The Relationship Between Macroinvertebrate Diversity Indices and Community Stability in the North Canal River Basin of Urban Beijing, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling
2.3. Dominance Index and Diversity Indices
2.4. Secondary Productivity-to-Biomass Ratio and Average Variation Degree
2.5. Statistical Analyses
3. Results and Analyses
3.1. Macroinvertebrate Community Composition
3.2. The Key Environmental Factors Affecting Macroinvertebrates Communities
3.3. Biodiversity and Representative Diversity Indices
3.4. Spatial Variability of the Secondary Productivity-to-Biomass Ratio and Average Variation Degree
3.5. Relationships Between Environmental Factors, Biodiversity and Community Stability in Urban Rivers
4. Discussion
4.1. Macroinvertebrates Community Structure and the Key Environmental Factors
4.2. Community Stability and Diversity Indices for Macroinvertebrates
4.3. Relationship Between Macroinvertebrate Diversity Indices and Community Stability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Macroinvertebrate Taxa | Upstream | Midstream–Downstream | Macroinvertebrate Taxa | Upstream | Midstream–Downstream |
---|---|---|---|---|---|
Arthropoda | Odonata | ||||
Insecta | Lestidae | ||||
Diptera | Lestes sp. | + | + | ||
Chironomidae | Corduliidae | ||||
Chironomus anthracinus | + | + | Cordulia sp. | + | |
Chironomus flaviplumosus | + | + | Gomphidae | ||
Chironomus sp. | + | Orientogomphus sp. | + | + | |
Cladotanytarsus mancus | + | Crustacea | |||
Cryptochironomus rostratus | + | Decapoda | |||
Cryptotendipes sp.A | + | Palaemonidae | |||
Dicrotendipes lobifer | + | + | Macrobrachium sp. | + | + |
Dicrotendipes nervosus | + | + | Amphipoda | ||
Dicrotendipes tritomus | + | Gammaridae | |||
Glyptotendipes cauliginellus | + | Gammarus sp. | + | ||
Glyptotendipes salinus | + | Annelida | |||
Glyptotendipes sp.A | + | Hirudinea | |||
Glyptotendipes sp.B | + | Ganthobdellida | |||
Glyptotendipes tokunagai | + | Hirudinidae | |||
Harnischia fuscimana | + | Hirudo sp. | + | + | |
Kiefferulus sp. | + | Rhynchobdellida | |||
Micropsectra atrofasciata | + | Glossiphoniidae | |||
Parachironomus arcuatus | + | Glossiphonia complanata | + | + | |
Polypedilum nubeculosum | + | Oligochaeta | |||
Polypedilum paraviceps | + | Tubificida | |||
Polypedilum scalaenum | + | + | Fridericia | ||
Chironominae sp.A | + | Fridericia sp. | + | + | |
Tanytarsus tamaoctavus | + | Tubificidae | |||
Tanytarsus formosanus | + | Limnodrilus hoffmeisteri | + | + | |
Cricotopus albiforceps | + | Aulodrilus pluriseta | + | ||
Cricotopus trifasciatus | + | + | Aulodrilus pigueti | + | |
Cricotopus vierriensis | + | Ilyodrilus templetoni | + | ||
Nanocaldius dichromus | + | Branchiura sowerbyi | + | + | |
Nanocaldius distinctus | + | Naididae | |||
Orthocaldius dubitatus | + | Nais communis | + | ||
Orthocaldius kanii | + | Dero digitata | + | ||
Orthocaldius vaillanti | + | Branchiodrilus hortensis | + | ||
Orthocaldius yagashimaensis | + | Mollusca | |||
Propsilocerus akamusi | + | Gastropoda | |||
Thienemanniella majuscula | + | Mesogastropoda | |||
Ablabesmyia sp. | + | Viviparidae | |||
Procaldius sp.A | + | Bellamya purificata | + | + | |
Rheopelopia joganflava | + | Hydrobiidae | |||
Rheopelopia sp. | + | Alocinma longicornis | + | + | |
Tanypus punctipennis | + | + | Parafossarulus striatulus | + | |
Tipulidae | Stenothyra glabra | + | + | ||
Tipulia sp. | + | Bithynia fuchsiana | + | + | |
Ephemeroptera | Melaniidae | ||||
Baetidae | Semisulcospira cancellata | + | |||
Baetis sp. | + | + | Basommatophora | ||
Caenidae | Lymnaeidae | ||||
Caenis sp. | + | + | Radix swinhoei | + | + |
Leptophlebiidae | Planorbidae | ||||
Leptophlebiidae spp. | + | Hippeutis cantori | + | ||
Trichoptera | Lamellibranchia | ||||
Hydroptilidae | Eulamellibranchia | ||||
Orthotrichia sp. | + | Corbiculidae | |||
Ecnornidae | Corbicula fluminea | + | |||
Ecnomus sp. | + | + | Unionidae | ||
Hemiptera | Schistodesmus lampreyanus | + | |||
Micronectidae | Anisomyaria | ||||
Micronecta sp. | + | + | Mytilidae | ||
Limnoperna lacustris | + |
Table of Contents | Brief Introduction |
---|---|
Overview | Partial Least Squares Structural Equation Modeling (PLS-SEM) is a statistical modeling approach that integrates Partial Least Squares (PLS) with Structural Equation Modeling (SEM). This method is particularly well-suited for analyzing small sample sizes, non-normal data distributions, and complex relationships among multiple variables. PLS-SEM optimizes model parameters iteratively, offering both explanatory and predictive capabilities, and finds widespread application in various fields such as biology, psychology, social sciences, and management. |
Definition and Basic Concepts | PLS-SEM is a prediction-oriented statistical method that utilizes PLS to process data while incorporating the causal modeling principles of SEM to elucidate relationships between latent variables. Its core lies in the combination of principal component analysis and multiple regression, employing an iterative estimation approach to optimize model parameters. |
Model Structure | The PLS-SEM model comprises two components: 1. Measurement Model: This component describes the relationships between latent variables and their observed indicators (Observed Variables). It ensures the reliability and validity of the construct measurements. 2. Structural Model: This component depicts the causal relationships between the latent variables themselves, specifying the paths and directions of influence. |
Key Features | 1. Iterative Algorithm: PLS-SEM employs an iterative algorithm to estimate model parameters, making it computationally efficient, especially for complex models. 2. Predictive Orientation: PLS-SEM emphasizes predictive power, whereas CB-SEM (Covariance-Based SEM) places greater emphasis on theoretical model verification. 3. Handling of Complex Models: PLS-SEM is well-equipped to handle complex models and can quickly estimate parameters. 4. Path Modeling: PLS-SEM is often referred to as variance-based SEM, which is a special case of path analysis. It is also known as soft modeling in contrast to CB-SEM’s hard modeling. 5. Data Requirements: PLS-SEM is more flexible in terms of data requirements, making it suitable for small sample sizes and non-normal data. |
Application Domains | PLS-SEM is widely used in biology, psychology, marketing, management, and other disciplines, particularly excelling in the analysis of multivariate relationships and causal inference. |
References
- Zhang, J.Y.; Song, X.M.; Wang, G.Q.; He, R.M.; Wang, X.J. Development and challenges of urban hydrology in a changing environment: I: Hydrological response to urbanization. Adv. Water Sci. 2014, 25, 594–605. [Google Scholar] [CrossRef]
- Xia, T.; Zhu, W.; Jiang, M.Y.; Zhao, L.F. Assessment of urban river habitats: Application and methodology. Acta Sci. Circumstantiae 2007, 27, 2095–2104. [Google Scholar] [CrossRef]
- Meng, W.; Fan, J.T.; Zhang, Y. Freshwater Ecosystem Health and Ecological Civilization Construction at the Watershed Scale. Res. Environ. Sci. 2015, 28, 1495–1500. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, L.W.; Zhang, Y.Y.; Zhu, H.T.; Wang, Z.B.; Sun, D.Z. Solutions and roadmap for comprehensive remediation of water ecological environment in urban areas of the middle and lower reaches of the yangtze river. Environ. Eng. 2023, 41, 1–11+41. [Google Scholar] [CrossRef]
- Wang, H.; He, Q.; Liu, X.; Zhuang, Y.; Hong, S. Global Urbanization Research from 1991 to 2009: A Systematic Research Review. Landsc. Urban Plan. 2012, 104, 299–309. [Google Scholar] [CrossRef]
- Hu, X.H.; Zuo, D.P.; Liu, B.; Huang, Z.F.; Xu, Z.X. Quantitative Analysis of the Correlation Between Macrobenthos Community and Water Environmental Factors and Aquatic Ecosystem Health Assessment in the North Canal River Basin of Beijing. Environ. Sci. 2022, 43, 247–255. [Google Scholar] [CrossRef]
- Jia, L.; Li, H.; Chen, D.L. Research on the Evaluation of Water Ecological Health of Urban River Based on Improved Random Forest. Haihe Water Resour. 2019, 6, 13–16. [Google Scholar] [CrossRef]
- Xu, Z.X.; Gu, X.Y.; Zuo, D.P. Studies on the health assessments: From aquatic ecosystems to Rivers/Lakes. China Flood Drought Manag. 2018, 28, 17–24+29. [Google Scholar] [CrossRef]
- Roy, A.; Rosemond, A.; Paul, M.; Leigh, D.; Wallace, J. Stream macroinvertebrate response to catchment urbanisation (Georgia, USA). Freshw. Biol. 2003, 48, 329–346. [Google Scholar] [CrossRef]
- Vörösmarty, C.; McIntyre, P.; Gessner, M.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.; Sullivan, C.; Reidy Liermann, C.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef]
- Elbrecht, V.; Beermann, A.J.; Goessler, G.; Neumann, J.; Tollrian, R.; Wagner, R.; Wlecklik, A.; Piggott, J.J.; Matthaei, C.D.; Leese, F. Multiple-stressor effects on stream invertebrates: A mesocosm experiment manipulating nutrients, fine sediment and flow velocity. Freshw. Biol. 2016, 61, 362–375. [Google Scholar] [CrossRef]
- Guo, F.; Kainz, M.J.; Sheldon, F.; Bunn, S.E. Effects of light and nutrients on periphyton and the fatty acid composition and somatic growth of invertebrate grazers in subtropical streams. Oecologia 2016, 181, 449–462. [Google Scholar] [CrossRef]
- Dohet, A.; Hlúbiková, D.; Wetzel, C.E.; L’Hoste, L.; Iffly, J.F.; Hoffmann, L.; Ector, L. Influence of Thermal Regime and Land Use on Benthic Invertebrate Communities Inhabiting Headwater Streams Exposed to Contrasted Shading. Sci. Total Environ. 2015, 505, 1112–1126. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Guo, F.; Gao, X.; Wang, Y. Predicting the Effect of Land Use and Climate Change on Stream Macroinvertebrates Based on the Linkage between Structural Equation Modeling and Bayesian Network. Ecol. Indic. 2018, 85, 820–831. [Google Scholar] [CrossRef]
- Walsh, C.J. Biological indicators of stream health using macroinvertebrate assemblage composition: A comparison of sensitivity to an urban gradient. Mar. Freshw. Res. 2006, 57, 37–47. [Google Scholar] [CrossRef]
- Dai, J.C.; Ni, J.R. Roles of benthos in the aquatic ecosystem health assessment. Ecol. Environ. 2008, 17, 2107–2111. [Google Scholar] [CrossRef]
- Wang, B.X.; Yang, L.F. Bioassessment of Qinhuai River using a river biological index. Acta Ecol. Sin. 2003, 23, 2082–2091. [Google Scholar] [CrossRef]
- Xing, S.W.; Wang, J.C.; Ding, Z.J.; Jiang, Y.W. Large Benthonic Invertebrates’ Tolerance Values and Water Quality Evaluation in Liaoning Province. Environ. Prot. Sci. 2013, 39, 29–33. [Google Scholar] [CrossRef]
- Gu, X.Y.; Xu, Z.X.; Wang, M.; Yin, X.W.; Liu, L.F.; Zhang, X.; Zuo, D.P. Macroinvertebrates community structure and water quality assessment in the North Canal River Basin, Beijing, China. J. Lake Sci. 2017, 29, 1444–1454. [Google Scholar] [CrossRef]
- Purcell, A.H.; Bressler, D.W.; Paul, M.J.; Barbour, M.T.; Rankin, E.T.; Carter, J.L.; Resh, V.H. Assessment tools for urban catchments: Developing biological indicators based on benthic macroinvertebrates. J. Am. Water Resour. Assoc. 2009, 45, 306–319. [Google Scholar] [CrossRef]
- Walsh, C.J.; Roy, A.H.; Feminella, J.W.; Cottingham, P.D.; Groffman, P.M.; Morgan, R.P. The urban stream syndrome: Current knowledge and the search for a cure. J. N. Am. Benthol. Soc. 2005, 24, 706–723. [Google Scholar] [CrossRef]
- Xu, Z.X.; Wu, W.; Yin, X.W. Community structure characteristics and health assessment of aquatic ecosystem in Weihe Basin, China. Adv. Sci. Technol. Water Resour. 2016, 1, 23–30. [Google Scholar] [CrossRef]
- Blüthgen, N.; Simons, N.K.; Jung, K.; Prati, D.; Renner, S.C.; Boch, S.; Fischer, M.; Hölzel, N.; Klaus, V.H.; Kleinebecker, T.; et al. Land use imperils plant and animal community stability through changes in asynchrony rather than diversity. Nat. Commun. 2016, 7, 10697. [Google Scholar] [CrossRef]
- Ives, A.R.; Klug, J.L.; Gross, K. Stability and species richness in complex communities. Ecol. Lett. 2000, 3, 399–411. [Google Scholar] [CrossRef]
- Jiang, W.; Pan, B.; Jiang, X.; Shi, P.; Zhu, P.; Zhang, L.; Chen, J.; Wu, N. A Comparative Study on the Indicative Function of Species and Traits Structure of Stream Macroinvertebrates to Human Disturbances. Ecol. Indic. 2021, 129, 107939. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, W.J.; Zhong, J.; Zhang, L.; Liu, D.D.; You, Q.H. Effects of macroinvertebrate diversity on community secondary productivity and stability in the Poyang Lake wetland. Acta Ecol. Sin. 2024, 44, 3337–3347. [Google Scholar] [CrossRef]
- Malaeb, Z.A.; Summers, J.K.; Pugesek, B.H. Using structural equation modeling to investigate relationships among ecological variables. Environ. Ecol. Stat. 2000, 7, 93–111. [Google Scholar] [CrossRef]
- Grace, J.B.; Schoolmaster, D.R.; Guntenspergen, G.R.; Little, A.M.; Mitchell, B.R.; Miller, K.M.; Schweiger, E.W. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 2012, 3, 1–44. [Google Scholar] [CrossRef]
- Hulland, J. Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies. Strateg. Manag. J. 1999, 20, 195–204. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Al, M.A.; Ndayishimiye, J.C.; Yang, J.R.; Isabwe, A.; Luo, A.; Yang, J. Urbanization Reduces Resource Use Efficiency of Phytoplankton Community by Altering the Environment and Decreasing Biodiversity. J. Environ. Sci. 2022, 112, 140–151. [Google Scholar] [CrossRef]
- Chi, S.Y.; Deng, Y.Q.; Hu, J.X.; Liu, L.; Wang, R.; Chen, S.Z.; Min, X.; Hu, Y.X.; Chen, J.L. Macroinvertebrate diversity related to environmental factors in lakes of Jiangxi Province. J. Lake Sci. 2024, 36, 858–869. [Google Scholar] [CrossRef]
- Su, S.; Gong, Z.N.; Zhang, W.J.; Zhang, Y.; Wang, Y.F. Change of vegetation coverage and assessment of ecological environment quality in BeiyunRiver Basin. Acta Sci. Circumstantiae 2022, 42, 19–27. [Google Scholar] [CrossRef]
- Yuan, X.C.; Wang, M.; Guo, X.Y.; Wu, D.L. Analysis of the Seasonal Changes in Planktonic Microbial Diversity in Urban River Supplied with Reclaimed Water: A Case Study of the North Canal River. Environ. Sci. 2022, 43, 4097–4107. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Peng, W.Q.; Qu, X.D.; Zhang, Y.H.; Du, L.F.; Wu, N.C. Phylogenetic and Functional Diversity Could Be Better Indicators of Macroinvertebrate Community Stability. Ecol. Indic. 2021, 129, 107892. [Google Scholar] [CrossRef]
- Brun, P.; Zimmermann, N.E.; Graham, C.H.; Lavergne, S.; Pellissier, L.; Münkemüller, T.; Thuiller, W. The productivity-biodiversity relationship varies across diversity dimensions. Nat. Commun. 2019, 10, 5691. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, J.L.; Yu, S. Application of improved comprehensive water quality identification index method in water quality evaluation of the main channel of the North Canal in Beijing. Beijing Water 2023, S2, 55–61. [Google Scholar] [CrossRef]
- Di, Y.M.; Huang, B.B.; Ye, Z.H.; Chang, G.L. Study on the rapid evaluation of ecological health in the North Canal. Beijing Water 2020, 4, 52–58. [Google Scholar] [CrossRef]
- Du, F.; Peng, J.F.; Wang, Y.J.; Zhang, W. Water Ecological Carrying Capacity and Identification of Key Control Factors: A Case Study of Beijing Section of North Canal. Res. Environ. Sci. 2021, 34, 2369–2379. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Qu, X.D.; Peng, W.Q.; Zhang, M.; Zhang, H.P.; Du, L.F.; Zhang, S.C. Health Assessment of the Stream Ecosystem in Beijing, China. Environ. Sci. 2023, 44, 5478–5489. [Google Scholar] [CrossRef]
- Ministry of Environmental. Protection of the People’s Republic of China. Aquatic Monitoring Manual; Southeast University Press: Nanjing, China, 1993. [Google Scholar]
- Kathman, R.D.; Brinkhurst, R.O. Guide to the Freshwater Oligochaetes of North America; Aquatic Resources Center: Owensboro, KY, USA, 1999. [Google Scholar]
- Yang, T. Fauna Sinica: Annelida Hirudinea; Science Press: Beijing, China, 1996. [Google Scholar]
- Wang, J.C.; Wang, X.H. Tendipes in the North of China; China Yan Shi Press: Beijing, China, 2011. [Google Scholar]
- Zheng, B.H.; Zhang, Y.; Li, Y.B. Study of indicators and methods for river habitat assessment of Liao River Basin. Acta Sci. Circumstantiae 2007, 27, 928–936. [Google Scholar] [CrossRef]
- Dou, Q.M.; Du, X.; Wang, L.; Song, D.; Zhao, C.; Huang, X.L.; Wang, H.B.; Huo, T.B. Effects of land use and aquatic environmental factors on secondary productivity of macroinvertebrates: A case of Lake Lianhuan Group, northeast China. J. Lake Sci. 2024, 36, 846–857. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, L.F.; Chen, W.; Shao, K.; Wu, W.Y.; Chen, Y.L.; Yang, H.; Ma, P.M. Macroinvertebrates community structure in relation to environmental variables in the lower reaches of the Yalong River. China Environ. Sci. 2023, 43, 1857–1866. [Google Scholar]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Smith, B.; Wilson, J.B. A Consumer’s Guide to Evenness Indices. Oikos 1996, 76, 70–82. [Google Scholar] [CrossRef]
- Shu, L.M.; Chen, P.M.; Li, X.G.; Qin, C.X.; Yu, J.; Zhou, Y.B.; Yuan, H.R. Macrobenthic species diversity in the waters surrounding Zhelin Bay. J. Fish. Sci. China 2015, 22, 501–516. [Google Scholar] [CrossRef]
- Nouriani, H.; Ezzati, R. Application of Simpson Quadrature Rule and Iterative Method for Solving Nonlinear Fuzzy Delay Integral Equations. Fuzzy Sets Syst. 2020, 400, 147–161. [Google Scholar] [CrossRef]
- Di, F.; Han, D.H.; Zhao, W.B.; Zhou, D.K.; Wang, G.; Zhao, R.; Liang, R.C. Macroinvertebrate community characteristics and driving factors in the Chishui River (Renhuai section). Chin. J. Environ. Eng. 2023, 17, 3988–3995. [Google Scholar] [CrossRef]
- Mouchet, M.A.; Villéger, S.; Mason, N.W.H.; Mouillot, D. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 2010, 24, 867–876. [Google Scholar] [CrossRef]
- Liu, M.X.; Zhang, G.J.; Li, L.; Mu, R.L.; Xu, L.; Yu, R.X. Relationship between functional diversity and ecosystem multifunctionality of alpine meadow along an altitude gradient in Gannan, China. Chin. J. Appl. Ecol. 2022, 5, 1291–1299. [Google Scholar] [CrossRef]
- Poff, L.; Olden, J.D.; Vieira, N.K.M.; Finn, D.S.; Simmons, M.P.; Mackay, R.J.; Mackay, R.J.; Poff, N.L.; Kondratieff, B.C. Functional Trait Niches of North American Lotic Insects: Traits-Based Ecological Applications in Light of Phylogenetic Relationships. J. N. Am. Benthol. Soc. 2006, 25, 730–755. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Heino, J.; Jiang, X.; Wang, J.; Tang, T.; Xie, Z. Discriminating the Effects of Local Stressors from Climatic Factors and Dispersal Processes on Multiple Biodiversity Dimensions of Macroinvertebrate Communities across Subtropical Drainage Basins. Sci. Total Environ. 2020, 711, 134750. [Google Scholar] [CrossRef]
- Jiang, W.X.; Chen, J.; Wang, H.M.; He, S.S.; Zhuo, L.L.; Chen, Q.; Wang, H.K.; Cai, Q.H. Study of macroinvertebrate functional traits and diversity among typical habitats in the New Xue River. Acta Ecol. Sin. 2018, 38, 2007–2016. [Google Scholar] [CrossRef]
- Jiang, W.X.; Qu, X.D.; Wu, N.C.; Jia, X.H.; Cai, Q.H. Study on Species Diversity and Functional Diversity of Aquatic Insects in the Xiangxi River Basin, Shennongjia Region. Resour. Environ. Yangtze Basin 2021, 30, 1428–1436. [Google Scholar] [CrossRef]
- Jiang, W.X.; He, F.Z.; Cai, Q.H. Spatial distribution patterns of trait composition and functional diversity of aquatic insects in the Xiangxi River system. Acta Ecol. Sin. 2017, 37, 1861–1870. [Google Scholar] [CrossRef]
- Mason, N.W.H.; Mouillot, D.; Lee, W.G.; Wilson, J.B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 2010, 111, 112–118. [Google Scholar] [CrossRef]
- Hu, G.; Zhang, Q. Seasonal Variations in Macrobenthic Taxonomic Diversity and the Application of Taxonomic Distinctness Indices in Bohai Bay, Northern China. Ecol. Indic. 2016, 71, 181–190. [Google Scholar] [CrossRef]
- Ellingsen, K.E.; Clarke, K.R.; Somerfield, P.J.; Warwick, R.M. Taxonomic Distinctness as a Measure of Diversity Applied over a Large Scale: The Benthos of the Norwegian Continental Shelf. J. Anim. Ecol. 2005, 74, 1069–1079. [Google Scholar] [CrossRef]
- Li, X.Z.; Wang, H.F.; Zhang, B.L. The secondary production of macrobenthos in Jiaozhou bay, Shandong. Oceanol. Limnol. Sin. 2005, 36, 527–533. [Google Scholar] [CrossRef]
- Tumbiolo, M.L.; Downing, J.A. An Empirical Model for the Prediction of Secondary Production in Marine Benthic Invertebrate Populations. Mar. Ecol. Prog. Ser. 1994, 114, 165–174. [Google Scholar] [CrossRef]
- Xun, W.; Liu, Y.; Li, W.; Ren, Y.; Xiong, W.; Xu, Z.; Zhang, N.; Miao, Y.; Shen, Q.; Zhang, R. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome 2021, 9, 35. [Google Scholar] [CrossRef]
- Zhi, Y.; Zhang, Z.; Kong, S.; Zhang, C.; Du, P. Pollutant Removal Capacity Influence Soil Bacterial Community Stability: Insights from Two Agricultural Soils. Environ. Technol. Innov. 2025, 37, 104028. [Google Scholar] [CrossRef]
- Pei, L.; Wu, Z.; Qian, Y.; Li, X.; Zhang, J.; Sun, J.; Wang, Y. Plant Community Stability, Indicator Species and Their Driving Factors at a Gradient of Grazing Intensity in an Alpine Meadow. Ecol. Indic. 2024, 162, 112012. [Google Scholar] [CrossRef]
- Yuan, Z.; Chen, Y.; Zhou, S.; Peng, Y.; Xiao, J.; Li, Q. Spatiotemporal Distribution of Phytoplankton Functional Groups in Baihua Reservoir: Implications for Ecosystem Management. Biology 2025, 14, 333. [Google Scholar] [CrossRef]
- Xu, Q.; Huang, M.; Yang, S.; Li, X.; Zhao, H.; Tang, J.; Jiang, G.; Li, Z.; Huang, Y.; Dong, K.; et al. Ecological Stoichiometry Influences Phytoplankton Alpha and Beta Diversity Rather than the Community Stability in Subtropical Bay. Ecol. Evol. 2022, 12, e9301. [Google Scholar] [CrossRef]
- Liu, L.F.; Xu, Z.X.; Yin, X.W.; Li, F.L.; Wang, M. Response of aquatic organism richness to physiochemical factors at different regions in Jinan City. J. Lake Sci. 2019, 31, 998–1011. [Google Scholar] [CrossRef]
- Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations, and Causal Inference; Cambridge University Press: New York, UK, 2000. [Google Scholar]
- Du, L.F.; Zhang, J.; Qu, X.D.; Zhang, M.; Ge, J.J.; Zhang, H.P.; Chen, Q.C.; Zhang, Y.H. Research on Comprehensive Assessment Methods of the Evaluation of Urban River Water Eco-Environment Quality in Fengtai District, Beijing. Res. Environ. Sci. 2025, 38, 318–331. [Google Scholar] [CrossRef]
- Wang, M.; Yang, B.H.; Meng, Y.F.; Ma, S.Q.; Yang, L.; Yin, X.W.; Xu, Z.X.; Hao, C.Q. Studies on Diversity and Temporal-spatial Dynamics of Macrobenthos Functional Feeding Groups in the Rivers of North Canal in Beijing. J. Guandong Ocean Univ. 2018, 38, 1–6. [Google Scholar] [CrossRef]
- Xiong, C.H.; Zhang, R.L.; Xu, Y.P.; Zhang, W.; Chen, P.P.; Wang, L.Q. Health assessment on rivers in Shanghai City using benthic index of biotic integrity. J. Lake Sci. 2015, 27, 1067–1078. [Google Scholar] [CrossRef]
- Sheng, Q.; Xu, W.; Chen, L.; Wang, L.; Wang, Y.; Liu, Y.; Xie, L. Effect of Urban River Morphology on the Structure of Macroinvertebrate Communities in a Subtropical Urban River. Sustainability 2022, 14, 10046. [Google Scholar] [CrossRef]
- Jing, H.W.; Zhang, Z.G.; Guo, J. Water pollution characteristics and pollution sources of Bei Canal river system in Beijing. China Environ. Sci. 2013, 33, 319–327. [Google Scholar] [CrossRef]
- Zhou, H.L.; Liu, Z.J.; Du, J. Environmental quality condition and water quality analysis of the North Canal River Main stream. Beijing Water 2023, S01, 19–22. [Google Scholar] [CrossRef]
- Xu, S.S.; Liu, F.; Chen, S.Y.; Zhang, Y.J.; Chen, L.J. Correlation analysis of maerobenthos community structure with plankton and environmental factors in theChaiqu Zangbo Basin in Tibet. Acta Sci. Circumstantiae 2023, 43, 418–427. [Google Scholar] [CrossRef]
- King, R.S.; Baker, M.E.; Kazyak, P.F.; Weller, D.E. How novel is too novel? Stream community thresholds at exceptionally low levels of catchment urbanization. Ecol. Appl. A Publ. Ecol. Soc. Am. 2011, 21, 1659–1678. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.D.; Chen, J.; Chen, H.Y.; Zhang, M.; Peng, W.Q.; Zhu, L.; Lei, X. Application of Rapid Bioassessment Indices of Macroinvertebrates in Ecological Evaluation of Urban Streams. J. Hydroecol. 2021, 42, 14–22. [Google Scholar] [CrossRef]
- Chen, X.H.; Kang, L.J.; Sun, C.J.; Yang, Q. Development of multi-metric index based on benthic macroinvertebrates to assess river ecosystem of a typical plain river network IN China. ACTA Hydrobiol. Sin. 2013, 37, 191–198. [Google Scholar] [CrossRef]
- Liu, X.; Chen, K.; Chen, Q.W.; Wang, M.; Wang, L. The community structure of macroinvertebrate and its relationship to the environmental factors in summer and autumn within typical reaches of Huai River Basin. Acta Sci. Circumstantiae 2016, 36, 1928–1938. [Google Scholar] [CrossRef]
- Chen, L.; Wang, D.B.; Jun, S. Macroinvertebrate community structure and relationships with environmental factors in the Lhasa River Basin. Acta Ecol. Sin. 2019, 39, 757–769. [Google Scholar] [CrossRef]
- Yan, Y.J.; Li, X.Y.; Liang, Y.L. A Comparative Study on Community Structure of Macrozoobenthos Between Macrophtic and Algal Lakes. J. Lake Sci. 2005, 17, 176–182. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, F.M.; Luo, Y.P.; Huang, Z.T.; Huang, H.X.; Hu, S.L.; Chen, B.B.; Liu, Y.D. Macroinvertebrate Community Structure and Relationship with the Xiangjiang River Environment. J. Hydroecol. 2018, 39, 48–57. [Google Scholar] [CrossRef]
- Latinopoulos, D.; Ntislidou, C.; Lazarina, M.; Papaevangelou, V.; Akratos, C.; Kagalou, I. Macroinvertebrate Community Responses to Multiple Pressures in a Peri-Urban Mediterranean River. Sustainability 2023, 15, 16569. [Google Scholar] [CrossRef]
- Liu, Z.H.; Wei, L.; Zhou, Y. Constructing sustainable landscape patterns for enhancing urban biodiversity. Acta Ecol. Sin. 2024, 44, 5905–5913. [Google Scholar] [CrossRef]
- Yan, B.; Lu, Q.; Xia, S.; Li, J.S. An overview of advances in soil microbial diversity of urban environment. Biodivers. Sci. 2022, 30, 22186. [Google Scholar] [CrossRef]
- Sakschewski, B.; Bloh, W.; Boit, A.; Poorter, L.; Peña-Claros, M.; Heinke, J.; Joshi, J.; Thonicke, K. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 2016, 6, 1032–1036. [Google Scholar] [CrossRef]
- Davies, P.J.; Wright, I.A.; Findlay, S.J.; Jonasson, O.J.; Burgin, S. Impact of urban development on aquatic macroinvertebrates in south eastern Australia: Degradation of in-stream habitats and comparison with non-urban streams. Aquat. Ecol. 2010, 44, 685–700. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Qu, X.D.; Wang, S.M.; Zhu, Y.; Liu, X.B.; Zhang, H.P.; Zhang, M.; Sun, S.j. River Health Assessment of Hun River Basin Based on Benthic Index of Biological Integrity. Resour. Environ. Yangtze Basin 2020, 29, 1374–1386. [Google Scholar] [CrossRef]
- Qu, X.D.; Yu, Y.; Zhang, M.; Duan, L.F.; Peng, W.Q. Relationship Between Macrophyte Communities and Macroinvertebrate Communities in an Urban Stream. Environ. Sci. 2018, 39, 783–791. [Google Scholar] [CrossRef]
- Zhu, X.F.; Chen, B.; Yu, W.W.; Lin, J.H.; Huang, Y.Q.; Liao, J.J. Discussion on taxonomic diversity indices and taxonomic sufficiency for macrobenthos in Xiamen Bay. Acta Ecol. Sin. 2018, 38, 5554–5565. [Google Scholar] [CrossRef]
- Zintzen, V.; Anderson, M.J.; Roberts, C.D.; Diebel, C.E. Increasing variation in taxonomic distinctness reveals clusters of specialists in the deep sea. Ecography 2011, 34, 306–317. [Google Scholar] [CrossRef]
- Yibo, H.; Huizhong, F.; Youhua, C.; Jiang, C.; Xiangjiang, Z.; Hua, W.; Baowei, Z.; Meng, W.; Wenyan, Z.; Lin, Y.; et al. Spatial patterns and conservation of genetic and phylogenetic diversity of wildlife in China. Sci. Adv. 2021, 7, 2375–2548. [Google Scholar] [CrossRef]
- Heino, J. Patterns of functional biodiversity and function-environmentrelationships in lake littoral macroinvertebrates. Limnol Ocean. 2008, 53, 1446–1455. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Carscadden, K.; Mirotchnick, N. Beyond species: Functionalddiversity and the maintenance of ecological processes and services. J. Appl. Ecol. 2011, 48, 1079–1087. [Google Scholar] [CrossRef]
- Schmera, D.; Heino, J.; Podani, J.; Erős, T.; Dolédec, S. Functional diversity: A review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia 2017, 787, 27–44. [Google Scholar] [CrossRef]
- Weiss, K.C.B.; Ray, C.A. Unifying functional trait approaches to understand the assemblage of ecological communities: Synthesizing taxonomic divides. Ecography 2019, 42, 2012–2020. [Google Scholar] [CrossRef]
- Heino, J.; Mykra, H.; Hamalainen, H.; Aroviita, J.; Muotka, T. Responses of taxonomic distinctness and species diversity indices to anthropogenic impacts and natural environmental gradients in stream macroinvertebrates. Freshw. Biol. 2007, 52, 1846–1861. [Google Scholar] [CrossRef]
- McGill, B.J.; Dornelas, M.; Gotelli, N.J.; Magurran, A.E. Fifteen Forms of Biodiversity Trend in the Anthropocene. Trends Ecol. Evol. 2015, 30, 104–113. [Google Scholar] [CrossRef]
- Pfisterer, A.; Schmid, B. Diversity-dependent production can decrease the stability of ecosystem functioning. Nature 2002, 416, 84–86. [Google Scholar] [CrossRef]
- Qu, X.D.; Peng, W.Q.; Liu, Y.; Zhang, M.; Ren, Z.; Wu, N.C.; Liu, X.B. Networks and Ordination Analyses Reveal the Stream Community Structures of Fish, Macroinvertebrate and Benthic Algae, and Their Responses to Nutrient Enrichment. Ecol. Indic. 2019, 101, 501–511. [Google Scholar] [CrossRef]
- Zhang, M.; Muñoz-Mas, R.; Martínez-Capel, F.; Qu, X.D.; Zhang, H.P.; Peng, W.Q.; Liu, X.B. Determining the Macroinvertebrate Community Indicators and Relevant Environmental Predictors of the Hun-Tai River Basin (Northeast China): A Study Based on Community Patterning. Sci. Total Environ. 2018, 634, 749–759. [Google Scholar] [CrossRef]
- Díaz, S.; Cabido, M. Vive La Différence: Plant Functional Diversity Matters to Ecosystem Processes. Trends Ecol. Evol. 2001, 16, 646–655. [Google Scholar] [CrossRef]
- Loreau, M.; Naeem, S.; Inchausti, P.; Bengtsson, J.; Grime, J.P.; Hector, A.; Hooper, D.U.; Huston, M.A.; Raffaelli, D.; Schmid, B.; et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 2001, 294, 804–808. [Google Scholar] [CrossRef]
- Linden, P.D.; Patrício, J.; Marchini, A.; Cid, N.; Neto, J.M.; Marques, J.C. A Biological Trait Approach to Assess the Functional Composition of Subtidal Benthic Communities in an Estuarine Ecosystem. Ecol. Indic. 2012, 20, 121–133. [Google Scholar] [CrossRef]
- Leonard, D.R.P.; Clarke, K.R.; Somerfield, P.J.; Warwick, R.M. The Application of an Indicator Based on Taxonomic Distinctness for UK Marine Biodiversity Assessments. J. Environ. Manag. 2006, 78, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, D.S.; Cadotte, M.W.; MacDonald, A.A.; Marushia, R.G.; Mirotchnick, N. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 2012, 15, 637–648. [Google Scholar] [CrossRef]
- Weglarz, K.M.; Saunders, W.C.; Wagenen, A.V.; Pearse, W.D. Phylogenetic Diversity Efficiently and Accurately Prioritizes Conservation of Aquatic Macroinvertebrate Communities. Ecosphere 2021, 12, e03383. [Google Scholar] [CrossRef]
- Gallardo, B.; Gascón, S.; Quintana, X.; Comín, F.A. How to Choose a Biodiversity Indicator–Redundancy and Complementarity of Biodiversity Metrics in a Freshwater Ecosystem. Ecol. Indic. 2011, 11, 1177–1184. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Liu, Z.; Meng, X.; Heino, J.; Jiang, X.; Xiong, X.; Jiang, X.; Xie, Z. Different Responses of Taxonomic and Functional Structures of Stream Macroinvertebrate Communities to Local Stressors and Regional Factors in a Subtropical Biodiversity Hotspot. Sci. Total Environ. 2019, 655, 1288–1300. [Google Scholar] [CrossRef]
- Thompson, P.L.; Davies, T.J.; Gonzalez, A. Ecosystem functions across trophic levels are linked to functional and phylogenetic diversity. PLoS ONE 2015, 10, e0117595. [Google Scholar] [CrossRef]
- Fritz, S.A.; Purvis, A. Phylogenetic diversity does not capture body size variation at risk in the world’s mammals. Proceedings. Biol. Sci. 2010, 277, 2435–2441. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Cavender-Bares, J.; Tilman, D.; Oakley, T.H. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 2009, 4, e5695. [Google Scholar] [CrossRef]
- Flynn, D.F.B.; Microtchnick, N.; Jain, M.; Palmer, M.I.; Naeem, S. Functional andphylogenetic diversity as predictors of biodiversity-ecosystem-functionrelationships. Ecology 2011, 92, 1573–1581. [Google Scholar] [CrossRef]
- Craven, D.; Eisenhauer, N.; Pearse, W.D.; Hautier, Y.; Isbell, F.; Roscher, C.; Bahn, M.; Beierkuhnlein, C.; Bönisch, G.; Buchmann, N.; et al. Multiple facets of biodiversity drive the diversity-stability relationship. Nat. Ecol. Evol. 2018, 2, 1579–1587. [Google Scholar] [CrossRef] [PubMed]
Environmental Factors | Upstream | Midstream–Downstream | p | ||
---|---|---|---|---|---|
Minimum~Maximum | Mean ± Standard Deviation | Minimum~Maximum | Mean ± Standard Deviation | ||
COD | 10~30.5 | 15.9 ± 5.03 | 8~34.5 | 16.8 ± 6.56 | 0.428 |
TP | 0.018~0.28 | 0.114 ± 0.074 | 0.084~0.26 | 0.154 ± 0.054 | 0.123 |
DO | 5.9~11.9 | 8.65 ± 1.57 | 5.9~15.4 | 9.42 ± 2.68 | 0.106 |
Cu | 0.001~0.177 | 0.01 ± 0.037 | 0.001~0.064 | 0.008 ± 0.017 | 0.545 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, L.; Ge, J.; Zhang, M.; Zhang, H.; Yu, Y.; Xie, Y.; Zhang, Y.; Zeng, C.; Peng, W.; Chen, Q.; et al. The Relationship Between Macroinvertebrate Diversity Indices and Community Stability in the North Canal River Basin of Urban Beijing, China. Sustainability 2025, 17, 4479. https://doi.org/10.3390/su17104479
Du L, Ge J, Zhang M, Zhang H, Yu Y, Xie Y, Zhang Y, Zeng C, Peng W, Chen Q, et al. The Relationship Between Macroinvertebrate Diversity Indices and Community Stability in the North Canal River Basin of Urban Beijing, China. Sustainability. 2025; 17(10):4479. https://doi.org/10.3390/su17104479
Chicago/Turabian StyleDu, Longfei, Jinjin Ge, Min Zhang, Haiping Zhang, Yang Yu, Ying Xie, Yuhang Zhang, Chunya Zeng, Wenqi Peng, Quchang Chen, and et al. 2025. "The Relationship Between Macroinvertebrate Diversity Indices and Community Stability in the North Canal River Basin of Urban Beijing, China" Sustainability 17, no. 10: 4479. https://doi.org/10.3390/su17104479
APA StyleDu, L., Ge, J., Zhang, M., Zhang, H., Yu, Y., Xie, Y., Zhang, Y., Zeng, C., Peng, W., Chen, Q., & Qu, X. (2025). The Relationship Between Macroinvertebrate Diversity Indices and Community Stability in the North Canal River Basin of Urban Beijing, China. Sustainability, 17(10), 4479. https://doi.org/10.3390/su17104479