Framework for Estimating Environmental Carrying Capacity in Diverse Climatic Conditions and Fish Farming Production in Neotropical Reservoirs
Abstract
1. Introduction
2. Material and Methods
2.1. Study Area and Applied Methodology
2.2. Collection of Secondary, Historical, and Environmental Condition Data
2.3. On-Site Data Collection and Laboratory Analysis
2.3.1. Water Quality
2.3.2. Diet and Feeding
2.3.3. Zootechnical Performance
2.4. Measurement of Potential Waste Release into the Aquatic Environment
2.4.1. Prediction of Fish Biomass to Be Produced Through the Thermal Growth Coefficient
2.4.2. Nutritional Bioenergetics Modeling to Define the Potential Phosphorus Release into Water from Aquaculture
2.4.3. Simulation of Tilapia Production Waste Load Under Different Climatic Scenarios
- (a)
- Commercial diets with low, medium, and high energy densities and different levels of phosphorus (0.8%, 1.2%, and 2.1% total P)
- (b)
- Different water temperature conditions (21 °C, 25 °C, and 29 °C)
2.5. Determination of Environmental Carrying Capacity Based on Phosphorus Concentration in Water During Tilapia Production Under Different Climatic, Zootechnical, and Environmental Scenarios
2.6. Assessment of the Water Body’s Trophic State Index (TSI) During Aquaculture Production
2.7. Analyses for Decision-Making and Management of Water Use Permits for Tilapia Production in the Chavantes Reservoir
Probability of ECCp Scenario Occurrence Using Monte Carlo Simulation
3. Results
3.1. Secondary Data, Historical Records, and Environmental Conditions
3.2. On-Site and Laboratory Data
3.2.1. Water Quality
3.2.2. Diet and Feeding
3.2.3. Zootechnical Performance
3.3. Measurement of the Potential Waste Release into the Aquatic Environment
3.3.1. Prediction of Fish Biomass to Be Produced in the Enterprise Through Thermal Growth Coefficient Modeling
3.3.2. Nutritional Bioenergetics Modeling to Define Phosphorus Release from Aquaculture
3.4. Determination of Environmental Carrying Capacity for Tilapia Production Based on Phosphorus Concentration and Release into Water Under Different Climatic, Zootechnical, and Environmental Scenarios
3.5. Assessment of the Trophic State Index (TSI)
3.6. Analyses for Decision-Making and Management of Water Use Permits for Tilapia Production in the Chavantes Reservoir
Probability of ECCp Scenario Occurrence Using a Monte Carlo Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
[P] | Phosphorus concentration in water |
A | Area |
ABW | Average body weight |
ADC | Apparent digestibility coefficient of phosphorus |
ANA | Brazilian National Water and Basic Sanitation Agency |
B | Annual fish production |
BW | Fish’s metabolic body weight |
CP | Crude protein |
d | Number of cultivation days |
DDM | Digestible dry matter |
DE | Digestible energy |
DM | Dry matter |
DP | Digestible protein |
DP | Digestible phosphorus |
DP/DE | Digestible protein to digestible energy ratio |
DPW | Dissolved phosphorus waste |
DWG | Daily weight gain |
ECCp | Environmental carrying capacity based on phosphorus |
EI | Energy intake |
A.R. | Accumulation reservoir |
FB | Final biomass |
FBW | Final body weight |
FCR | Feed conversion ratio |
FE | Feces |
FE | Feed efficiency |
GE | Gross energy |
HeE | Fish’s basal metabolism |
HiE | Caloric increment of feeding |
HPP | Hydroelectric power plant |
IBW | Initial body weight |
JVI | Juvenile I |
JVII | Juvenile II |
La | Annual areal phosphorus load |
Lr | Phosphorus load in the entire reservoir |
MCS | Monte Carlo simulation |
MO | Mortality |
MWt | Market weight |
OEMAS | State Environmental Agencies |
ONS | Brazilian National Electric System Operator |
P | Total phosphorus |
Pa | Phosphorus released into the water |
pH | Hydrogen ionic potential |
Pp | Phosphorus retained in fish |
Pr | Phosphorus in feed |
Pw | Phosphorus in the water |
R | Phosphorus retention coefficient |
RE | Retained energy |
RSS | Sum of squares of residuals |
SIPOT | Brazilian Hydroelectric Potential Information System |
T | Water temperature |
td | Water residence time |
TGC | Thermal growth coefficient |
TSI | Trophic state index |
TSW | Total solid waste |
UE | Urinary excretion |
V | Volume |
Z | Mean depth |
ZE | Branchial excretion |
Δ[P] | Phosphorus concentration |
ρ | Annual water renewal rate |
Appendix A
Reservoir Water Level | Operational Status | Maximum Operational Level (SIPOT Standard) | Medium Operational Level (SIPOT Standard) | Minimum Operational Level (SIPOT Standard) | Maximum Operational Level (Fartura—A.R.) | Minimum Operational Level (Fartura—A.R.) |
---|---|---|---|---|---|
Scenario 01 | Scenario 02 | Scenario 03 | Scenario 04 | Scenario 05 | |
Elevation (m) * | 474.00 | 470.29 | 465.23 | 472.60 | 467.90 |
Area (km2) ** | 402.53 | 349.12 | 301.78 | 387.32 | 333.98 |
Volume (hm3) ** | 8795 | 7368 | 5754 | 8321 | 6669 |
Average inflow rate—Qmlt (m3/s) * | 400.00 | 346.94 | 322.36 | 400.00 | 170.00 |
Average depth at the elevation considered—z (m) | 21.85 | 21.10 | 19.07 | 21.48 | 19.97 |
Residence time—td (years) | 0.697 | 0.673 | 0.566 | 0.660 | 1.244 |
Residence time—td (days) | 254.48 | 245.79 | 206.59 | 240.77 | 454.03 |
Water renewal rate in the reservoir—ρ (years) | 0.045 | 0.047 | 0.056 | 0.048 | 0.025 |
Δ[P] (mg/m3) *** | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Phosphorus retention coefficient—R **** | 0.760 | 0.760 | 0.759 | 0.761 | 0.761 |
Zootechnical Data for the Studied Specie | |||||
P feed (kg/t)—Pr (1% P—total) | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
P retained in fish (kg/t)—Pp ***** | 9.38 | 9.38 | 9.38 | 9.38 | 9.38 |
P released into water (kg/t)—Pa | 6.62 | 6.62 | 6.62 | 6.62 | 6.62 |
FCR | 1.60 | 1.60 | 1.60 | 1.60 | 1.60 |
Environmental Carrying Capacity for P (ECCp) at the Chavantes Hydroelectric Power Plant (UHE Chavantes) | |||||
Maximum load of the reservoir Lr (kg/year) | 263,258.87 | 228,183.68 | 210,697.50 | 263,899.58 | 112,156.34 |
Maximum fish production B (t/ano)—ANA | 39,767.20 | 34,468.83 | 31,827.42 | 39,863.99 | 16,942.05 |
Environmental Carrying Capacity for P (ECCp) in the Aquaculture Area (UHE Chavantes—Fartura) | |||||
Feed with 0.8% P and water temperature of 21 °C | Scenario 06 | Scenario 07 | Scenario 08 | Scenario 09 | Scenario 10 |
Water temperature (°C) | 21 | 21 | 21 | 21 | 21 |
P feed (kg/t)—(0.8% P—total) | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
P retained in fish (kg/t)—Pp | 4.09 | 4.09 | 4.09 | 4.09 | 4.09 |
P released into the water (kg/t)—Pa | 3.28 | 3.28 | 3.28 | 3.28 | 3.28 |
New maximum fish production (t/year)—0.8% P 21 °C | 80,141.85 | 69,464.18 | 64,141.00 | 80,336.90 | 34,142.88 |
Feed with 0.8% P and water temperature of 25 °C | Scenario 11 | Scenario 12 | Scenario 13 | Scenario 14 | Scenario 15 |
Water temperature (°C) | 25 | 25 | 25 | 25 | 25 |
P feed (kg/t)—(0.8% P—total) | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
P retained in fish (kg/t)—Pp | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
P released into the water (kg/t)—Pa | 4.99 | 4.99 | 4.99 | 4.99 | 4.99 |
New maximum fish production (t/year)—0.8% P 25 °C | 52,775.75 | 45,744.19 | 42,238.72 | 52,904.19 | 22,484.08 |
Feed with 0.8% P and water temperature of 29 °C | Scenario 16 | Scenario 17 | Scenario 18 | Scenario 19 | Scenario 20 |
Water temperature (°C) | 29 | 29 | 29 | 29 | 29 |
P feed (kg/t)—(0.8% P—total) | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
P retained in fish (kg/t)—Pp | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
P released into the water (kg/t)—Pa | 5.17 | 5.17 | 5.17 | 5.17 | 5.17 |
New maximum fish production (t/year)—0.8% P 29 °C | 50,906.54 | 44,124.03 | 40,742.71 | 51,030.43 | 21,687.74 |
Feed with 1.2% P and water temperature of 21 °C 1 | Scenario 21 | Scenario 22 | Scenario 23 | Scenario 24 | Scenario 25 |
Water temperature (°C) | 21 | 21 | 21 | 21 | 21 |
P feed (kg/t)—Pr (1.2% P—total) | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
P retained in fish (kg/t)—Pp | 4.09 | 4.09 | 4.09 | 4.09 | 4.09 |
P released into the water (kg/t)—Pa | 5.37 | 5.37 | 5.37 | 5.37 | 5.37 |
New maximum fish production (t/year)—1.2% P 21 °C | 48,980.30 | 42,454.43 | 39,201.06 | 49,099.51 | 20,867.11 |
Feed with 1.2% P and water temperature of 25 °C 1 | Scenario 26 | Scenario 27 | Scenario 28 | Scenario 29 | Scenario 30 |
Water temperature (°C) | 25 | 25 | 25 | 25 | 25 |
P feed (kg/t)—Pr (1.2% P—total) | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
P retained in fish (kg/t)—Pp | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
P released into the water (kg/t)—Pa | 7.81 | 7.81 | 7.81 | 7.81 | 7.81 |
New maximum fish production (t/year)—1.2% P 25 °C | 33,719.52 | 29,226.91 | 26,987.20 | 33,801.59 | 14,365.55 |
Feed with 1.2% P and water temperature of 29 °C 1 | Scenario 31 | Scenario 32 | Scenario 33 | Scenario 34 | Scenario 35 |
Water temperature (°C) | 29 | 29 | 29 | 29 | 29 |
P feed (kg/t)—Pr (1.2% P—total) | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
P retained in fish (kg/t)—Pp | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
P released into the water (kg/t)—Pa | 8.63 | 8.63 | 8.63 | 8.63 | 8.63 |
New maximum fish production (t/year)—1.2% P 29 °C | 30,514.15 | 26,448.61 | 24,421.80 | 30,588.41 | 12,999.96 |
Feed with 2.1% P and water temperature of 21 °C | Scenario 36 | Scenario 37 | Scenario 38 | Scenario 39 | Scenario 40 |
Water temperature (°C) | 21 | 21 | 21 | 21 | 21 |
P feed (kg/t)—Pr (2.1% P—total) | 21.00 | 21.00 | 21.00 | 21.00 | 21.00 |
P retained in fish (kg/t)—Pp | 4.09 | 4.09 | 4.09 | 4.09 | 4.09 |
P released into the water (kg/t)—Pa | 14.83 | 14.83 | 14.83 | 14.83 | 14.83 |
New maximum fish production (t/year)—2.1% P 21 °C | 17,754.40 | 15,388.90 | 14,209.62 | 17,797.61 | 7563.92 |
Feed with 2.1% P and water temperature of 25 °C | Scenario 41 | Scenario 42 | Scenario 43 | Scenario 44 | Scenario 45 |
Water temperature (°C) | 25 | 25 | 25 | 25 | 25 |
P feed (kg/t)—Pr (2.1% P—total) | 21.00 | 21.00 | 21.00 | 21.00 | 21.00 |
P retained in fish (kg/t)—Pp | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
P released into the water (kg/t)—Pa | 20.58 | 20.58 | 20.58 | 20.58 | 20.58 |
New maximum fish production (t/year)—2.1% P 25 °C | 12,791.53 | 11,087.26 | 10,237.62 | 12,822.66 | 5449.58 |
Feed with 2.1% P and water temperature of 29 °C | Scenario 46 | Scenario 47 | Scenario 48 | Scenario 49 | Scenario 50 |
Water temperature (°C) | 29 | 29 | 29 | 29 | 29 |
P feed (kg/t)—Pr (2.1% P—total) | 21.00 | 21.00 | 21.00 | 21.00 | 21.00 |
P retained in fish (kg/t)—Pp | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
P released into the water (kg/t)—Pa | 20.54 | 20.54 | 20.54 | 20.54 | 20.54 |
New maximum fish production (t/year)—2.1% P 29 °C | 12,816.32 | 11,108.74 | 10,257.46 | 12,847.51 | 5460.15 |
References
- Chen, Y.; Li, S.; Liu, H.; Tao, P.; Chen, Y. Application of Intelligent Technology in Animal Husbandry and Aquaculture Industry. In Proceedings of the 14th International Conference on Computer Science & Education (ICCSE 2019), Toronto, ON, Canada, 22–24 August 2019; IEEE: New York, NY, USA, 2019; pp. 335–339. [Google Scholar] [CrossRef]
- Bueno, G.W.; Bureau, D.; Skipper-Horton, J.O.; Roubach, R.; Mattos, F.T.; Bernal, F.E.M. Mathematical Modeling for the Management of the Carrying Capacity of Aquaculture Enterprises in Lakes and Reservoirs. Pesqui. Agropecu. Bras. 2017, 52, 695–706. [Google Scholar] [CrossRef]
- Valenti, W.C.; Barros, H.P.; Moraes-Valenti, P.; Bueno, G.W.; Cavalli, R.O. Aquaculture in Brazil: Past, Present and Future. Aquac. Rep. 2021, 19, 100611. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2024—Blue Transformation in Action; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Verdegem, M.C. Nutrient Discharge from Aquaculture Operations in Function of System Design and Production Environment. Rev. Aquac. 2013, 5, 158–171. [Google Scholar] [CrossRef]
- Herath, S.; Satoh, S. Environmental Impact of Phosphorus and Nitrogen from Aquaculture. In Feed and Feeding Practices in Aquaculture, 1st ed.; Davis, D.A., Ed.; Woodhead Publishing: Cambridge, UK, 2015; pp. 369–386. [Google Scholar] [CrossRef]
- Streicher, M.D.; Reiss, H.; Reiss, K. Impact of Aquaculture and Agriculture Nutrient Sources on Macroalgae in a Bioassay Study. Mar. Pollut. Bull. 2021, 173, 113025. [Google Scholar] [CrossRef]
- Baccarin, A.E.; Camargo, A.F.M. Characterization and Evaluation of the Impact of Feed Management on the Effluents of Nile Tilapia (Oreochromis niloticus) Culture. Braz. Arch. Biol. Technol. 2005, 48, 81–90. [Google Scholar] [CrossRef]
- Sugiura, S.H.; Marchant, D.D.; Kelsey, K.; Wiggins, T.; Ferraris, R.P. Effluent Profile of Commercially Used Low-Phosphorus Fish Feeds. Environ. Pollut. 2006, 140, 95–101. [Google Scholar] [CrossRef]
- David, F.S.; Proença, D.C.; Valenti, W.C. Phosphorus Budget in Integrated Multitrophic Aquaculture Systems with Nile Tilapia, Oreochromis niloticus, and Amazon River Prawn, Macrobrachium amazonicum. J. World Aquac. Soc. 2017, 48, 402–414. [Google Scholar] [CrossRef]
- Huang, Y.; Ciais, P.; Goll, D.S.; Sardans, J.; Peñuelas, J.; Cresto-Aleina, F.; Zhang, H. The Shift of Phosphorus Transfers in Global Fisheries and Aquaculture. Nat. Commun. 2020, 11, 355. [Google Scholar] [CrossRef]
- Hooda, V.; Gupta, S.; Chundawat, T.S.; Lather, A.S. From Nutrient to Nuisance: The Impact of Phosphorus on Aquatic Ecosystem Health. In Futuristic Trends in Chemical, Material Science and Nanotechnology; IIP Series; IIP Publisher: Haryana, India, 2024; Volume 3, pp. 177–202. [Google Scholar]
- Falconer, L.; Ozretich, R.; Ekpeki, A.; Telfer, T. Carrying Capacity and Production Models for Aquaculture within Freshwater Lake Systems in Europe. In EU H2020 TAPAS Project; Deliverable 5.6 Report; European Union: Brussels, Belgium, 2019; 21p, Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?appId=PPGMS&documentIds=080166e5c1f34e72 (accessed on 14 April 2025).
- Bohnes, F.A.; Laurent, A. Environmental Impacts of Existing and Future Aquaculture Production: Comparison of Technologies and Feed Options in Singapore. Aquaculture 2021, 532, 736001. [Google Scholar] [CrossRef]
- Matta, E.; Koch, H.; Selge, F.; Simshäuser, M.N.; Rossiter, K.; Silva, G.M.N.; Gunkel, G.; Hinkelmann, R. Modeling the Impacts of Climate Extremes and Multiple Water Uses to Support Water Management in the Icó-Mandantes Bay, Northeast Brazil. J. Water Clim. Chang. 2019, 10, 893–906. [Google Scholar] [CrossRef]
- D’Abramo, L.R.; Slater, M.J. Climate Change: Response and Role of Aquaculture. J. World Aquac. Soc. 2019, 50, 710–714. [Google Scholar] [CrossRef]
- Xie, S.; Cui, Y.; Yang, Y.; Liu, J. Energy Budget of Nile Tilapia, Oreochromis niloticus, in Relation to Ration Size. Aquaculture 1997, 154, 57–68. [Google Scholar] [CrossRef]
- Glencross, B.D. A Factorial Growth and Feed Utilization Model for Barramundi, Lates calcarifer, Based on Australian Production Conditions. Aquac. Nutr. 2008, 14, 360–373. [Google Scholar] [CrossRef]
- Trung, D.V.; Diu, N.T.; Hao, N.T.; Glencross, B. Development of Nutritional Model to Define the Energy and Protein Requirements of Tilapia, Oreochromis niloticus. Aquaculture 2011, 463, 193–200. [Google Scholar] [CrossRef]
- Bueno, G.W.; Bernal, F.; Roubach, R.; Skipper-Horton, J.; Sampaio, F.; Fialho, N.; Bureau, D. Modeling of waste outputs in the aquatic environment from a commercial cage farm under neotropical climate conditions. Aquac. Environ. Interact. 2023, 15, 133–144. [Google Scholar] [CrossRef]
- Nobile, A.B.; Cunico, A.M.; Vitule, J.R.S.; Queiroz, J.; Vidotto-Magnoni, A.P.; Garcia, D.A.Z.; Orsi, M.L.; Lima, F.P.; Acosta, A.A.; da Silva, R.J.; et al. Status and Recommendations for Sustainable Freshwater Aquaculture in Brazil. Rev. Aquac. 2020, 12, 1495–1517. [Google Scholar] [CrossRef]
- Ferreira, J.G.; Hawkins, A.J.S.; Monteiro, P.; Moore, H.; Service, M.; Pascoe, P.L.; Ramos, L.; Sequeira, A. Integrated Assessment of Ecosystem-Scale Carrying Capacity in Shellfish Growing Areas. Aquaculture 2008, 275, 138–151. [Google Scholar] [CrossRef]
- Weitzman, J.; Filgueira, R. The Evolution and Application of Carrying Capacity in Aquaculture: Towards a Research Agenda. Rev. Aquac. 2019, 12, 1297–1322. [Google Scholar] [CrossRef]
- Lopes, J.E.G.; Santos, R.C.P. Reservoir Capacity. Lecture notes, University of São Paulo, São Paulo, Brazil, 2002. Available online: http://www.ler.esalq.usp.br/disciplinas/Fernando/leb1440/Aula%206/Capacidade%20de%20Reservatorios.pdf (accessed on 14 April 2025).
- Ferreira, J.G.; Grant, J.; Verner-Jefferys, D.W.; Taylor, N.G. Modelling Frameworks for Determination of Carrying Capacity for Aquaculture. In Sustainable Food Production; Christou, P., Savin, R., Costa-Pierce, B., Misztal, I., Whitelaw, B., Eds.; Springer: New York, NY, USA, 2013; pp. 986–1049. [Google Scholar] [CrossRef]
- Fitzsimmons, K. Future Trends of Tilapia Aquaculture in the Americas. In Tilapia Aquaculture in the Americas; Costa-Pierce, B.A., Rakocy, J.E., Eds.; World Aquaculture Society: Baton Rouge, LA, USA, 2000; Volume 2, pp. 252–264. [Google Scholar]
- Sampaio, F.G.; Araújo, C.A.S.; Dallago, B.S.L.; Stech, J.L.; Lorenzzetti, J.A.; Alcântara, E.; Losekann, M.E.; Marin, D.B.; Leão, J.A.D.; Bueno, G.W. Unveiling Low-to-High-Frequency Data Sampling Caveats for Aquaculture Environmental Monitoring and Management. Aquac. Rep. 2021, 20, 100764. [Google Scholar] [CrossRef]
- Soares, M.C.S.; Marinho, M.M.; Huszar, V.L.M.; Branco, C.W.C.; Azevedo, S.M.F.O. The Effects of Water Retention Time and Watershed Features on the Limnology of Two Tropical Reservoirs in Brazil. Lakes Reserv. Res. Manag. 2008, 13, 257–269. [Google Scholar] [CrossRef]
- Nogueira, M.G.; Neves, G.P.; Naliato, D.A.O. Limnology of Two Contrasting Hydroelectric Reservoirs (Storage and Run-of-River) in Southeast Brazil. In Hydropower—Practice and Application; Samadi-Boroujeni, H., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Fialho, N.S.; Valenti, W.C.; David, F.S.; Godoy, E.M.; Proença, D.C.; Roubach, R.; Bueno, G.W. Environmental Sustainability of Nile Tilapia Net-Cage Culture in a Neotropical Region. Ecol. Indic. 2021, 129, 108008. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA; American Water Works Association: Washington, DC, USA; Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- Iwama, G.K.; Tautz, A.F. A Simple Growth Model for Salmonids in Hatcheries. Can. J. Fish. Aquat. Sci. 1981, 38, 649–656. [Google Scholar] [CrossRef]
- Cho, C.Y.; Bureau, D.P. Development of Bioenergetic Models and the Fish-PrFEQ Software to Estimate Production, Feeding Ration and Waste Output in Aquaculture. Aquat. Living Resour. 1998, 11, 199–210. [Google Scholar] [CrossRef]
- Dumas, A.; France, J.; Bureau, D.P. Modelling Growth and Body Composition in Fish Nutrition: Where Have We Been and Where Are We Going? Aquac. Res. 2010, 41, 161–181. [Google Scholar] [CrossRef]
- Chowdhury, M.A.K.; Siddiqui, S.; Hua, K.; Bureau, D.P. Bioenergetics-Based Factorial Model to Determine Feed Requirement and Waste Output of Tilapia Produced under Commercial Conditions. Aquaculture 2013, 410–411, 138–147. [Google Scholar] [CrossRef]
- Dillon, P.J.; Rigler, F.H. A Test of a Simple Nutrient Budget Model Predicting the Phosphorus Concentration in Lake Water. J. Fish. Res. Board Can. 1974, 31, 1771–1778. [Google Scholar] [CrossRef]
- Beveridge, M.C.M. The Environmental Impact of Freshwater Cage and Pen Fish Farming and the Use of Simple Models to Predict Carrying Capacity; FAO Fisheries Technical Paper 255; FAO: Rome, Italy, 1984. [Google Scholar]
- Agência Nacional de Águas e Saneamento Básico (ANA). Catálogo de Metadados da ANA: Relatório Técnico de Atualização das Curvas Cota x Área x Volume da UHE de Chavantes; Agência Nacional de Águas e Saneamento Básico (ANA): Brasília, Brazil, 2019; 115p. Available online: https://metadados.snirh.gov.br/geonetwork/srv/api/records/b8f0487a-df73-4f8d-8b22-bb49cf9f3683 (accessed on 14 April 2025).
- Straškraba, M. Lake and Reservoir Management. Int. Ver. Theor. Angew. Limnol. Verh. 1996, 26, 193–209. [Google Scholar] [CrossRef]
- Conselho Nacional do Meio Ambiente (CONAMA). Resolução CONAMA nº 357, de 17 de Março de 2005—Dispõe Sobre a Classificação dos Corpos de Água e Diretrizes Ambientais Para o Seu Enquadramento, Bem Como Estabelece As Condições e Padrões de Lançamento de Efluentes. Available online: https://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=450 (accessed on 14 April 2025).
- Agência Nacional de Águas e Saneamento Básico (ANA). Nota Técnica n.009/2009/GEOUT/SOF-ANA: Atualização na Metodologia de Análise de Pedidos de Outorga para Piscicultura em Tanques-Rede; ANA: Brasília, Brazil, 2009; 3p.
- Carlson, R.E. A Trophic State Index for Lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef]
- Kratzer, C.R.; Brezonik, P.L. Carlson-Type Trophic State Index for Nitrogen in Florida Lakes. Water Resour. Bull. 1981, 17, 713–715. [Google Scholar] [CrossRef]
- Gentle, J.E. Random Number Generation and Monte Carlo Methods; Springer: New York, NY, USA, 1998. [Google Scholar]
- Vose, D. Risk Analysis: A Quantitative Guide, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Sampaio, F.G.; Silva, C.M.; Mignani, L.; Packer, A.P.; Manzatto, C.V. (Eds.) Monitoramento Ambiental da Aquicultura em Águas da União: Subsídios para a Proposição de um Plano Nacional; Embrapa Meio Ambiente: Brasília, Brazil, 2019. [Google Scholar]
- Montanhini Neto, R.; Ostrensky, A. Evaluation of Commercial Feeds Intended for the Brazilian Production of Nile Tilapia (Oreochromis niloticus L.): Nutritional and Environmental Implications. Aquacult. Nutr. 2014, 21, 311–320. [Google Scholar] [CrossRef]
- Dantas, M.C.; Attayde, J.L. Nitrogen and Phosphorus Content of Some Temperate and Tropical Freshwater Fishes. J. Fish Biol. 2007, 70, 100–108. [Google Scholar] [CrossRef]
- Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Boletim da Aquicultura em Águas da União 2021—Annual Production Report (RAP); MAPA: Brasília, Brazil, 2022; 95p. Available online: https://www.gov.br/mpa/pt-br/assuntos/aquicultura/boletimaquiculturaemguasdaunio2021final_compressed.pdf (accessed on 14 April 2025).
- Köppen, W. Das Geographische System der Klimate. In Handbuch der Klimatologie; Köppen, W., Geiger, G., Eds.; Gebrüder Borntraeger: Berlin, Germany, 1936; Volume 1, pp. 1–44. Available online: https://koeppen-geiger.vu-wien.ac.at/pdf/Koppen_1936.pdf (accessed on 14 April 2025).
- Moura, R.S.T.; Valenti, W.C.; Henry-Silva, G.G. Sustainability of Nile Tilapia Net-Cage Culture in a Reservoir in a Semi-Arid Region. Ecol. Indic. 2016, 66, 574–582. [Google Scholar] [CrossRef]
- Alves, R.C.P.; Baccarin, A.L. Effects of Fish Farming in Net Cages on the Sedimentation of Suspended Matter and Nutrients. In Reservoir Ecology: Potential Impacts, Management Actions and Cascade Systems; Nogueira, M.G., Henry, R., Jorcin, A., Eds.; Rima: São Carlos, Brazil, 2005; pp. 329–348. [Google Scholar]
- Montanhini Neto, R.; Nocko, H.R.; Ostrensky, A. Carrying Capacity and Potential Environmental Impact of Fish Farming in the Cascade Reservoirs of the Paranapanema River, Brazil. Aquac. Res. 2017, 48, 3433–3449. [Google Scholar] [CrossRef]
- Rosanova, C.; Pinho, E.S.; Matos, F.T.; Akama, A.; Bueno, G.W.; Macedo, D.B. Monitoring Aquaculture in Continental Reservoirs Using the Trophic State Index; Embrapa Pesca e Aquicultura: Palmas, TO, Brazil, 2019. [Google Scholar]
- Boyd, C.E.; Tucker, C.S. Pond Aquaculture Water Quality Management; Kluwer Academic Publishers: Boston, MA, USA, 1998; 700p. [Google Scholar] [CrossRef]
- Sifa, L.; Chenhong, L.; Dey, M.; Gagalac, F.; Dunham, R. Cold tolerance of three strains of Nile tilapia, Oreochromis niloticus, in China. Aquaculture 2002, 213, 123–129. [Google Scholar] [CrossRef]
- Brande, M.R. Modelagem Financeira e Risco Econômico da Produção Comercial de Tilápia (Oreochromis niloticus) em Lagos e Reservatórios Tropicais. Master’s Thesis, Centro de Aquicultura da Universidade Estadual Paulista, Jaboticabal, Brazil, 2019. [Google Scholar]
- Calixto, E.S.; Santos, D.F.B.; Lange, D.; Galdiano, M.S.; Rahman, I.U. Aquaculture in Brazil and Worldwide: Overview and Perspectives. J. Environ. Anal. Prog. 2020, 5, 98–107. [Google Scholar] [CrossRef]
- Moraes, C.R.F.; Attayde, J.L.; Henry-Silva, G.G. Stable Isotopes of C and N as Dietary Indicators of Nile Tilapia (Oreochromis niloticus) Cultivated in Net Cages in a Tropical Reservoir. Aquac. Rep. 2020, 18, 100458. [Google Scholar] [CrossRef]
- Boscolo, W.R.; Feiden, A.; Bombardelli, R.A.; Signor, A.; Gentelini, A.L.; Souza, B.E. Phosphorus requirements for Nile tilapia (Oreochromis niloticus) fingerlings. Acta Sci. Anim. Sci. 2005, 27, 87–91. [Google Scholar] [CrossRef]
- Miranda, E.C.; Pezatto, C.A.; Pezzato, L.E.; Furuya, W.M. Apparent phosphorus availability in feed ingredients for Nile tilapia (Oreochromis niloticus). Acta Sci. Anim. Sci. 2008, 22, 669–675. [Google Scholar] [CrossRef]
- Furuya, W.M.; Pezzato, L.E.; Barros, M.M.; Boscolo, W.R.; Cyrino, J.E.P.; Furuya, V.R.B.; Feiden, A. Brazilian Tables for Nile Tilapia Nutrition; GFM: Toledo, PR, Brazil, 2010; 100p. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Fish and Shrimp; National Academy Press: Washington, DC, USA, 2011; 392p. [CrossRef]
- Hardy, R.W. Collaborative Opportunities Between Fish Nutrition and Other Disciplines in Aquaculture: An Overview. Aquaculture 1999, 177, 217–230. [Google Scholar] [CrossRef]
- Bueno, G.W.; Feiden, A.; Neu, D.H.; Lui, T.A.; Wächter, N.; Boscolo, W.R. Digestibility of phosphorus in feed as a nutritional strategy for reduce of effluents from tilapia culture. Arq. Bras. Med. Vet. Zootec. 2012, 64, 183–191. [Google Scholar] [CrossRef]
- Bueno, G.W.; Mattos, B.O.; Neu, D.H.; David, F.S.; Feiden, A.; Boscolo, W.R. Stability and Phosphorus Leaching of Tilapia Feed in Water. Ciênc. Rural 2019, 49, 1–8. [Google Scholar] [CrossRef]
- Nobile, A.B.; Zanatta, A.S.; Brandão, H.; Zica, E.O.; Lima, F.P.; Freitas-Souza, D.; Carvalho, E.D.; Silva, R.J.; Ramos, I.P. Cage Fish Farm Acts as a Source of Changes in the Fish Community of a Neotropical Reservoir. Aquaculture 2018, 495, 780–785. [Google Scholar] [CrossRef]
- Brandão, H.; Lange, D.; Blanco, D.R.; Ramos, I.P.; Sousa, J.Q.D.; Nobile, A.B.; Carvalho, E.D. Fish-food interaction network around cage fish farming in a neotropical reservoir. Acta Limnol. Bras. 2021, 33, e18. [Google Scholar] [CrossRef]
- Houlihan, D.; Boujard, T.; Jobling, M. Food Intake in Fish; Blackwell Science: Oxford, UK, 2001; 440p. [Google Scholar] [CrossRef]
- Boyd, C.E.; Tucker, C.; McNevin, A.; Bostick, K.; Clay, J. Indicators of Resource Use Efficiency and Environmental Performance in Fish and Crustacean Aquaculture. Rev. Fish. Sci. 2007, 15, 327–360. [Google Scholar] [CrossRef]
- Osti, J.A.S.; Moraes, M.A.B.; Carmo, C.F.; Mercante, C.T.J. Nitrogen and Phosphorus Flux from the Production of Nile Tilapia through the Application of Environmental Indicators. Braz. J. Biol. 2017, 78, 25–31. [Google Scholar] [CrossRef]
- Hardy, R.W.; Gatlin, D. Nutritional strategies to reduce nutrient losses in intensive aquaculture. In Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola, Cancún, Quintana Roo, México, 3–6 September 2002; Cruz-Suárez, L.E., Ricque-Marie, D., Tapia Salazar, M., Gaxiola-Cortés, M.G., Simoes, N., Eds.; Universidad Autónoma de Nuevo León: Monterrey, Mexico, 2002; pp. 105–125. [Google Scholar]
- Wang, X.; Olsen, L.M.; Reitan, K.I.; Olsen, Y. Discharge of Nutrient Wastes from Salmon Farms: Environmental Effects, and Potential for Integrated Multi-Trophic Aquaculture. Aquac. Environ. Interact. 2012, 2, 267–283. [Google Scholar] [CrossRef]
- David, G.S.; Carvalho, E.D.D.; Lemos, D.; Silveira, A.N.; Dall’Aglio-Sobrinho, M. Ecological Carrying Capacity for Intensive Tilapia (Oreochromis niloticus) Cage Aquaculture in a Large Hydroelectrical Reservoir in Southeastern Brazil. Aquac. Eng. 2015, 66, 30–40. [Google Scholar] [CrossRef]
- Boyd, C.E.; Teichert-Coddington, D. Dry Matter, Ash, and Elemental Composition of Pond-Cultured Penaeus vannamei and P. stylirostris. J. World Aquacult. Soc. 1995, 26, 88–92. [Google Scholar] [CrossRef]
- Lefrançois, P.; Légaré, B.; Légaré, S.; Vézina, A. Minimizing Phosphorus Discharge from Aquaculture Earth Ponds by a Novel Sediment Retention System. Aquac. Eng. 2010, 43, 94–100. [Google Scholar] [CrossRef]
- De Silva, S.S.; Ingram, B.A.; Nguyen, P.T.; Bui, T.M.; Gooley, G.J.; Turchini, G.M. Estimation of Nitrogen and Phosphorus in Effluent from the Striped Catfish Farming Sector in the Mekong Delta, Vietnam. Ambio 2010, 39, 504–514. [Google Scholar] [CrossRef]
- Lewandowski, V.; Bridi, V.R.C.; Bittencourt, F.; Signor, A.; Boscolo, W.R.; Feiden, A. Spatial and Temporal Limnological Changes of an Aquaculture Area in a Neotropical Reservoir. Ann. Limnol. Int. J. Limnol. 2018, 54, 27. [Google Scholar] [CrossRef]
- Bureau, D.; Hua, K.; Cho, C.Y. Effect of Feeding Level on Growth and Nutrient Deposition in Rainbow Trout (Oncorhynchus mykiss Walbaum) Growing from 150 to 600 g. Aquac. Res. 2006, 37, 1090–1098. [Google Scholar] [CrossRef]
- Dumas, A.; Fraser, K.P.P.; Higgs, D.A.; Beaulieu, L.; Bureau, D.P. Evidence of Three Growth Stanzas in Rainbow Trout (Oncorhynchus mykiss) and Atlantic Salmon (Salmo salar) Using Factorial and Multivariate Approaches. Aquaculture 2007, 267, 139–150. [Google Scholar] [CrossRef]
- Jobling, M. Bioenergetics in Aquaculture Settings. In Encyclopedia of Fish Physiology: From Genome to Environment; Farrell, A.P., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 1664–1674. [Google Scholar] [CrossRef]
- Correia, M.F.; Dias, M.A.F.S. Variation in the Sobradinho Reservoir Level and Its Impact on the Regional Climate. Rev. Bras. Recur. Hídricos 2003, 8, 157–168. [Google Scholar] [CrossRef]
- Nogueira, M.G.; Henry, R.; Maricatto, F.E. Spatial and Temporal Heterogeneity in the Jurumirim Reservoir, São Paulo, Brazil. Lakes Reserv. Res. Manag. 1999, 4, 107–120. [Google Scholar] [CrossRef]
- Pomari, J. Effects of Cage Tilapia Farming on the Zooplankton Assemblages in the Chavantes Reservoir, Paranapanema River (SP/PR). Master’s Thesis, State University of Londrina, Londrina, Brazil, 2010. [Google Scholar]
- Ayroza, D.M.M.R. Limnological Characteristics in Areas under the Influence of Cage Fish Farming in the UHE Chavantes Reservoir, Paranapanema River, Southeastern/Southern Brazil. Ph.D. Thesis, São Paulo State University (UNESP), Jaboticabal, Brazil, 2012. [Google Scholar]
Stochastic Variables | Values | Distribution | |
---|---|---|---|
Minimum | Maximum | ||
ECCp Standard SIPOT (kg fish biomass/year) | 210,697.50 | 263,258.87 | Uniform |
ECCp Fartura—A.R. (kg fish biomass/year) | 112,156.34 | 263,899.58 | Uniform |
Water temperature (°C) | 20 | 30 | Triangular |
Total phosphorus content in feed (%) | 0.83 | 2.12 | Triangular |
Digestible phosphorus content in feed (%) | 0.53 | 1.22 | Triangular |
Low-Energy Density Feed | Industry Values | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TGC * | Exp * | DM (%) | DDM (%) | CP (%) | DP (%) | P (%) | DP (%) | GE (MJ/kg) | DE (MJ/kg) | DP/DE | |
Juvenile I | 1.147 | 0.533 | 90.69 | 53.76 | 39.53 | 32.16 | 0.83 | 0.53 | 15.91 | 11.25 | 28.59 |
Juvenile II | 12.870 | 0.950 | 90.22 | 59.93 | 31.89 | 25.24 | 0.87 | 0.49 | 17.70 | 13.67 | 18.46 |
Market weight | 19.123 | 0.853 | 89.37 | 61.68 | 23.65 | 21.03 | 0.85 | 0.49 | 16.34 | 11.67 | 18.03 |
Medium-energy density feed ** | Industry Values | ||||||||||
TGC * | Exp * | DM (%) | DDM (%) | CP (%) | DP (%) | P (%) | DP (%) | GE (MJ/kg) | DE (MJ/kg) | DP/DE | |
Juvenile I | 1.147 | 0.533 | 90.27 | 67.66 | 31.40 | 28.10 | 1.24 | 0.71 | 16.91 | 13.05 | 21.53 |
Juvenile II | 12.870 | 0.950 | 89.94 | 60.98 | 31.08 | 27.72 | 1.21 | 0.69 | 16.49 | 12.50 | 22.17 |
Market weight | 19.123 | 0.853 | 90.27 | 67.53 | 31.33 | 27.97 | 1.28 | 0.74 | 16.53 | 16.53 | 16.92 |
High-energy density feed | Industry Values | ||||||||||
TGC * | Exp * | DM (%) | DDM (%) | CP (%) | DP (%) | P (%) | DP (%) | GE (MJ/kg) | DE (MJ/kg) | DP/DE | |
Juvenile I | 1.147 | 0.533 | 91.24 | 63.52 | 39.71 | 35.35 | 2.12 | 1.22 | 17.57 | 12.89 | 27.43 |
Juvenile II | 12.870 | 0.950 | 91.21 | 62.41 | 35.58 | 31.35 | 2.11 | 1.22 | 16.96 | 12.48 | 25.11 |
Market weight | 19.123 | 0.853 | 91.65 | 59.15 | 26.51 | 22.36 | 2.09 | 1.11 | 16.96 | 11.48 | 19.47 |
Parameters | JVI | JVII | MWt |
---|---|---|---|
IBW (g) | 30 ± 5.8 | 152 ± 4.1 | 506 ± 9.3 |
FBW (g) DWG (g/fish/day) | 152 ± 4.1 2.3 ± 1.8 | 506 ± 9.3 3.1 ± 2.3 | 842 ± 5.5 5.0 ± 2.1 |
MO (%) | 6.4 ± 5.7 | 3.4 ± 2.1 | 2.2 ± 3.5 |
FB (kg/m3) | 35 ± 9.8 | 84 ± 7.9 | 97 ± 15.4 |
FCR (feed: weight gain) FE (weight gain: feed) | 1.41 ± 1.47 0.74 ± 0.89 | 1.70 ± 0.90 0.65 ± 1.10 | 1.83 ± 1.10 0.61 ± 1.56 |
Parameters | 0.8% P total | 1.2% P Total * | 2.1% P Total | ||||||
---|---|---|---|---|---|---|---|---|---|
Temperature | Temperature | Temperature | |||||||
21 °C | 25 °C | 29 °C | 21 °C | 25 °C | 29 °C | 21 °C | 25 °C | 29 °C | |
Phosphorus | |||||||||
Phosphorus Intake (g/fish) | 7.65 | 10.32 | 10.13 | 9.74 | 13.14 | 13.59 | 19.19 | 25.91 | 25.50 |
Digestible Phosphorus Intake (g/fish) | 4.43 | 5.98 | 5.89 | 5.58 | 7.53 | 7.78 | 10.67 | 14.41 | 14.38 |
Phosphorus Retention (g/fish) | 4.36 | 5.33 | 4.96 | 4.36 | 5.33 | 4.96 | 4.36 | 5.33 | 4.96 |
Phosphorus Through Gills and Urinary (g/fish) | 0.07 | 0.64 | 0.93 | 1.22 | 2.20 | 2.82 | 6.31 | 9.08 | 9.42 |
Phosphorus in Feces (g/fish) | 3.22 | 4.34 | 4.24 | 4.16 | 5.61 | 5.81 | 8.52 | 11.50 | 11.12 |
Solid Waste from Farming | |||||||||
Total Phosphorus (kg/t) | 3.22 | 4.34 | 4.24 | 4.16 | 5.61 | 5.81 | 8.52 | 11.50 | 11.12 |
Total Waste (Solid + Dissolved) | |||||||||
Total Phosphorus (kg/t) | 3.28 | 4.99 | 5.17 | 5.37 | 7.81 | 8.63 | 14.83 | 20.58 | 20.54 |
Brazilian National Water and Basic Sanitation Agency (ANA) Data | |||||||||
Total Phosphorus (kg/t) | 3.90 | 3.90 | 3.90 | 9.82 | 9.82 | 9.82 | 24.22 | 24.22 | 24.22 |
Phosphorus Retained in Fish (kg/t) | 9.38 | 9.38 | 9.38 | 9.38 | 9.38 | 9.38 | 9.38 | 9.38 | 9.38 |
Reservoir Water Level | Operational Status | Maximum Operational Level (SIPOT Standard) | Medium Operational Level (SIPOT Standard) | Minimum Operational Level (SIPOT Standard) | Maximum Operational Level (Fartura—A.R.) | Minimum Operational Level (Fartura—A.R.) |
---|---|---|---|---|---|
Scenario 01 | Scenario 02 | Scenario 03 | Scenario 04 | Scenario 05 | |
Elevation (m) * | 474.00 | 470.29 | 465.23 | 472.60 | 467.90 |
Area (km2) ** | 402.53 | 349.12 | 301.78 | 387.32 | 333.98 |
Volume (hm3) ** | 8795 | 7368 | 5754 | 8321 | 6669 |
Average inflow rate—Qmlt (m3/s) * | 400.00 | 346.94 | 322.36 | 400.00 | 170.00 |
Average depth at the elevation considered—z (m) | 21.85 | 21.10 | 19.07 | 21.48 | 19.97 |
Residence time—td (years−1) | 0.697 | 0.673 | 0.566 | 0.660 | 1.244 |
Residence time—td (days) | 254.48 | 245.79 | 206.59 | 240.77 | 454.03 |
Water renewal rate in the reservoir—ρ (years−1) | 0.045 | 0.047 | 0.056 | 0.048 | 0.025 |
Δ[P] (mg/m3) *** | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
Phosphorus retention coefficient—R **** | 0.760 | 0.760 | 0.759 | 0.761 | 0.761 |
Zootechnical Data for the Studied Specie | |||||
P feed (kg/t)—Pr (1% P—total) | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
P retained in fish (kg/t)—Pp ***** | 9.38 | 9.38 | 9.38 | 9.38 | 9.38 |
P released into water (kg/t)—Pa | 6.62 | 6.62 | 6.62 | 6.62 | 6.62 |
FCR | 1.60 | 1.60 | 1.60 | 1.60 | 1.60 |
Environmental Carrying Capacity for P (ECCp) at the Chavantes Hydroelectric Power Plant (UHE Chavantes) | |||||
Maximum load of the reservoir Lr (kg/year) | 263,258.87 | 228,183.68 | 210,697.50 | 263,899.58 | 112,156.34 |
Maximum fish production B (t/ano)—ANA | 39,767.20 | 34,468.83 | 31,827.42 | 39,863.99 | 16,942.05 |
Environmental Carrying Capacity for P (ECCp) in the Aquaculture Area (UHE Chavantes—Fartura) | |||||
Feed with 1.2% P and water temperature of 21 °C 1 | Scenario 21 | Scenario 22 | Scenario 23 | Scenario 24 | Scenario 25 |
Water temperature (°C) | 21 | 21 | 21 | 21 | 21 |
P feed (kg/t)—Pr (1.2% P—total) | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
P retained in fish (kg/t)—Pp | 4.09 | 4.09 | 4.09 | 4.09 | 4.09 |
P released into the water (kg/t)—Pa | 5.37 | 5.37 | 5.37 | 5.37 | 5.37 |
New maximum fish production (t/year)—1.2% P 21 °C | 48,980.30 | 42,454.43 | 39,201.06 | 49,099.51 | 20,867.11 |
Feed with 1.2% P and water temperature of 25 °C 1 | Scenario 26 | Scenario 27 | Scenario 28 | Scenario 29 | Scenario 30 |
Water temperature (°C) | 25 | 25 | 25 | 25 | 25 |
P feed (kg/t)—Pr (1.2% P—total) | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
P retained in fish (kg/t)—Pp | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
P released into the water (kg/t)—Pa | 7.81 | 7.81 | 7.81 | 7.81 | 7.81 |
New maximum fish production (t/year)—1.2% P 25 °C | 33,719.52 | 29,226.91 | 26,987.20 | 33,801.59 | 14,365.55 |
Feed with 1.2% P and water temperature of 29 °C 1 | Scenario 31 | Scenario 32 | Scenario 33 | Scenario 34 | Scenario 35 |
Water temperature (°C) | 29 | 29 | 29 | 29 | 29 |
P feed (kg/t)—Pr (1.2% P—total) | 12.00 | 12.00 | 12.00 | 12.00 | 12.00 |
P retained in fish (kg/t)—Pp | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 |
P released into the water (kg/t)—Pa | 8.63 | 8.63 | 8.63 | 8.63 | 8.63 |
New maximum fish production (t/year)—1.2% P 29 °C | 30,514.15 | 26,448.61 | 24,421.80 | 30,588.41 | 12,999.96 |
Indicators | Scenarios Standard SIPOT | Scenarios Fartura A.R. | ||
---|---|---|---|---|
Pa (kg/t) | B (t/yearano) | Pa (kg/t) | B (t/year) | |
Mean | 11.29 | 23,464.22 | 11.26 | 18,853.36 |
SD | 3.89 | 9023.57 | 3.86 | 8494.87 |
Mode | 10.81 | 14,860.73 | 8.80 | 16,314.97 |
Median | 10.77 | 21,712.15 | 10.77 | 17,123.32 |
Percentile | ||||
5% | 5.77 | 12,602.43 | 5.75 | 8543.75 |
25% | 8.43 | 16,895.06 | 8.35 | 12,688.45 |
50% | 10.77 | 21,712.15 | 10.77 | 17,123.32 |
75% | 13.79 | 27,859.08 | 13.74 | 23,145.00 |
95% | 18.42 | 40,840.71 | 18.38 | 35,225.67 |
P released into water (Pa Standard ANA)—6.62 kg/t |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godoy, E.M.d.; Camargo, T.R.; Toniato, M.; Proença, D.C.; Obando, J.M.C.; Roubach, R.; Gallardo, P.; Bueno, G.W. Framework for Estimating Environmental Carrying Capacity in Diverse Climatic Conditions and Fish Farming Production in Neotropical Reservoirs. Sustainability 2025, 17, 5282. https://doi.org/10.3390/su17125282
Godoy EMd, Camargo TR, Toniato M, Proença DC, Obando JMC, Roubach R, Gallardo P, Bueno GW. Framework for Estimating Environmental Carrying Capacity in Diverse Climatic Conditions and Fish Farming Production in Neotropical Reservoirs. Sustainability. 2025; 17(12):5282. https://doi.org/10.3390/su17125282
Chicago/Turabian StyleGodoy, Elisa Maia de, Tavani Rocha Camargo, Moranne Toniato, Danilo Cintra Proença, Johana Marcela Concha Obando, Rodrigo Roubach, Pablo Gallardo, and Guilherme Wolff Bueno. 2025. "Framework for Estimating Environmental Carrying Capacity in Diverse Climatic Conditions and Fish Farming Production in Neotropical Reservoirs" Sustainability 17, no. 12: 5282. https://doi.org/10.3390/su17125282
APA StyleGodoy, E. M. d., Camargo, T. R., Toniato, M., Proença, D. C., Obando, J. M. C., Roubach, R., Gallardo, P., & Bueno, G. W. (2025). Framework for Estimating Environmental Carrying Capacity in Diverse Climatic Conditions and Fish Farming Production in Neotropical Reservoirs. Sustainability, 17(12), 5282. https://doi.org/10.3390/su17125282