The Impact of Environmental Regulations on Carbon Emissions of Chinese Enterprises and Their Resource Heterogeneity
Abstract
:1. Introduction
2. Literature Review and Theoretical Mechanism
2.1. Literature Review
2.2. Theoretical Mechanism
3. Variables and Modeling
3.1. Indicator Measurement
- (1)
- Carbon intensity of enterprises (carbon). The existing research on carbon emission indicators of listed enterprises in China is mainly divided into two categories: the first category of indicators is directly expressed by using the carbon emissions published in the annual reports of listed enterprises. However, these data are seriously missing and not feasible enough. The second type is based on the first type, for enterprises that have not announced their carbon emissions, using their different types of fossil energy consumption, electricity consumption, heat consumption, and other data to indirectly convert carbon emissions. In this paper, we draw on the second type of methodology to approximate the carbon emissions of Chinese listed enterprises based on industry energy consumption [22,36], and to measure the carbon intensity of enterprises using the ratio of their carbon dioxide emissions to their main business revenues [37].
3.2. Model Setting
3.3. Data Sources
3.4. Correlation Analysis
4. Results of Empirical Analyses
4.1. Benchmark Regression Results
4.2. Replacing Variables
4.3. Further Control for Joint Effects
4.4. Instrumental Regression
4.5. Restricted Sample Regression
5. Mechanism Test
5.1. The Effect of Environmental Information Disclosure
5.2. The Effect of Environmental Institution Establishment
5.3. The Effect of Environmental Management Concepts
5.4. The Effect of Resource Allocation
5.5. The Effect of Technological Innovation
6. Heterogeneity Analysis
6.1. Heterogeneity of Resource-Based Enterprises
6.2. Heterogeneity of Enterprise Size
6.3. Heterogeneity of Enterprise Nature
7. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Porter, M.; Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Wang, Y. Can the green credit policy reduce carbon emission intensity of “high-polluting and high-energy-consuming” enterprises? Insight from a quasi-natural experiment in China. Glob. Financ. J. 2023, 58, 100885. [Google Scholar] [CrossRef]
- Dagestani, A.A.; Shang, Y.; Schneider, N.; Cifuentes-Faura, J.; Zhao, X. Porter in China: A quasi-experimental view of market-based environmental regulation effects on firm performance. Energ. Econ. 2023, 126, 106966. [Google Scholar] [CrossRef]
- Fu, T.; Jian, Z. Corruption pays off: How environmental regulations promote corporate innovation in a developing country. Ecol. Econ. 2021, 183, 106969. [Google Scholar] [CrossRef]
- Hamaguchi, Y. Environmental tax evasion as a determinant of the Porter and pollution haven hypotheses in a corrupt political system. Econ. Anal. Policy 2023, 79, 610–633. [Google Scholar] [CrossRef]
- Candau, F.; Dienesch, E. Pollution Haven and Corruption Paradise. J. Environ. Econ. Manag. 2017, 85, 171–192. [Google Scholar] [CrossRef]
- Hamaguchi, Y. Effect of environmental tax evasion on pollution havens within the EU’s dual regulation system. SN Bus. Econ. 2022, 2, 194. [Google Scholar] [CrossRef]
- Zhao, X.; Mahendru, M.; Ma, X.; Rao, A.; Shang, Y. Impacts of environmental regulations on green economic growth in China: New guidelines regarding renewable energy and energy efficiency. Renew. Energ. 2022, 187, 728–742. [Google Scholar] [CrossRef]
- Song, Y.; Wei, Y.; Zhu, J.; Liu, J.; Zhang, M. Environmental regulation and economic growth: A new perspective based on technical level and healthy human capital. J. Clean. Prod. 2021, 318, 128520. [Google Scholar] [CrossRef]
- Hou, S.; Yu, K.; Fei, R. How does environmental regulation affect carbon productivity? The role of green technology progress and pollution transfer. J. Environ. Manag. 2023, 345, 118587. [Google Scholar] [CrossRef]
- Liu, Z.; Fang, C.; Sun, B.; Liao, X. Governance matters: Urban expansion, environmental regulation, and PM2.5 pollution. Sci. Total Environ. 2023, 876, 162788. [Google Scholar] [CrossRef]
- Zhu, Y.; Ding, H.; Du, S. Banking competition and regional carbon emissions: Intensifying or suppressing?—Estimation based on a bilateral random frontier model. Int. Rev. Financ. Anal. 2023, 91, 103030. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, Y.; Fu, M.; Xue, J. The role of land use landscape patterns in the carbon emission reduction: Empirical evidence from China. Ecol. Indic. 2023, 156, 111176. [Google Scholar] [CrossRef]
- Shi, B.; Li, N.; Gao, Q.; Li, G. Market incentives, carbon quota allocation and carbon emission reduction: Evidence from China’s carbon trading pilot policy. J. Environ. Manag. 2022, 319, 115650. [Google Scholar] [CrossRef]
- Chu, J.; Shao, C.; Emrouznejad, A.; Wu, J.; Yuan, Z. Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach. Energ. Econ. 2021, 101, 105398. [Google Scholar] [CrossRef]
- Chen, P.; Rao, M.; Vasa, L.; Xu, Y.; Zhao, X. Spatial effects and heterogeneity analysis of the impact of environmental taxes on carbon emissions in China. Heliyon 2023, 9, e21393. [Google Scholar] [CrossRef] [PubMed]
- Greenstone, M.; List, J.; Syverson, C. The Effects of Environmental Regulation on the Competitiveness of U.S. Manufacturing. Am. Econ. Rev. 2012, 93, 431–435. [Google Scholar]
- Conrad, K.; Wastl, D. The impact of environmental regulation on productivity in German industries. Empir. Econ. 1995, 20, 615–633. [Google Scholar] [CrossRef]
- Ramanathan, R.; He, Q.; Black, A.; Ghobadian, A.; Gallear, D. Environmental regulations, innovation and firm performance: A revisit of the Porter hypothesis. J. Econ. Perspect. 2016, 155, 79–92. [Google Scholar] [CrossRef]
- Chang, H.; Ding, Q.; Zhao, W.; Hou, N.; Liu, W. The digital economy, industrial structure upgrading, and carbon emission intensity—Empirical evidence from China’s provinces. Energy. Strateg. Rev. 2023, 50, 101218. [Google Scholar] [CrossRef]
- Wang, X.; Li, J. Heterogeneous effect of digital economy on carbon emission reduction. J. Clean. Prod. 2023, 429, 139560. [Google Scholar] [CrossRef]
- Shang, Y.; Raza, S.A.; Huo, Z.; Shahzad, U.; Zhao, X. Does enterprise digital transformation contribute to the carbon emission reduction? Micro-level evidence from China. Int. Rev. Econ. Financ. 2023, 86, 1–13. [Google Scholar] [CrossRef]
- Chen, M.; Wang, K. The combining and cooperative effects of carbon price and technological innovation on carbon emission reduction: Evidence from China’s industrial enterprises. J. Environ. Manag. 2023, 343, 118188. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, S.; Zaman, K.; Khan, S.; Ali, Z.; Khan HU, R. The role of green industrial transformation in mitigating carbon emissions: Exploring the channels of technological innovation and environmental regulation. Energy Built Environ. 2024, 5, 464–479. [Google Scholar] [CrossRef]
- Huang, X.; Tian, P. How does heterogeneous environmental regulation affect net carbon emissions: Spatial and threshold analysis for China. J. Environ. Manag. 2023, 330, 117161. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Pan, Y.; Feng, Y. Identifying and assessing the multiple effects of informal environmental regulation on carbon emissions in China. Environ. Res. 2023, 237, 116931. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Guo, L. How does mandatory environmental regulation affect corporate environmental information disclosure quality. Financ. Res. Lett. 2023, 54, 103702. [Google Scholar] [CrossRef]
- Luo, W.; Guo, X.; Zhong, S.; Wang, J. Environmental information disclosure quality, media attention and debt financing costs: Evidence from Chinese heavy polluting listed companies. J. Clean. Prod. 2019, 231, 268–277. [Google Scholar] [CrossRef]
- Wang, L.; Shang, Y.; Li, C. How to improve the initiative and effectiveness of enterprises to implement environmental management system certification? J. Clean. Prod. 2023, 404, 137013. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, W.; Liu, D. Does carbon emission trading system induce enterprises’ green innovation? J. Asian. Econ. 2023, 86, 101597. [Google Scholar] [CrossRef]
- Tang, Y.; Qi, Y.; Zhou, F.; Hua, L. A study on the differential effects of heterogeneous environmental regulations on the green transformation of Chinese manufacturing enterprises under “Double Carbon” target. Heliyon 2023, 9, e19841. [Google Scholar] [CrossRef]
- Chen, X.; Meng, Q.; Wang, K.; Liu, Y.; Shen, W. Spatial patterns and evolution trend of coupling coordination of pollution reduction and carbon reduction along the Yellow River Basin, China. Ecol. Indic. 2023, 154, 110797. [Google Scholar] [CrossRef]
- Bai, C.; Liu, H.; Zhang, R.; Feng, C. Blessing or curse? Market-driven environmental regulation and enterprises’ total factor productivity: Evidence from China’s carbon market pilots. Energ. Econ. 2023, 117, 106432. [Google Scholar] [CrossRef]
- Guo, Y.; Bruno, G.; Zhang, D.; Han, K. Analysis of low-carbon technology innovation efficiency and its influencing factors based on triple helix theory: Evidence from new energy enterprises in China. Heliyon 2023, 9, e20308. [Google Scholar] [CrossRef]
- Wei, J.; Wang, C. Improving interaction mechanism of carbon reduction technology innovation between supply chain enterprises and government by means of differential game. J. Clean. Prod. 2021, 296, 126578. [Google Scholar] [CrossRef]
- Shen, H.; Huang, N. Can carbon emission trading scheme improve enterprise value? Financ. Trade Econ. 2019, 1, 144–161. (In Chinese) [Google Scholar]
- Chapple, L.; Clarkson, P.M.; Gold, D.L. The Cost of Carbon: Capital Market Effects of the Proposed Emission Trading Scheme (ETS). Abacus 2013, 49, 1–33. [Google Scholar] [CrossRef]
- Chen, Z.; Kahn, M.E.; Liu, Y.; Wang, Z. The Consequences of Spatially Differentiated Water Pollution Regulation in China. J. Environ. Econ. Manag. 2018, 88, 468–485. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Zhang, L. Carbon emissions and asset pricing: Evidence from Chinese listed companies. J. Econ. 2022, 2, 28–75. (In Chinese) [Google Scholar]
N | Mean | S.D. | Min | Max | |
---|---|---|---|---|---|
lncarbon | 17,479 | 3.0929 | 1.1263 | 0.0812 | 5.9787 |
re1 | 17,479 | 0.0069 | 0.0017 | 0.0025 | 0.0139 |
re2 | 17,479 | 0.0095 | 0.0024 | 0.0037 | 0.0192 |
lnre3 | 17,479 | 4.0379 | 0.3140 | 1.7918 | 4.8203 |
re4 | 17,479 | 0.0067 | 0.0017 | 0.0028 | 0.0131 |
lnsize | 17,479 | 22.0569 | 1.1965 | 16.1613 | 27.5470 |
cash | 17,479 | 0.0487 | 0.1141 | −10.2162 | 2.2216 |
owned | 17,479 | 0.2869 | 0.4523 | 0.0000 | 1.0000 |
grow | 17,479 | 0.1566 | 0.5641 | −0.9661 | 33.0601 |
lnage | 17,479 | 2.1105 | 0.7624 | 0.6931 | 3.4657 |
HHI10 | 17,479 | 0.4225 | 0.1890 | 0.1009 | 0.9849 |
fdi | 17,479 | 0.0215 | 0.0110 | 0.0001 | 0.0796 |
indus | 17,479 | 1.4845 | 0.9367 | 0.6112 | 5.2440 |
urban | 17,479 | 66.9277 | 11.7488 | 31.5700 | 89.6000 |
rgdp | 17,479 | 11.4656 | 0.5111 | 9.2193 | 13.0557 |
EV: lncarbon | ||||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
re1 | −16.6046 *** | −26.0700 *** | −4.8136 *** | −3.9794 *** | −3.3032 *** | −2.9981 *** |
(1.2662) | (1.4720) | (1.7828) | (1.0649) | (1.0381) | (1.0520) | |
lnsize | −0.0389 *** | −0.0394 *** | ||||
(0.0060) | (0.0060) | |||||
cash | −0.2301 *** | −0.2289 *** | ||||
(0.0475) | (0.0474) | |||||
owned | 0.0579 *** | 0.0572 *** | ||||
(0.0109) | (0.0108) | |||||
grow | −0.0169 *** | −0.0168 *** | ||||
(0.0037) | (0.0037) | |||||
lnage | 0.0929 *** | 0.0922 *** | ||||
(0.0076) | (0.0076) | |||||
HHI10 | 0.0458 *** | 0.0451 *** | ||||
(0.0153) | (0.0153) | |||||
fdi | 0.1260 | |||||
(0.2304) | ||||||
indus | 0.0134 | |||||
(0.0146) | ||||||
urban | −0.0017 | |||||
(0.0012) | ||||||
lnrgdp | −0.0338 *** | |||||
(0.0094) | ||||||
Constant | 3.2070 *** | 3.2721 *** | 3.1259 *** | 3.1257 *** | 3.7589 *** | 4.2486 *** |
(0.0089) | (0.0103) | (0.0124) | (0.0074) | (0.1282) | (0.1934) | |
FEindu | YES | YES | YES | YES | YES | YES |
FEpro | NO | YES | YES | YES | YES | YES |
FEyear | NO | NO | YES | YES | YES | YES |
FEenterprise | NO | NO | NO | YES | YES | YES |
Observations | 17,479 | 17,479 | 17,479 | 17,161 | 17,161 | 17,161 |
R2 | 0.9341 | 0.9358 | 0.9396 | 0.9847 | 0.9853 | 0.9853 |
Replacing Explanatory Variables | Replacing Explained Variables | Controlling for Joint Effects | ||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
re2 | −2.1438 *** | |||||||
(0.7560) | ||||||||
lnre3 | −0.0160 *** | |||||||
(0.0061) | ||||||||
re4 | −2.9661 *** | |||||||
(1.0064) | ||||||||
re1 | −4.5142 *** | −3.3844 *** | −3.3191 *** | −3.2911 *** | ||||
(1.6623) | (1.0535) | (1.0537) | (1.0585) | |||||
re5 | −2.1399 * | |||||||
(1.1145) | ||||||||
FEindu | YES | YES | YES | YES | YES | YES | YES | YES |
FEpro | YES | YES | YES | YES | YES | YES | YES | YES |
FEyear | YES | YES | YES | YES | YES | YES | YES | YES |
FEfirm | YES | YES | YES | YES | YES | YES | YES | YES |
FEindu × FEpro | NO | NO | NO | NO | NO | YES | YES | YES |
FEfirm × FEpro | NO | NO | NO | NO | NO | NO | YES | YES |
FEfirm × FEindu | NO | NO | NO | NO | NO | NO | NO | YES |
Observations | 17,161 | 17,161 | 17,161 | 16,781 | 15,836 | 17,151 | 17,117 | 17,075 |
R2 | 0.9853 | 0.9853 | 0.9853 | 0.9863 | 0.1540 | 0.9859 | 0.9859 | 0.9859 |
EV: lncarbon | |||||
---|---|---|---|---|---|
IV1: L.re1 | IV2: Air Mobility Coefficient | ||||
(1) | (2) | (3) | (4) | (5) | |
re1 | −9.3960 ** | −11.9148 *** | |||
(4.0981) | (4.2140) | ||||
re2 | −8.8416 *** | ||||
(3.1272) | |||||
lnre3 | −0.0605 *** | ||||
(0.0218) | |||||
re4 | −12.3436 *** | ||||
(4.3678) | |||||
FEindu | YES | YES | YES | YES | YES |
FEpro | YES | YES | YES | YES | YES |
FEyear | YES | YES | YES | YES | YES |
FEenterprise | YES | YES | YES | YES | YES |
Observations | 14,217 | 17,161 | 17,161 | 17,161 | 17,161 |
R2 | 0.0467 | 0.0387 | 0.0382 | 0.0395 | 0.0378 |
First-stage regression | |||||
IV | 0.2791 *** | −0.0020 *** | −0.0026 *** | −0.3863 *** | −0.0019 *** |
(0.0091) | (0.0001) | (0.0001) | (0.0262) | (0.0001) | |
F | 942.611 | 700.714 | 662.685 | 216.894 | 627.082 |
Anderson canon. corr. LM statistic | 951.861 *** | 526.715 *** | 500.416 *** | 194.089 *** | 465.992 *** |
Cragg–Donald Wald F statistic | 1009.369 *** | 1123.712 *** | 1047.927 *** | 1354.259 *** | 953.674 *** |
Kleibergen–Paap rk Wald F statistic | 942.611 *** | 700.714 *** | 662.685 *** | 216.894 *** | 627.082 *** |
EV: lncarbon | |||||
---|---|---|---|---|---|
Eliminating the Impact of COVID-19 | Eliminating the Four Major Municipalities | Change Clustering Standard Error | Winsorization | Nonlinear Regression | |
(1) | (2) | (3) | (4) | (5) | |
re1 | −2.9612 ** | −2.9762 *** | −2.9981 ** | −2.3745 ** | −7.7812 |
(1.1921) | (1.1247) | (1.3383) | (1.0119) | (5.8334) | |
re1 × re1 | 333.4279 | ||||
(384.3044) | |||||
FEindu | YES | YES | YES | YES | YES |
FEpro | YES | YES | YES | YES | YES |
FEyear | YES | YES | YES | YES | YES |
FEenterprise | YES | YES | YES | YES | YES |
Observations | 12,688 | 14,485 | 17,161 | 17,161 | 12,688 |
R2 | 0.9872 | 0.9863 | 0.9853 | 0.9862 | 0.9872 |
The Effect of Environmental Information Disclosure | The Effect of Environmental Institution Establishment | The Effect of Environmental Management Concepts | |||
---|---|---|---|---|---|
EDI | Disco2 | Emerg | Three | lnESG | |
(1) | (2) | (3) | (4) | (5) | |
re1 | 65.6028 * | 3.8601 * | 5.8343 ** | 4.0738 ** | 3.0848 *** |
(37.0026) | (2.3108) | (2.3615) | (2.0370) | (0.9456) | |
FEindu | YES | YES | YES | YES | YES |
FEpro | YES | YES | YES | YES | YES |
FEyear | YES | YES | YES | YES | YES |
FEenterprise | YES | YES | YES | YES | YES |
Observations | 17,144 | 17,145 | 17,145 | 17,145 | 16,954 |
R2 | 0.7683 | 0.4372 | 0.5693 | 0.5326 | 0.5914 |
lntfp_ols | lntfp_fe | lntfp_LP | lntfp_OP | lntfp_GMM | |
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
re1 | 0.5483 *** | 0.5287 *** | 0.7038 *** | 0.6078 ** | 1.4597 ** |
(0.1881) | (0.1802) | (0.2585) | (0.2680) | (0.6690) | |
FEindu | YES | YES | YES | YES | YES |
FEpro | YES | YES | YES | YES | YES |
FEyear | YES | YES | YES | YES | YES |
FEenterprise | YES | YES | YES | YES | YES |
Observations | 17,133 | 17,133 | 17,133 | 17,133 | 17,133 |
R2 | 0.9514 | 0.9553 | 0.9180 | 0.9070 | 0.7792 |
lnPatents1 | lnPatents2 | lnPatents3 | lnPatents4 | |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
re1 | 15.1939 | 5.1369 | −1.3207 | 1.4378 |
(14.6794) | (10.3191) | (13.6688) | (2.3277) | |
FEindu | YES | YES | YES | YES |
FEpro | YES | YES | YES | YES |
FEyear | YES | YES | YES | YES |
FEenterprise | YES | YES | YES | YES |
Observations | 10,069 | 10,069 | 10,069 | 14,830 |
R2 | 0.5703 | 0.4927 | 0.5419 | 0.6927 |
EV: lncarbon | |||||
---|---|---|---|---|---|
Heterogeneity of Resource-Based Enterprises | Heterogeneity of Enterprise Size | Heterogeneity of Enterprise Nature | |||
(1) | (2) | (3) | (4) | (5) | |
re1 | −4.2860 *** | 19.8847 | −36.0775 ** | −18.6475 ** | −4.1832 *** |
(1.1341) | (13.6257) | (17.2077) | (6.3718) | (1.1969) | |
re1 × owned | 3.7973 ** | ||||
(1.8203) | |||||
lnsize | −0.0393 *** | −0.0387 *** | −0.0492 *** | −0.0393 *** | |
(0.0060) | (0.0060) | (0.0074) | (0.0060) | ||
re1 × lnsize | 1.4958 * | ||||
(0.7743) | |||||
lnsize1 | −0.0353 *** | ||||
(0.0085) | |||||
re1 × lnsize1 | 2.0258 *** | ||||
(0.7829) | |||||
re1 × resour | 5.4395 *** | ||||
(2.0162) | |||||
re1 × resour1 | −4.2215 * | ||||
(2.4708) | |||||
resour1 | 0.0303 * | ||||
(0.0174) | |||||
FEindu | YES | YES | YES | YES | YES |
FEpro | YES | YES | YES | YES | YES |
FEyear | YES | YES | YES | YES | YES |
FEenterprise | YES | YES | YES | YES | YES |
Observations | 17,161 | 17,161 | 17,161 | 17,161 | 17,161 |
R2 | 0.9853 | 0.9853 | 0.9853 | 0.9853 | 0.9853 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, T.; Zhang, J.; Wang, Y.; Shang, Y. The Impact of Environmental Regulations on Carbon Emissions of Chinese Enterprises and Their Resource Heterogeneity. Sustainability 2024, 16, 1058. https://doi.org/10.3390/su16031058
Pan T, Zhang J, Wang Y, Shang Y. The Impact of Environmental Regulations on Carbon Emissions of Chinese Enterprises and Their Resource Heterogeneity. Sustainability. 2024; 16(3):1058. https://doi.org/10.3390/su16031058
Chicago/Turabian StylePan, Tuan, Juan Zhang, Yan Wang, and Yuping Shang. 2024. "The Impact of Environmental Regulations on Carbon Emissions of Chinese Enterprises and Their Resource Heterogeneity" Sustainability 16, no. 3: 1058. https://doi.org/10.3390/su16031058
APA StylePan, T., Zhang, J., Wang, Y., & Shang, Y. (2024). The Impact of Environmental Regulations on Carbon Emissions of Chinese Enterprises and Their Resource Heterogeneity. Sustainability, 16(3), 1058. https://doi.org/10.3390/su16031058