M. Modeling Forest Aboveground Carbon Density in the Brazilian Amazon with Integration of MODIS and Airborne LiDAR Data. Remote Sens. 2020, 12, 3330. [Google Scholar] [CrossRef]
- Harris, N.L.; Brown, S.; Hagen, S.C.; Saatchi, S.S.; Petrova, S.; Salas, W.; Hansen, M.C.; Potapov, P.V.; Lotsch, A. Baseline map of carbon emissions from deforestation in tropical regions. Science 2012, 336, 1573–1576. [Google Scholar] [CrossRef] [PubMed]
- Nepstad, D.C.; McGrath, D.G.; Soares-Filho, B. Systemic conservation, REDD, and the future of the Amazon Basin. Conserv. Biol. 2011, 25, 1113–1116. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Nat. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed]
- Soares-Filho, B.; Moutinho, P.; Nepstad, D.; Anderson, A.; Rodrigues, H.; Garcia, R.; Dietzsch, L.; Merry, F.; Bowman, M.; Hissa, L.; et al. Role of Brazilian Amazon protected areas in climate change mitigation. Proc. Nat. Acad. Sci. USA 2010, 107, 10821–10826. [Google Scholar] [CrossRef]
- Sullivan, M.J.P.; Lewis, S.L.; Hubau, W.; Qie, L.; Baker, T.R.; Banin, L.F.; Chave, J.; Cuni-Sanchez, A.; Feldpausch, T.R.; Lopez-Gonzalez, G.; et al. Field methods for sampling tree height for tropical forest biomass estimation. Methods Ecol. Evol. 2018, 9, 1179–1189. [Google Scholar] [CrossRef]
- Campos, M.S.; Anjos, L.J.S.; de Souza, E.B.; Bezerra, F.G.S.; de Lima, A.M.M.; Galbraith, D.R.; Adami, M. Prioritizing Amazon Forest Conservation: Assessing Potential Biomass under Climate Change. Glob. Ecol. Conserv. 2024, 54, e03106. [Google Scholar] [CrossRef]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Barni, P.E.; Manzi, A.O.; Condé, T.M.; Barbosa, R.I.; Fearnside, P.M. Spatial distribution of forest biomass in Brazil’s state of Roraima, northern Amazonia. For. Ecol. Manag. 2016, 377, 170–181. [Google Scholar] [CrossRef]
- Feldpausch, T.R.; Lloyd, J.; Lewis, S.L.; Brienen, R.J.W.; Gloor, M.; Monteagudo, A.; Lopez-Gonzalez, G.; Banin, L.; Kamariah, A.S.; Affum-Baffoe, K.; et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 2012, 9, 3381–3403. [Google Scholar] [CrossRef]
- Malhi, Y.; Wood, D.; Baker, T.R.; Wright, J.; Phillips, O.L.; Cochrane, T.; Meir, P.; Chave, J.; Almeida, S.; Arroyo, L.; et al. The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob. Chang. Biol. 2006, 12, 1107–1138. [Google Scholar] [CrossRef]
- Brazil, RADAMBRASIL. Levantamento dos Recursos Naturais (Folhas SA.22 Macapá); Ministério das Minas e Energia: Rio de Janeiro, RJ, Brazil, 1973–1983.
- Sales, M.H.; Souza, C.M., Jr.; Kyriakidis, P.C.; Roberts, D.A.; Vidal, E. Improving spatial distribution estimation of forest biomass with geostatistics: A case study for Rondônia, Brazil. Ecol. Model. 2007, 205, 221–230. [Google Scholar] [CrossRef]
- Brazil, MCT (Ministério da Ciência e Tecnologia). Segunda Comunicação Nacional do Brasil À Convenção-Quadro das Nações Unidas Sobre Mudança do Clima; MCT: Brasília, DF, Brazil, 2010; p. 280. [Google Scholar]
- Brazil, Secretaria de Estado do Meio Ambiente—Amapá. Relatório Técnico de Desmatamento No Estado do Amapá, Referente Ao príodo 2013 E 2014; SEMA-AP: Macapá, AP, Brazil, 2015; p. 32.
- Brazil, Secretaria de Estado do Meio Ambiente—Amapá. Relatório Técnico de Desmatamento No Estado do Amapá, Referente Ao Período 2015 E 2016; SEMA-AP: Macapá, AP, Brazil, 2017; p. 6.
- Drummond, J.A.; Dias, T.C.A.C.; Brito, D.M.C. Atlas das Unidades de Conservação do Estado do Amapá; Secretaria de Estado do Meio Ambiente—Amapá: Macapá, AP, Brazil, 2008.
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.; Sparovek, G. Koppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Brazil, INMET (Instituto Nacional de Meteorologia), Normal Climatológica do Brasil. Available online: https://portal.inmet.gov.br/normais (accessed on 10 December 2018).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Brazil, ANA (Agência Nacional de Águas), Precipitação Média Annual—Série de 1977 A 2006. Available online: http://dadosabertos.ana.gov.br/datasets/ (accessed on 23 July 2018).
- Souza, E.B.; Cunha, A.C. Climatologia de precipitação no Amapá e mecanismos climáticos de grande escala. In Tempo, Clima E Recursos Hídricos–Resultados do Projeto REMETAP No Amapá; Cunha, A.C., Souza, E.B., Cunha, H.F.A., Eds.; IEPA: Macapá, AP, Brazil, 2010; Volume 10, pp. 177–195. [Google Scholar]
- Brazil, BDIA (Banco de Dados de Informações Ambientais), Mapa de Vegetação. Available online: https://bdiaweb.ibge.gov.br/#/consulta/vegetacao/ (accessed on 24 July 2018).
- Brazil, IBGE (Instituto Brasileiro de Geografia e Estatística). Manual Técnico da Vegetação Brasileira—Manuais Técnicos em Geociências, 2nd ed.; IBGE: Rio de Janeiro, Brazil, 2012; p. 271.
- Almeida, S.; Silva, M.S.; Rosa, N.A. Análise fitossociológica e uso de recursos vegetais na Reserva Extrativista do Cajari, Amapá. Bol. Do Mus. Para. Emilio Goeldi 1996, 11, 61–74. [Google Scholar]
- Carim, M.J.V.; Jardim, M.A.G.; Medeiros, T.D.S. Composição florística e estrutura de floresta de várzea no município de Mazagão, Estado do Amapá, Brasil. Sci. For. 2008, 36, 191–201. [Google Scholar]
- Costa-Neto, S.V.; Silva, M.S. Projeto Zoneamento Ecológico-Econômico do Setor Costeiro Estuarino do Estado do Amapá: Diagnóstico Sócio-Ambiental, Relatório Técnico de Vegetação; Governo do Amapá: Macapá, Brazil, 2023; p. 38.
- Brazil, BDIA (Banco de Dados de Informações Ambientais), Mapa de Pedologia. Available online: https://bdiaweb.ibge.gov.br/#/consulta/pedologia/ (accessed on 27 October 2018).
- Peres, R.N.; Serruya, N.M.; Vieira, L.S. Levantamento Exploratório de Solos. In Brazil, Projeto RADAM-BRASIL. Folha NA/NB.22 Macapá. Levantamento de Recursos Naturais; Departamento Nacional de Produção Mineral: Rio de Janeiro, RJ, Brazil, 1974; Volume 6. [Google Scholar]
- Brazil, INAM (Instituto Natureza Amazônica). Relatório do Inventário Florestal Amostral da Floresta Estadual do Amapá; Brazil, INAM: Macapá, AP, Brazil, 2010; p. 176. [Google Scholar]
- Brazil, ICMBIO (Instituto Chico Mendes de Conservação da Biodiversidade). Plano de Manejo do Parque Nacional Montanhas do Tumucumaque; Brazil, ICMBIO: Brasília, DF, Brazil, 2009. Available online: https://www.gov.br/icmbio/pt-br/assuntos/biodiversidade/unidade-de-conservacao/unidades-de-biomas/amazonia/lista-de-ucs/parna-montanhas-do-tumucumaque/arquivos/parna_montanhasdotumucumaque.pdf (accessed on 19 October 2018).
- Zanne, A.E.; Lopez-Gonzalez, G.; Coomes, D.A.; Ilic, J.; Jansen, S.; Lewis, S.L.; Miller, R.B.; Swenson, N.G.; Wiemann, M.C.; Chave, J. Data from: Towards a worldwide wood economics spectrum [Dataset]. Dryad 2009. Available online: https://datadryad.org/dataset/doi:10.5061/dryad.234 (accessed on 11 October 2018).
- Higuchi, N.; Santos, J.; Ribeiro, R.J.; Minette, L.; Biot, Y. Biomassa da parte aérea da vegetação de floresta tropical úmida de terra-firme da Amazônia Brasileira. Acta Amaz. 1988, 28, 153–165. [Google Scholar] [CrossRef]
- Castilho, C.V.; Magnusson, W.E.; de Araújo, R.N.O.; Luizão, R.C.C.; Luizão, F.J.; Lima, A.P.; Higuchi, N. Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. For. Ecol. Manag. 2006, 234, 85–96. [Google Scholar] [CrossRef]
- Isaaks, E.; Srivastava, R. Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Landim, P.M.B.; Sturaro, J.R. Krigagem Indicativa Aplicada À Elaboração de Mapas Probabilísticos de Riscos. Available online: https://www.researchgate.net/profile/Jose-Sturaro-2/publication/251884208_KRIGAGEM_INDICATIVA_APLICADA_A_ELABORACAO_DE_MAPAS_PROBABILISTICOS_DE_RISCOS/links/55f8266f08ae07629dd0cce8/KRIGAGEM-INDICATIVA-APLICADA-A-ELABORACAO-DE-MAPAS-PROBABILISTICOS-DE-RISCOS.pdf (accessed on 10 April 2018).
- Bello-Pineda, J.; Hernándes-Stefanoni, J.L. Comparing the performance of two spatial interpolation methods for creating a digital bathymetric model of the Yucatan submerged platform. Pan-Am. J. Aquat. Sci. 2007, 2, 247–254. [Google Scholar]
- Gardiman Junior, B.S.; Magalhães, I.A.L.; Freitas, C.A.A.; Cecílio, R.A. Análise de técnicas de interpolação para espacialização da precipitação pluvial na bacia do rio Itapemirim (ES). Ambiência 2012, 8, 61–71. [Google Scholar] [CrossRef]
- Barni, P.E.; Barbosa, R.I.; Xaud, H.A.M.; Xaud, M.R.; Fearnside, P.M. Precipitation in northern Amazonia: Spatial distribution in Brazil’s State of Roraima. Soc. Nat. 2020, 32, 439–456. [Google Scholar] [CrossRef]
- Brasil, MMA (Ministério do Meio Ambiente), Dados Georreferenciados das Unidades de Conservação. Available online: https://www.gov.br/icmbio/pt-br/assuntos/dados_geoespaciais/mapa-tematico-e-dados-geoestatisticos-das-unidades-de-conservacao-federais (accessed on 8 October 2018).
- Brasil, INCRA (Instituto Nacional de Colonização E Reforma Agrária), Acervo Fundiário. Available online: https://acervofundiario.incra.gov.br/acervo/login.php (accessed on 10 November 2018).
- Morais, V.A.; Santos, C.A.; Mello, J.M.; Dadid, H.C.; Araújo, E.J.G.A.; Scolforo, J.R.S. Spatial and vertical distribution of litter and belowground carbon in a Brazilian cerrado vegetation. Cerne 2017, 23, 43–52. [Google Scholar] [CrossRef]
- Muller-Landau, H.C.; Cushman, K.C.; Arroyo, E.E.; Martinez Cano, I.; Anderson-Teixeira, K.J.; Backiel, B. Patterns and Mechanisms of Spatial Variation in Tropical Forest Productivity, Woody Residence Time, and Biomass. New Phytol. 2021, 229, 3065–3087. [Google Scholar] [CrossRef]
- Slik, J.W.F.; Paoli, G.; McGuire, K.; Amaral, I.; Barroso, J.; Bastian, M.; Blanc, L.; Bongers, F.; Boundja, P.; Clark, C.; et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 2013, 22, 1261–1271. [Google Scholar] [CrossRef]
- Gorgens, E.B.; Nunes, M.H.; Jackson, T.; Coomes, D.; Keller, M.; Reis, C.R.; Valbuena, R.; Rosette, J.; de Almeida, D.R.A.; Gimenez, B.; et al. Resource availability and disturbance shape maximum tree height across the Amazon. Glob. Chang. Biol. 2021, 27, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Chave, J.; Riéra, B.; Dubois, M.A. Estimation of biomass in a neotropical forest of French Guiana: Spatial and temporal variability. J. Trop. Ecol. 2001, 17, 79–96. [Google Scholar] [CrossRef]
- Baia, A.L.P.; Nascimento, H.E.M.; Guedes, M.C.; Hilário, R.R.; Toledo, J.J. Tree height-diameter allometry and implications for biomass estimates in Northeastern Amazonian forests. PeerJ 2025, 13, e18974. [Google Scholar] [CrossRef]
- Nogueira, E.M.; Nelson, B.W.; Fearnside, P.M.; França, M.B.; Oliveira, A.C.A. Tree height in Brazil’s ‘arc of deforestation’: Shorter trees in south and southwest Amazonia imply lower biomass. For. Ecol. Manag. 2008, 255, 2963–2972. [Google Scholar] [CrossRef]
- Dubayah, R.; Blair, J.B.; Goetz, S.; Fatoyinbo, L.; Hansen, M.; Healey, S.; Hofton, M.; Hurtt, G.; Kellner, J.; Luthcke, S.; et al. The global ecosystem dynamics investigation: High-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Nepstad, D.C.; Veríssimo, A.; Alencar, A.; Nobre, C.; Lima, E.; Lefebvre, P.; Schlesinger, P.; Potter, C.; Moutinho, P.; Mendoza, E.; et al. Largescale impoverishment of Amazonian forests by logging and fire. Nature 1999, 398, 505–508. [Google Scholar] [CrossRef]
- Pfaff, A.; Robalino, J.; Herrera, D.; Sandoval, C. Protected areas’ impacts on Brazilian Amazon deforestation: Examining conservation-development interactions to inform planning. PLoS ONE 2015, 10, e0129460. [Google Scholar] [CrossRef]
- Bousfield, C.G.; Massam, M.R.; Peres, C.A.; Edwards, D.P. Carbon payments can cost-effectively improve logging sustainability in the Amazon. J. Environ. Manag. 2022, 314, 115094. [Google Scholar] [CrossRef]
- Greenleaf, M. The value of the untenured forest: Land rights, green labor, and forest carbon in the Brazilian Amazon. J. Peasant Stud. 2019, 47, 286–305. [Google Scholar] [CrossRef]
- Yanai, A.M.; Fearnside, P.M.; Graça, P.M.L.A.; Nogueira, E.M. Avoided deforestation in Brazilian Amazonia: Simulating the effect of the Juma Sustainable Development Reserve. For. Ecol. Manag. 2012, 282, 78–91. [Google Scholar] [CrossRef]
- Nogueira, E.M.; Yanai, A.M.; Vasconcelos, S.S.; Graça, P.M.L.A.; Fearnside, P.M. Carbon stocks and losses to deforestation in protected areas in Brazilian Amazonia. Reg. Environ. Chang. 2018, 18, 261–270. [Google Scholar] [CrossRef]
- Cantinho, R.Z.; Linares, J.A.H.; Vieira, J.L.; Bustamante, M.M.C. Protected areas in Brazil: Evolution, land use and cover, and impact on emissions inventory. Floresta 2021, 51, 174–183. [Google Scholar] [CrossRef]
- Sist, P.; Piponiot, C.; Kanashiro, M.; Pena-Claros, M.; Putz, F.E.; Schulze, M.; Verissimo, A.; Vidal, E. Sustainability of Brazilian forest concessions. For. Ecol. Manag. 2021, 496, 119440. [Google Scholar] [CrossRef]
- Sheppard, J.P.; Chamberlain, J.; Agúndez, D.; Bhattacharya, P.; Chirwa, P.W.; Gontcharov, A.; Sagona, W.C.J.; Shen, H.-L.; Tadesse, W.; Mutke, S. Sustainable forest management beyond the timber-oriented status quo: Transitioning to co-production of timber and non-wood forest products—A global perspective. Curr. For. Rep. 2020, 6, 26–40. [Google Scholar] [CrossRef]
- Klimas, C.M.; Cropper, W.P.; Kainer, K.A.; de Oliveira Wadt, L.H. Multimodel projections for evaluating sustainable timber and seed harvest of Carapa guianensis. For. Sci. 2018, 61, 15–27. [Google Scholar]
- Vasconcelos, R.G.; Linhares, A.C.C.; Marques, M.B.L.; Alves, S.R.M. Análise da oferta de oleorresina de Copaíba (Copaifera spp.) no Brasil e do dinamismo do valor da produção. Divers. J. 2020, 5, 684–692. [Google Scholar] [CrossRef]
Forest Type | Vegetation Code a | Dense Ombrophilous Forest | |
---|---|---|---|
Area (103 km2) | Area (%) | ||
Dense-canopy rainforest on river floodplain | Da | 6.07 | 4.3 |
Dense-canopy rainforest on non-flooding lowlands | Db | 20.71 | 14.5 |
Dense-canopy montane rainforest | Dm | 0.4 | 0.3 |
Dense-canopy submontane rainforest | Ds | 80.58 | 56.4 |
Total | 107.76 | 75.5 |
Interpolators | MSE | %EF | Adjusted R2 | p-Value Regression | p-Value t-Test | Mean Biomass (Mg ha−1) |
---|---|---|---|---|---|---|
BDGP (13 plots) | - | - | - | - | - | 594.01 |
Ord-krig | 126.9 | 96.70 | 0.48 | 0.0052 | 0.057 | 524.81 |
Co-krig | 123.4 | 93.19 | 0.45 | 0.0069 | 0.071 | 531.47 |
KED | 121.7 | 83.04 | 0.61 | 0.0010 | 0.092 | 534.78 |
Forest Type | Area (103 km2) | Live Aboveground (109 Mg) b | Dead Aboveground (109 Mg) b | Live Belowground (109 Mg) b | Total Biomass Stock (109 Mg) | Bio. Stock (%) | Mean (±SD) (Mg ha−1) | Range (Mg ha−1) | Biomass Loss (109 Mg) | Bio. Loss (%) |
---|---|---|---|---|---|---|---|---|---|---|
Da a | 6.051 | 0.174 | 0.028 | 0.039 | 0.241 | 4.3 | 447.60 ± 45.51 | 293.0–692.0 | 0.008 | 0.14 |
Db a | 20.688 | 0.895 | 0.143 | 0.199 | 1.237 | 21.9 | 619.13 ± 38.27 | 397.0–724.0 | 0.056 | 0.99 |
Ds a | 80.454 | 3.026 | 0.484 | 0.672 | 4.182 | 73.9 | 521.83 ± 49.82 | 293.0–709.0 | 0.033 | 0.58 |
Total | 107.193 | 4.096 | 0.655 | 0.909 | 5.659 | 100.0 | 536.48 ± 64.25 | 293.0–724.0 | 0.098 | 1.73 |
Group | Area (103 km2) | Mean (±SD) (Mg ha−1) | Range (Mg ha−1) | Biomass Stock (106 Mg) | Bio. Stock (%) | Biomass Loss (106 Mg) | Bio. Loss (%) |
---|---|---|---|---|---|---|---|
Protected areas | |||||||
Indigenous lands | |||||||
Dense-canopy rainforest on river floodplain | 0.21 | 434.16 ± 22.58 | 348–600 | 9.24 | 0.16 | 0.01 | 0.11 |
Dense-canopy rainforest on non-flooding lowlands | 1.20 | 601.24 ± 10.87 | 547–622 | 72.39 | 1.28 | 1.21 | 1.67 |
Dense-canopy rainforest, submontane | 8.16 | 511.10 ± 34.96 | 348–612 | 416.89 | 7.37 | 3.18 | 0.76 |
Total in indigenous lands | 9.57 | 515.50 ± 46.13 | 348–622 | 498.52 | 8.81 | 4.40 | 0.88 |
Conservation units | |||||||
Dense-canopy rainforest on river floodplain | 2.03 | 435.00 ± 53.62 | 293–655 | 88.45 | 1.56 | 0.07 | 0.08 |
Dense-canopy rainforest on non-flooding lowlands | 13.24 | 626.08 ± 35.74 | 397–721 | 829.06 | 14.65 | 13.94 | 1.68 |
Dense-canopy rainforest, submontane | 63.78 | 521.58 ± 53.64 | 293–709 | 3326.44 | 58.78 | 7.74 | 0.23 |
Total in conservation units | 79.05 | 537.55 ± 66.28 | 293–721 | 4243.95 | 75.00 | 21.75 | 0.51 |
Quilombola areas | |||||||
Dense-canopy rainforest on river floodplain | 0.02 | 427.46 ± 9.31 | 415–438 | 1.01 | 0.02 | 0.04 | 3.96 |
Dense-canopy rainforest on non-flooding lowlands | 0.29 | 611.26 ± 8.50 | 581–641 | 17.43 | 0.31 | 0.02 | 0.11 |
Dense-canopy rainforest, submontane | - | - | - | - | - | - | |
Total in quilombola areas | 0.31 | 519.36 ±49.66 | 415–641 | 18.44 | 0.33 | 0.06 | 0.33 |
Total in protected areas | 88.93 | 535.08 ± 64.67 | 293–721 | 4760.91 | 84.13 | 26.21 | 0.55 |
Agriculture and ranching areas | |||||||
Settlement projects | |||||||
Dense-canopy rainforest on river floodplain | 0.56 | 460.01 ± 34.44 | 398–618 | 25.74 | 0.45 | 1.77 | 6.88 |
Dense-canopy rainforest on non-flooding lowlands | 2.64 | 610.47 ± 36.90 | 425–722 | 161.29 | 2.85 | 19.01 | 11.79 |
Dense-canopy rainforest, submontane | 6.21 | 535.42 ± 17.14 | 412–671 | 332.41 | 5.87 | 14.86 | 4.47 |
Total in settlement projects | 9.41 | 535.30 ± 51.03 | 398–722 | 519.43 | 9.18 | 35.65 | 6.86 |
Other areas | |||||||
Dense-canopy rainforest on river floodplain | 3.22 | 453.42 ± 38.36 | 312–692 | 109.52 | 1.94 | 6.58 | 6.01 |
Dense-canopy rainforest on non-flooding lowlands | 3.32 | 602.44 ± 47.01 | 397–724 | 168.50 | 2.98 | 22.29 | 13.23 |
Dense-canopy rainforest, submontane | 2.31 | 531.12 ± 25.09 | 619–654 | 100.37 | 1.77 | 7.74 | 7.71 |
Total in other areas | 8.85 | 529.00 ± 73.33 | 312–724 | 378.39 | 6.69 | 36.61 | 9.68 |
Total in agriculture and ranching areas | 18.26 | 532.15 ± 61.26 | 312–724 | 897.82 | 15.87 | 72.25 | 8.05 |
Grand total | 107.19 | 536.48 ± 64.25 | 293–724 | 5658.73 | 100.00 | 98.47 | 1.74 |
Conservation Unit | Area (103 km2) | Biomass Stock (106 Mg) | Biomass Stock (%) | Mean (±SD) (Mg ha−1) | Range (Mg ha−1) |
---|---|---|---|---|---|
Integral Protection | |||||
Tumucumaque Mountains National Park | 37.29 | 1872.98 | 33.1 | 500.91 ± 54.74 | 293–613 |
Cabo Orange National Park | 1.37 | 71.73 | 1.3 | 524.07 ± 84.45 | 394–639 |
Jari Ecological Station | 0.67 | 35.91 | 0.6 | 533.55 ± 6.28 | 515–552 |
Total in integral-protection units | 39.34 | 1980.62 | 35.0 | 502.27 ± 55.90 | 293–639 |
Sustainable Use | |||||
Amapá State Forest | 22.80 | 1325.85 | 23.4 | 588.10 ± 55.10 | 397–721 |
Cajari River Extractive Reserve | 3.71 | 215.81 | 3.8 | 580.52 ± 47.62 | 443–658 |
Amapá National Forest | 4.50 | 274.92 | 4.9 | 599.00 ± 29.32 | 495–654 |
Iratapuru River Sustainable Development Reserve | 8.70 | 446.73 | 7.9 | 513.66 ± 23.62 | 340–552 |
Total in sustainable-use units | 39.71 | 2263.30 | 40.0 | 572.79 ± 56.24 | 340–721 |
Total in conservation units | 79.05 | 4243.93 | 75.0 | 537.23 ± 66.28 | 293–721 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Costa, J.D.M.; Barni, P.E.; Sotta, E.D.; Carim, M.d.J.V.; da Cunha, A.C.; Guedes, M.C.; Aparicio, P.d.S.; de Oliveira, L.L.; Barbosa, R.I.; Fearnside, P.M.; et al. Dense Forests in the Brazilian State of Amapá Store the Highest Biomass in the Amazon Basin. Sustainability 2025, 17, 5310. https://doi.org/10.3390/su17125310
da Costa JDM, Barni PE, Sotta ED, Carim MdJV, da Cunha AC, Guedes MC, Aparicio PdS, de Oliveira LL, Barbosa RI, Fearnside PM, et al. Dense Forests in the Brazilian State of Amapá Store the Highest Biomass in the Amazon Basin. Sustainability. 2025; 17(12):5310. https://doi.org/10.3390/su17125310
Chicago/Turabian Styleda Costa, José Douglas M., Paulo Eduardo Barni, Eleneide D. Sotta, Marcelo de J. V. Carim, Alan C. da Cunha, Marcelino C. Guedes, Perseu da S. Aparicio, Leidiane L. de Oliveira, Reinaldo I. Barbosa, Philip M. Fearnside, and et al. 2025. "Dense Forests in the Brazilian State of Amapá Store the Highest Biomass in the Amazon Basin" Sustainability 17, no. 12: 5310. https://doi.org/10.3390/su17125310
APA Styleda Costa, J. D. M., Barni, P. E., Sotta, E. D., Carim, M. d. J. V., da Cunha, A. C., Guedes, M. C., Aparicio, P. d. S., de Oliveira, L. L., Barbosa, R. I., Fearnside, P. M., Nascimento, H. E. M., & de Toledo, J. J. (2025). Dense Forests in the Brazilian State of Amapá Store the Highest Biomass in the Amazon Basin. Sustainability, 17(12), 5310. https://doi.org/10.3390/su17125310