A Sustainability Analysis of the Small Demersal Fish Used in the Surimi Industry in Indonesia Using the Length-Based Spawning Potential Ratio
Abstract
:1. Introduction
- (1)
- What is the current stock status of small demersal fish species used in the surimi industry in the Java Sea fishing area?
- (2)
- How does the length-based spawning potential ratio (LB-SPR) of targeted demersal fish species indicate the sustainability of the fishing practices?
- (3)
- What are the implications of overfishing on the future availability of raw materials for Indonesia’s surimi industry and local fishing communities?
- (4)
- How can fishery management and regulations be improved to ensure the long-term sustainability of demersal fish stocks in the Java Sea?
2. Materials and Methods
2.1. Research Period and Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results and Discussion
3.1. Length Frequency Distribution of Demersal Fishes
3.2. Length at First Maturity of Demersal Fishes
3.3. Gonad Maturity Stage
3.4. Growth and Mortality Parameter Estimates
3.5. Sustainability-Related Information in Relation to Demersal Fish Stock Assessment for the Surimi Industry
3.6. The Implications and Recommendations of Industrial and Future Research Directions of LB-SPR Application in Relation to Demersal Fish Stock in the Java Sea, Indonesia
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sonu, S.C. Surimi, 13th ed.; NOAA technical memorandum NMFS-SWR; National Marine Fisheries Service: Terminal Island, CA, USA, 1986. [Google Scholar]
- Park, J.W.; Graves, D.; Draves, R.; Yongsawatdigul, J. Manufacture of Surimi. In Surimi and Surimi Seafood, 3rd ed.; Park, J.W., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 55–96. ISBN 978-0-429-11273-7. [Google Scholar]
- Okazaki, E.; Kimura, I. Frozen Surimi and Surimi-Based Products. In Seafood Processing; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 209–235. ISBN 978-1-118-34617-4. [Google Scholar]
- Shi, H.; Zhang, M.; Liu, X.-C.; Yao, X.; Wang, W.; Zheng, J.; Tomasevic, I.; Sun, W. Improved Qualities of Salt-Reduced Tilapia Surimi by Adding Konjac Glucomannan: Insight into the Edible Traits, Gel Properties and Anti-Freezing Ability. Food Hydrocoll. 2024, 153, 109971. [Google Scholar] [CrossRef]
- Priyadarshini, B.; Xavier, K.A.M.; Nayak, B.B.; Dhanapal, K.; Balange, A.K. Instrumental Quality Attributes of Single Washed Surimi Gels of Tilapia: Effect of Different Washing Media. LWT 2017, 86, 385–392. [Google Scholar] [CrossRef]
- de Oliveira, D.L.; Grassi, T.L.M.; Santo, E.F.E.; Cavazzana, J.F.; Marcos, M.T.S.; Ponsano, E.H.G. Washings and Cryoprotectants for the Production of Tilapia Surimi. Food Sci. Technol. 2017, 37, 432–436. [Google Scholar] [CrossRef]
- Yin, T.; Park, J.W. Comprehensive Review: By-Products from Surimi Production and Better Utilization. Food Sci. Biotechnol. 2023, 32, 1957–1980. [Google Scholar] [CrossRef] [PubMed]
- Dimarchopoulou, D.; Wibisono, E.; Saul, S.; Carvalho, P.; Nugraha, A.; Mous, P.J.; Humphries, A.T. Combining Catch-Based Indicators Suggests Overexploitation and Poor Status of Indonesia’s Deep Demersal Fish Stocks. Fish. Res. 2023, 268, 106854. [Google Scholar] [CrossRef]
- Sihono, S.; Purnomo, A.; Wibowo, S.; Dewi, F. Current (2021) Status of Surimi Industry in Indonesia and Possible Solutions: A Review. IOP Conf. Ser. Earth Environ. Sci. 2021, 919, 012036. [Google Scholar] [CrossRef]
- Hikmayani, Y.; Apriliani, T.; Adi, T.R. Alternative Solutions for the Sustainability of the Surimi Industry in Indonesia. Bul. Ilm. Mar. Sos. Ekon. Kelaut. Dan Perikanan 2017, 3, 41–51. [Google Scholar] [CrossRef]
- Indonesian Fishery Producers, Processing, and Marketing Association Focus Group Discussion: Building a Sustainable Surimi Industry and Surimi Based Products. Available online: https://ap5i-indonesia-seafood.com/indoap5i/2022/03/15/fgd-membangun-industri-surimi-dan-produk-olahan-surimi-based-products-yang-berkelanjutan-14-maret-2022/ (accessed on 7 October 2024).
- FAOSTAT. Food Balance Sheets 2010–2022—Global, Regional and Country Trends. Version: 91; FAO: Rome, Italy, 2024. [Google Scholar] [CrossRef]
- Leadbitter, D.; Guenneugues, P.; Park, J. The Production of Surimi and Surimi Seafood from Tropical Fish—A Landscape View of the Industry, 1st ed.; Report to the Certification and Rating Collaboration; Certification and Ratings Collaboration: Vancouver, BC, Canada, 2020. [Google Scholar]
- Pangsorn, S.; Laong-manee, P.; Siriraksophon, S. Status of Surimi Industry in the Southeast Asia; Surimi Industry in Southeast Asia; TD/RES 118; Training Department, Southeast Asian Fisheries Development Center: Bangkok, Thailand, 2007. [Google Scholar]
- Prayitno, M.; Setiawan, H.; Jatmiko, I.; Arif Rahman, M.; Wiadnya, D. Spawning Potential Ratio (SPR) of Sulphur Goatfish (Upeneus sulphureus): Biological Basis for Demersal Fishery Management in Java Sea. IOP Conf. Ser. Earth Environ. Sci. 2020, 441, 012141. [Google Scholar] [CrossRef]
- Ministry of Marine Affairs and Fisheries of Indonesia. Analysis of Key Performance Indicators of the Marine and Fisheries Sector for the Period 2019–2023; Data, Statistics, and Information Center of the Indonesian Ministry of Marine Affairs and Fisheries: Jakarta, Indonesia, 2024; Volume 2, ISBN 2829-7245.
- Sarr, A.-C.; Sepulchre, P.; Husson, L. Impact of the Sunda Shelf on the Climate of the Maritime Continent. J. Geophys. Res. Atmos. 2019, 124, 2574–2588. [Google Scholar] [CrossRef]
- Saintilan, N.; Horton, B.; Törnqvist, T.E.; Ashe, E.L.; Khan, N.S.; Schuerch, M.; Perry, C.; Kopp, R.E.; Garner, G.G.; Murray, N.; et al. Widespread Retreat of Coastal Habitat Is Likely at Warming Levels above 1.5 °C. Nature 2023, 621, 112–119. [Google Scholar] [CrossRef]
- Dimarchopoulou, D.; Mous, P.J.; Firmana, E.; Wibisono, E.; Coro, G.; Humphries, A.T. Exploring the Status of the Indonesian Deep Demersal Fishery Using Length-Based Stock Assessments. Fish. Res. 2021, 243, 106089. [Google Scholar] [CrossRef]
- Matrutty, D.D.; Waileruny, W.; Noija, D. Fishing Ground Distribution of Deep Sea Demersal Fish in South Coast of Ambon, Indonesia. Aquac. Aquar. Conserv. Legis. 2017, 10, 25–31. [Google Scholar]
- Rajan, P.T. Chapter 11—Marine Fishery Resources and Species Diversity of Tropical Waters. In Biodiversity and Climate Change Adaptation in Tropical Islands; Sivaperuman, C., Velmurugan, A., Singh, A.K., Jaisankar, I., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 323–354. ISBN 978-0-12-813064-3. [Google Scholar]
- Brander, K. Demersal Species Fisheries. In Encyclopedia of Ocean Sciences; Steele, J.H., Ed.; Academic Press: Oxford, UK, 2001; pp. 718–725. ISBN 978-0-12-227430-5. [Google Scholar]
- Khedkar, G.D.; Jadhao, B.V.; Chavan, N.V.; Khedkar, C.D. Demersal Species of Tropical Climates. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; FISH; Academic Press: Oxford, UK, 2003; pp. 2438–2442. ISBN 978-0-12-227055-0. [Google Scholar]
- Suharsono, A.; Mustofa, A.; Hizbulloh, L.; Irschlinger, T.; Tolvanen, S. Supporting Marine Fishing Sustainably: A Review of Central and Provincial Government Support for Marine Fisheries in Indonesia, 1st ed.; IISD, GSI, WWF, and Marine Change: Manitoba, MB, Canada, 2021; ISBN CC BY-NC-SA 4.0. [Google Scholar]
- Atmaja, S.B.; Sadhotomo, B.; Nugroho, D. Overfishing on purse seine semi industry fisheries in the Java Sea and management implications. J. Kebijak. Perikan. Indones. 2017, 3, 51–60. [Google Scholar] [CrossRef]
- Silberschneider, V.; Gray, C.A.; Stewart, J. Age, Growth, Maturity and the Overfishing of the Iconic Sciaenid, Argyrosomus japonicus, in South-Eastern, Australia. Fish. Res. 2009, 95, 220–229. [Google Scholar] [CrossRef]
- Pham, C.-V.; Wang, H.-C.; Chen, S.-H.; Lee, J.-M. The Threshold Effect of Overfishing on Global Fishery Outputs: International Evidence from a Sustainable Fishery Perspective. Fishes 2023, 8, 71. [Google Scholar] [CrossRef]
- Sumaila, U.R.; Tai, T.C. End Overfishing and Increase the Resilience of the Ocean to Climate Change. Front. Mar. Sci. 2020, 7, 2739–2744. [Google Scholar] [CrossRef]
- Durant, J.M.; Holt, R.E.; Langangen, Ø. Large Biomass Reduction Effect on the Relative Role of Climate, Fishing, and Recruitment on Fish Population Dynamics. Sci. Rep. 2024, 14, 8995. [Google Scholar] [CrossRef]
- Prince, J.; Victor, S.; Kloulchad, V.; Hordyk, A. Length Based SPR Assessment of Eleven Indo-Pacific Coral Reef Fish Populations in Palau. Fish. Res. 2015, 171, 42–58. [Google Scholar] [CrossRef]
- Hordyk, A.; Ono, K.; Valencia, S.; Loneragan, N.; Prince, J. A Novel Length-Based Empirical Estimation Method of Spawning Potential Ratio (SPR), and Tests of Its Performance, for Small-Scale, Data-Poor Fisheries. ICES J. Mar. Sci. 2015, 72, 217–231. [Google Scholar] [CrossRef]
- Hommik, K.; Fitzgerald, C.J.; Kelly, F.; Shephard, S. Dome-Shaped Selectivity in LB-SPR: Length-Based Assessment of Data-Limited Inland Fish Stocks Sampled with Gillnets. Fish. Res. 2020, 229, 105574. [Google Scholar] [CrossRef]
- Yonvitner; Kurnia, R.; Boer, M. Length Based-Spawning Potential Ratio (LB-SPR), on Exploited Demersal Stock (Priachantus tayenus) in Small Scale Fisheries, Sunda Strait. IOP Conf. Ser. Earth Environ. Sci. 2021, 744, 012103. [Google Scholar] [CrossRef]
- Yonvitner; Kurnia, R.; Boer, M. Life History and Length Based-Spawning Potential Ratio (LB-SPR) of Exploited Demersal Fish Stock (Upeneus Sp) in Sunda Strait. IOP Conf. Ser. Earth Environ. Sci. 2021, 718, 012074. [Google Scholar] [CrossRef]
- Medeiros-Leal, W.; Santos, R.; Peixoto, U.I.; Casal-Ribeiro, M.; Novoa-Pabon, A.; Sigler, M.F.; Pinho, M. Performance of Length-Based Assessment in Predicting Small-Scale Multispecies Fishery Sustainability. Rev. Fish Biol. Fish. 2023, 33, 819–852. [Google Scholar] [CrossRef]
- Yokie, A.A. An Assessment of the Sardinella Maderensis Stock of Liberia Coastal Waters Using the Length Based Spawning Potential Ratio (Lbspr). In Proceedings of the GRÓ Fisheries Training Program Under the Auspices of UNESCO, Hafnarfjörður, Iceland, 1 January 2020; GRO-FTP: Reykjavík, Iceland, 2019; pp. 1–22. [Google Scholar]
- Kibona, O.M.; Jonasson, J.P. Application of Length-Based Spawning Potential Ratio Method and Analysis of the Structure of the Electronic Catch Assessment Survey in Marine Waters of Mainland, Tanzania. In Proceedings of the GRÓ Fisheries Training Program Under the Auspices of UNESCO, Hafnarfjörður, Iceland, 1 January 2020; GRO-FTP: Reykjavík, Iceland, 2019; pp. 1–40. [Google Scholar]
- Sigler, M.F.; Lunsford, C.R. Effects of Individual Quotas on Catching Efficiency and Spawning Potential in the Alaska Sablefish Fishery. Can. J. Fish. Aquat. Sci. 2001, 58, 1300–1312. [Google Scholar] [CrossRef]
- Valinassab, T.; Adjeer, M.; Sedghi, N.; Kamali, E. Monitoring of demersal resources by Swept Area Method within the Persian Gulf and Oman Sea. J. Anim. Environ. 2010, 2, 45. [Google Scholar]
- Ashida, H.; Suzuki, N.; Tanabe, T.; Suzuki, N.; Aonuma, Y. Reproductive Condition, Batch Fecundity, and Spawning Fraction of Large Pacific Bluefin Tuna Thunnus orientalis Landed at Ishigaki Island, Okinawa, Japan. Environ. Biol. Fish. 2015, 98, 1173–1183. [Google Scholar] [CrossRef]
- Prince, J.; Creech, S.; Madduppa, H.; Hordyk, A. Length Based Assessment of Spawning Potential Ratio in Data-Poor Fisheries for Blue Swimming Crab (Portunus Spp.) in Sri Lanka and Indonesia: Implications for Sustainable Management. Reg. Stud. Mar. Sci. 2020, 36, 101309. [Google Scholar] [CrossRef]
- Ernawati, T.; Budiarti, T. Life History and Length Base Spawning Potential Ratio (LBSPR) of Malabar Snapper Lutjanus malabaricus (Bloch & Schneider, 1801) in Western of South Sulawesi, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 404, 012023. [Google Scholar] [CrossRef]
- Aulia, I.; Rahmawati, A.; Syauqi, M.; Wahyuningsih, M.; Raimahua, S.; Akmalia, W.; Khalifa, M. Age Structure, Growth, and Mortality of Blue Swimming Crab (Portunus pelagicus Linnaeus,1758) in Banten Bay Waters. J. Biodjati 2023, 8, 69–80. [Google Scholar] [CrossRef]
- White, D.B.; Palmer, S.M. Age, Growth, and Reproduction of the Red Snapper, Lutjanus campechanus, from the Atlantic Waters of the Southeastern US. Bull. Mar. Sci. 2004, 75, 335–360. [Google Scholar]
- Zedta, R.R.; Madduppa, H. Exploitation Level of Yellowfin Tuna (Thunnus albacares) Resources in Indian Ocean Using Spawning Potential Ratio Analysis Approach. J. Penelit. Perikan. Indones. 2021, 27, 33–41. [Google Scholar]
- Taylor, R.G.; Whittington, J.A.; Grier, H.J.; Crabtree, R.E. Age, Growth, Maturation, and Protandric Sex Reversal in Common Snook, Centropomus Undecimalis, from the East and West Coasts of South Florida. Fish. Bull. 2000, 98, 612–624. [Google Scholar]
- Miles, D.A. A Taxonomy of Research Gaps: Identifying and Defining the Seven Research Gaps. In Proceedings of the Doctoral Workshop: Finding Research Gaps-Research Methods and Strategies, Dallas, TX, USA, 16 August 2017; pp. 1–15. [Google Scholar]
- Goodyear, C. Spawning Stock Biomass per Recruit in Fisheries Management: Foundation and Current Use. In Canadian Special Publication of Fisheries and Aquatic Sciences; Canadian Science Publishing: Ottawa, ON, Canada, 1993; Volume 120, pp. 67–81. ISBN 978-0-660-14956-1. Available online: https://www.researchgate.net/publication/251832024_Spawning_Stock_Biomass_per_Recruit_in_Fisheries_Management_Foundation_and_Current_Use/citation/download (accessed on 7 October 2024).
- Gabriel, W.L.; Sissenwine, M.P.; Overholtz, W.J. Analysis of Spawning Stock Biomass per Recruit: An Example for Georges Bank Haddock. N. Am. J. Fish. Manag. 1989, 9, 383–391. [Google Scholar] [CrossRef]
- Ault, J.S.; Smith, S.G.; Luo, J.; Monaco, M.E.; Appeldoorn, R.S. Length-Based Assessment of Sustainability Benchmarks for Coral Reef Fishes in Puerto Rico. Environ. Conserv. 2008, 35, 221–231. [Google Scholar] [CrossRef]
- Arocha, F.; Bárrios, A. Sex Ratios, Spawning Seasonality, Sexual Maturity, and Fecundity of White Marlin (Tetrapturus albidus) from the Western Central Atlantic. Fish. Res. 2009, 95, 98–111. [Google Scholar] [CrossRef]
- Malau, A.E.S.; Tallo, I.; Soewarlan, L.C. Gonadal Maturity Level of Kurisi Fish (Nemipterus bathybius) in Kupang Bay. J. Techno-Fish 2022, 6, 144–158. [Google Scholar]
- Ernawati, T.; Kembaren, D.D. Bambang Sumiono Population Parameters of Painted Spiny Lobster (Panulirus versicolor) in Northern Sikka and Adjacent Waters. BAWAL 2014, 6, 169–175. Available online: https://core.ac.uk/outputs/267084903/?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1 (accessed on 7 October 2024).
- Pauly, D.; David, N. ELEFAN I, a BASIC Program for the Objective Extraction of Growth Parameters from Length-Frequency Data. Berichte Der Dtsch. Wiss. Komm. Für Meeresforsch. 1981, 28, 205–211. [Google Scholar]
- Gayanilo Jr, F.; Sparre, P.; Pauly, D. FAO-ICLARM Stock Assessment Tools II: FiSAT II: User’s Guide; Computerized Information Series: Fisheries; Rev. Version; WorldFish Center, FAO Computerized Information Series: Rome, Italy, 2005; Volume Revised Version, ISBN 978-92-5-104640-1. [Google Scholar]
- Pauly, D.; Greenberg, A. ELEFAN in R: A New Tool for Length-Frequency Analysis, 3rd ed.; Fisheries Centre Research Reports; Fisheries Centre, University of Britisch Columbia: Vancouver, BC, Canada, 2013; ISBN 1198-6727. [Google Scholar]
- Cinner, J.S. The Barefoot Ecologist’s Toolbox 2020. R Statistical Computing; Open-Source Software Packages. Research Council Centre of Excellence for Coral Reef Studies. Available online: http://barefootecologist.com.au/. (accessed on 28 March 2025).
- Paul, M.; Pradit, S.; Hajisamae, S.; Perngmak, P.; Hoque, S. Size and Growth Variation at Maturity of Six Nemipterus Species in the South China Sea. Russ. J. Agric. Socio-Econ. Sci. 2016, 59, 156–164. [Google Scholar] [CrossRef]
- Oktaviani, D.; Faizah, R.; Nugroho, D. Biological Aspects of Longfin Mojarra (Pentaprion longimanus, Cantor 1849) in North Coast of Central Java, Indonesia. Biodiversitas J. Biol. Divers. 2018, 19, 683–689. [Google Scholar] [CrossRef]
- Nugroho, D.; Patria, M.P.; Supriatna, J.; Adrianto, L. Biological Characteristics on Three Demersal Fish Landed in Tegal, North Coast of Central Java, Indonesia. Biodiversitas J. Biol. Divers. 2016, 17, 679–686. [Google Scholar] [CrossRef]
- Brojo, M.; Sari, R.P. Reproductive Biology of Fivelined Threadfin Bream (Nemipterus tambuloides Blkr.) What Landed in Place of Fish Auction Labuan, Pandeglang. J. Iktiologi Indones. 2002, 2, 9–13. [Google Scholar]
- Hidayat, T.M. Fish Stock Assessment of Threadfin Bream (Nemipterus japonicus, Bloch 1791) Resources in Banten Bay. Bachelor’s Thesis, IPB University, Bogor, Indonesia, 2015. Available online: http://repository.ipb.ac.id/handle/123456789/75890 (accessed on 28 March 2025).
- Demirci, S.; Demirci, A.; Şimşek, E. Spawning Season and Size at Maturity of a Migrated Fish, Randall’s Threadfin Bream (Nemipterus randalli) in Iskenderun Bay, Northeastern Mediterranean, Turkey. Fresenius Environ. Bull. 2018, 27, 503–507. [Google Scholar]
- Akter, M.; Sharifuzzaman, S.M.; Shan, X.; Rashed-Un-Nabi, M. Reproduction, Growth, Mortality and Yield of the Goatfish Upeneus sulphureus in Northern Bay of Bengal, Bangladesh. J. Ichthyol. 2020, 60, 441–452. [Google Scholar] [CrossRef]
- Prihatiningsih; Taufik, M.; Chodrijah, U. Some Biological Stock Indicators of Red Bigeye (Priacanthus macracanthus Cuvier, 1829) in Palabuhanratu Waters, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 674, 012005. [Google Scholar] [CrossRef]
- Hordyk, A.R.; Ono, K.; Prince, J.D.; Walters, C.J. A Simple Length-Structured Model Based on Life History Ratios and Incorporating Size-Dependent Selectivity: Application to Spawning Potential Ratios for Data-Poor Stocks. Can. J. Fish. Aquat. Sci. 2016, 73, 1787–1799. [Google Scholar] [CrossRef]
- Warren, C.; Steenbergen, D.J. Fisheries Decline, Local Livelihoods and Conflicted Governance: An Indonesian Case. Ocean. Coast. Manag. 2021, 202, 105498. [Google Scholar] [CrossRef]
- Muawanah, U.; Pomeroy, R.S.; Marlessy, C. Revisiting Fish Wars: Conflict and Collaboration over Fisheries in Indonesia. Coast. Manag. 2012, 40, 279–288. [Google Scholar] [CrossRef]
- World Bank. World Bank Oceans for Prosperity: Reforms for a Blue Economy in Indonesia; World Bank: Washington, DC, USA, 2021; pp. 1–41. [Google Scholar]
- Teh, L.S.; Cheung, W.W.; Christensen, V.; Sumaila, U. Can We Meet the Target? Status and Future Trends for Fisheries Sustainability. Curr. Opin. Environ. Sustain. 2017, 29, 118–130. [Google Scholar] [CrossRef]
- Dahlet, L.I.; Himes-Cornell, A.; Metzner, R. Fisheries Conflicts as Drivers of Social Transformation. Curr. Opin. Environ. Sustain. 2021, 53, 9–19. [Google Scholar] [CrossRef]
- Okeke-Ogbuafor, N.; Gray, T. Is Community-Based Management of Small-Scale Fisheries in Sierra Leone the Answer to Their Problems? World Dev. Perspect. 2021, 21, 100292. [Google Scholar] [CrossRef]
- Sari, I.; Ichsan, M.; White, A.; Raup, S.A.; Wisudo, S.H. Monitoring Small-Scale Fisheries Catches in Indonesia through a Fishing Logbook System: Challenges and Strategies. Mar. Policy 2021, 134, 104770. [Google Scholar] [CrossRef]
- Ye, Y.; Gutierrez, N.L. Ending Fishery Overexploitation by Expanding from Local Successes to Globalized Solutions. Nat. Ecol. Evol. 2017, 1, 0179. [Google Scholar] [CrossRef]
- Ayilu, R.K.; Fabinyi, M.; Barclay, K.; Bawa, M.A. Blue Economy: Industrialisation and Coastal Fishing Livelihoods in Ghana. Rev. Fish Biol. Fish. 2023, 33, 801–818. [Google Scholar] [CrossRef] [PubMed]
- Stacey, N.; Gibson, E.; Loneragan, N.R.; Warren, C.; Wiryawan, B.; Adhuri, D.S.; Steenbergen, D.J.; Fitriana, R. Developing Sustainable Small-Scale Fisheries Livelihoods in Indonesia: Trends, Enabling and Constraining Factors, and Future Opportunities. Mar. Policy 2021, 132, 104654. [Google Scholar] [CrossRef]
- Melnychuk, M.C.; Kurota, H.; Mace, P.M.; Pons, M.; Minto, C.; Osio, G.C.; Jensen, O.P.; de Moor, C.L.; Parma, A.M.; Richard Little, L.; et al. Identifying Management Actions That Promote Sustainable Fisheries. Nat. Sustain. 2021, 4, 440–449. [Google Scholar] [CrossRef]
- Long, T.; Widjaja, S.; Wirajuda, H.; Juwana, S. Approaches to Combatting Illegal, Unreported and Unregulated Fishing. Nat. Food 2020, 1, 389–391. [Google Scholar] [CrossRef]
- Latuconsina, H. Dissemination of the Impact of Overfishing and Mitigation Efforts Through the Development of Marine Protected Areas. Agrikan J. Agribisnis Perikan. 2023, 16, 200–208. [Google Scholar]
- Tolentino-Zondervan, F.; Zondervan, N.A. Sustainable Fishery Management Trends in Philippine Fisheries. Ocean. Coast. Manag. 2022, 223, 106149. [Google Scholar] [CrossRef]
- Nugroho, K.C.; Zulbainarni, N.; Asikin, Z.; Budijanto, S.; Marimin, M. Toward a Sustainable Surimi Industry: Comprehensive Review and Future Research Directions of Demersal Fish Stock Assessment Techniques. Sustainability 2024, 16, 7759. [Google Scholar] [CrossRef]
- Martín-Sánchez, A.M.; Navarro, C.; Pérez-Álvarez, J.A.; Kuri, V. Alternatives for Efficient and Sustainable Production of Surimi: A Review. Compr. Rev. Food Sci. Food Saf. 2009, 8, 359–374. [Google Scholar] [CrossRef]
- Priyadarshini, B.; Xavier, M.; Nayak, B.B.; Apang, T.; Balange, A.K. Quality Characteristics of Tilapia Surimi: Effect of Single Washing Cycle and Different Washing Media. J. Aquat. Food Prod. Technol. 2018, 27, 643–655. [Google Scholar] [CrossRef]
- Nurhayati, T.; Trilaksani, W.; Ramadhan, W.; Ichsani, S. The Role of Pepsin in Improving the Quality of Surimi of Red Tilapia (Orechromisniloticus). Curr. Res. Nutr. Food Sci. 2022, 10, 584–594. [Google Scholar]
- Herbert-Read, J.E.; Thornton, A.; Amon, D.J.; Birchenough, S.N.R.; Côté, I.M.; Dias, M.P.; Godley, B.J.; Keith, S.A.; McKinley, E.; Peck, L.S.; et al. A Global Horizon Scan of Issues Impacting Marine and Coastal Biodiversity Conservation. Nat. Ecol. Evol. 2022, 6, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Danovaro, R.; Fanelli, E.; Aguzzi, J.; Billett, D.; Carugati, L.; Corinaldesi, C.; Dell’Anno, A.; Gjerde, K.; Jamieson, A.J.; Kark, S.; et al. Ecological Variables for Developing a Global Deep-Ocean Monitoring and Conservation Strategy. Nat. Ecol. Evol. 2020, 4, 181–192. [Google Scholar] [CrossRef]
- Geist, J.; Hawkins, S.J. Habitat Recovery and Restoration in Aquatic Ecosystems: Current Progress and Future Challenges. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 26, 942–962. [Google Scholar] [CrossRef]
- Taylor, M.D.; Chick, R.C.; Lorenzen, K.; Agnalt, A.-L.; Leber, K.M.; Blankenship, H.L.; Haegen, G.V.; Loneragan, N.R. Fisheries Enhancement and Restoration in a Changing World. Fish. Res. 2017, 186, 407–412. [Google Scholar] [CrossRef]
- Duarte, C.M.; Agusti, S.; Barbier, E.; Britten, G.L.; Castilla, J.C.; Gattuso, J.-P.; Fulweiler, R.W.; Hughes, T.P.; Knowlton, N.; Lovelock, C.E.; et al. Rebuilding Marine Life. Nature 2020, 580, 39–51. [Google Scholar] [CrossRef]
- Taylor, J.J.; Rytwinski, T.; Bennett, J.R.; Smokorowski, K.E.; Lapointe, N.W.R.; Janusz, R.; Clarke, K.; Tonn, B.; Walsh, J.C.; Cooke, S.J. The Effectiveness of Spawning Habitat Creation or Enhancement for Substrate-Spawning Temperate Fish: A Systematic Review. Environ. Evid. 2019, 8, 19. [Google Scholar] [CrossRef]
- Cousido-Rocha, M.; Cerviño, S.; Alonso-Fernández, A.; Gil, J.; Herraiz, I.G.; Rincón, M.M.; Ramos, F.; Rodríguez-Cabello, C.; Sampedro, P.; Vila, Y.; et al. Applying Length-Based Assessment Methods to Fishery Resources in the Bay of Biscay and Iberian Coast Ecoregion: Stock Status and Parameter Sensitivity. Fish. Res. 2022, 248, 106197. [Google Scholar] [CrossRef]
- Coscino, C.L.; Bellquist, L.; Harford, W.J.; Semmens, B.X. Influence of Life History Characteristics on Data-Limited Stock Status Assertions and Minimum Size Limit Evaluations Using Length-Based Spawning Potential Ratio (LBSPR). Fish. Res. 2024, 276, 107036. [Google Scholar] [CrossRef]
- Lauden, H.N.; Xu, X.; Lyu, S.; Lin, K.; Chen, N.; Wang, X. Assessment of the Fish Stock Status Using LBSPR with Its Implications on Fisheries Management: A Case Study of Nemipterus virgatus, Priacanthus macracanthus, and Saurida undosquamis in the Northern South China Sea. J. Appl. Ichthyol. 2024, 2024, 6808795. [Google Scholar] [CrossRef]
- Nyboer, E.A.; Reid, A.J.; Jeanson, A.L.; Kelly, R.; Mackay, M.; House, J.; Arnold, S.M.; Simonin, P.W.; Sedanza, M.G.C.; Rice, E.D.; et al. Goals, Challenges, and next Steps in Transdisciplinary Fisheries Research: Perspectives and Experiences from Early-Career Researchers. Rev. Fish Biol. Fish. 2023, 33, 349–374. [Google Scholar] [CrossRef] [PubMed]
- Garcia Lozano, A.J.; Decker Sparks, J.L.; Durgana, D.P.; Farthing, C.M.; Fitzpatrick, J.; Krough-Poulsen, B.; McDonald, G.; McDonald, S.; Ota, Y.; Sarto, N.; et al. Decent Work in Fisheries: Current Trends and Key Considerations for Future Research and Policy. Mar. Policy 2022, 136, 104922. [Google Scholar] [CrossRef]
- Oanta, G.A. International Organizations and Deep-Sea Fisheries: Current Status and Future Prospects. Mar. Policy 2018, 87, 51–59. [Google Scholar] [CrossRef]
Stage | Description of Gonad Morphology | |
---|---|---|
Male | Female | |
I | The shape of the testes is like a thread; the size is shorter and at the end of the body cavity, and the color is transparent. | The ovary shape is elongated like a long thread to the front of the body cavity; there is a precise color and smooth surface. |
II | Much more significant size; white-like milk; more evident than Gonad Maturity Level I. | The ovary size is larger; dark yellowish. |
III | The testes appear jagged. They are whiter and bigger; in a preserved state, they break easily. | The ovaries are yellow and eggs begin to be visible to the naked eye. |
IV | The shape is similar to that of Gonad Maturity Level III, but the testes are more significant and thicker. | The ovary becomes bigger, the eggs are yellow, and the oil grains are not visible in 1/2–2/3 of the abdominal cavity. The intestine is pressed and the eggs are easily separated when the ovaries are split open. |
V | The back of the end of the testicles deflates but, at the discharge, begins to fill. | The ovaries are deflated and wrinkled; they have thick walls and many eggs are left near release. There are a lot of eggs, similar to in Gonad Maturity Level II. |
Proportion (%) | Species | |||
---|---|---|---|---|
N. tambuloides | P. longimanus | U. sulphureus | P. tayenustayenus | |
Immature | 64.4 | 55.9 | 52.3 | 72.1 |
Mature | 35.6 | 44.1 | 47.7 | 27.9 |
Proportion (%) | Units | Species | |||
---|---|---|---|---|---|
N. tabloids | P. longimanus | U. sulfurous | P. tayenus | ||
Asymptotic length (L∞) | mm | 194.25 | 162.75 | 183.75 | 220.5 |
Growth rates (K) | year-1 | 0.75 | 0.70 | 1.10 | 0.45 |
Age at zero length (t0) | year | −0.12 | −0.14 | −0.09 | −0.21 |
Maximum age (Tmax) | year | 3.87 | 4.14 | 2.64 | 6.46 |
Natural mortality (M) | year-1 | 0.89 | 0.75 | 1.16 | 0.62 |
Total mortality (Z) | year-1 | 2.84 | 2.75 | 4.56 | 1.27 |
Exploitation rate (F/M) | 0.69 | 0.73 | 0.74 | 0.51 | |
Length at maturity 50% (L50) | mm | 143 | 120 | 135 | 170 |
Length at maturity 95% (L95) | mm | 160 | 150 | 165 | 210 |
Proportion (%) | Species | |||
---|---|---|---|---|
N. tambuloides | P. longimanus | U. sulfurous | P. tayenus | |
Length at 50% selectivity (SL50) (mm) | 109.9 (109.5–110.5) | 114.3 (113.5–115.1) | 119.4 (118.8–120.0) | 137.3 (135.1–139.6) |
Length at 95% selectivity (SL95) (mm) | 124.95 (124.1–125.8) | 129.4 (128.2–130.5) | 135.7 (134.7–136.7) | 179.2 (175.9–182.5) |
Fishing pressure (F/M) | 3.1 (3.0–3.3) | 5.0 (4.6–5.4) | 2.6 (2.5–2.8) | 1.3 (1.1–1.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nugroho, K.C.; Zulbainarni, N.; Asikin, Z.; Budijanto, S.; Marimin, M. A Sustainability Analysis of the Small Demersal Fish Used in the Surimi Industry in Indonesia Using the Length-Based Spawning Potential Ratio. Sustainability 2025, 17, 4827. https://doi.org/10.3390/su17114827
Nugroho KC, Zulbainarni N, Asikin Z, Budijanto S, Marimin M. A Sustainability Analysis of the Small Demersal Fish Used in the Surimi Industry in Indonesia Using the Length-Based Spawning Potential Ratio. Sustainability. 2025; 17(11):4827. https://doi.org/10.3390/su17114827
Chicago/Turabian StyleNugroho, Kuncoro Catur, Nimmi Zulbainarni, Zenal Asikin, Slamet Budijanto, and Marimin Marimin. 2025. "A Sustainability Analysis of the Small Demersal Fish Used in the Surimi Industry in Indonesia Using the Length-Based Spawning Potential Ratio" Sustainability 17, no. 11: 4827. https://doi.org/10.3390/su17114827
APA StyleNugroho, K. C., Zulbainarni, N., Asikin, Z., Budijanto, S., & Marimin, M. (2025). A Sustainability Analysis of the Small Demersal Fish Used in the Surimi Industry in Indonesia Using the Length-Based Spawning Potential Ratio. Sustainability, 17(11), 4827. https://doi.org/10.3390/su17114827