Carbon Emission Trend Prediction for Regional Cities in Jiangsu Province Based on the Random Forest Model
Abstract
:1. Introduction
2. Study Area and Methodology
2.1. Study Area and Data Sources
2.2. Methods of Accounting for Carbon Emissions
2.3. Model Building
2.4. Scenario Setting
3. Results
3.1. Comparison of Carbon Emission Accounting Methods and Distributional Characteristics
3.2. Comparison of Predictive Models
3.3. Analysis of Influencing Factors
3.3.1. SHAP Analysis for Jiangsu Province
3.3.2. Analysis of Characteristic Variables by Cities
3.4. Scenario Analysis
4. Discussion and Policy Suggestions
4.1. Model Advantage
4.2. Policy Suggestions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zong, J.F.; Sun, L.; Bao, W. Situation analysis and development suggestion regarding carbon emission peaking. In Proceedings of the 4th International Workshop on Renewable Energy and Development (IWRED), Electr Network, Hangzhou, China, 24–26 April 2024; IOP: Bristol, UK, 2024. [Google Scholar]
- Kaygusuz, K. Energy and environmental issues relating to greenhouse gas emissions for sustainable development in Turkey. Renew. Sustain. Energy Rev. 2009, 13, 253–270. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, K. CO2 Emissions in Asia-Pacific Region: Do Energy Use, Economic Growth, Financial Development, and International Trade Have Detrimental Effects? Sustainability 2022, 14, 5420. [Google Scholar] [CrossRef]
- Garland, M. Towards a Just and Sustainable Blue Economy: An Examination of the Blue Economy Narrative for Long Island Sound. Ph.D. Thesis, Southern Connecticut State University, New Haven, CT, USA, 2019. [Google Scholar]
- Lewis, S.C.; King, A.D.; Perkins-Kirkpatrick, S.E.; Mitchell, D.M. Regional hotspots of temperature extremes under 1.5 °C and 2 °C of global mean warming. Weather Clim. Extrem. 2019, 26, 100233. [Google Scholar] [CrossRef]
- Zhu, S. Present Situation of Greenhouse Gas Emission in Beijing and the Approach to Its Reduction. China Soft Sci. 2009, 9, 93–98. [Google Scholar]
- Wang, P.; Zhong, Y.Y.; Yao, Z.A. Modeling and Estimation of CO2 Emissions in China Based on Artificial Intelligence. Comput. Intell. Neurosci. 2022, 2022, 6822467. [Google Scholar] [CrossRef]
- Lai, Y.; Xia, X.; Li, F.; Peng, R. Current Situation, Challenges and New Trend of Carbon Emissions in Beijing: A Comparative Study on Climate Action in Six International Metropolises. Urban Stud. 2023, 30, 83–89. [Google Scholar]
- Li, H.; Cao, H.; Liu, L.; Xing, B.; Pan, X.; Wen, X.; Ge, W. Research Status and Technology Path of Low-carbon Manufacturing under the Background of Emission Peak and Carbon Neutrality. J. Mech. Eng. 2023, 59, 225–240. [Google Scholar]
- Long, Y.; Yoshida, Y.; Liu, Q.L.; Zhang, H.R.; Wang, S.Q.; Fang, K. Comparison of city-level carbon footprint evaluation by applying single- and multi-regional input-output tables. J. Environ. Manag. 2020, 260, 110108. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Cui, S.; Wang, Z. Research on Carbon Emission and Reduction Potential of Building Ceramics in China. Mater. Rev. 2018, 32, 3967–3972. [Google Scholar]
- Liu, T.; Wu, Z.; Chen, C.; Chen, H.; Zhou, H.Y. Carbon Emission Accounting during the Construction of Typical 500 kV Power Transmissions and Substations Using the Carbon Emission Factor Approach. Buildings 2024, 14, 145. [Google Scholar] [CrossRef]
- Geng, Y.; Dong, H.; Xi, F.; Liu, Z. A Review of the Research on Carbon Footprint Responding to Climate Change. China Popul. ·Resour. Environ. 2010, 20, 6–12. [Google Scholar]
- Kim, B.S.; Jang, W.S.; Lee, D.E. Analysis of the CO2 emission characteristics of earthwork equipment. Ksce J. Civ. Eng. 2015, 19, 1–9. [Google Scholar] [CrossRef]
- He, J.X.; Zhao, W.H. Research on The Path of Carbon Emission Trading in China Under The Double Carbon Background. Probl. Ekorozwoju 2023, 18, 81–88. [Google Scholar] [CrossRef]
- Xu, S.X.; Lv, Z.Y.; Wu, J.Z.; Chen, L.J.; Wu, J.H.; Gao, Y.; Lin, C.M.; Wang, Y.; Song, D.; Cui, J.C. Prediction method of regional carbon dioxide emissions in China under the target of peaking carbon dioxide emissions: A case study of Zhejiang. Meteorol. Appl. 2024, 31, 2203. [Google Scholar] [CrossRef]
- Zhang, X.W.; Cao, W.J. Research on Influence Factors of Carbon Emission Based on STIRPAT Model in Jilin Province. In Proceedings of the International Conference on Social Science, Public Health and Education (SSPHE), Guangzhou, China, 5–6 May 2017; pp. 37–42. [Google Scholar]
- Zheng, L.X. Carbon emission measurement method of heavy industry based on LMDI decomposition method. Int. J. Glob. Energy Issues 2023, 45, 113–124. [Google Scholar] [CrossRef]
- Chen, P.J. An Empirical Study of the Carbon Emission Kuznets Curve in Tianjin. In Proceedings of the 2nd International Conference on Air Pollution and Environmental Engineering (APEE), Xi’an, China, 15–16 December 2019; IOP: Bristol, UK, 2019. [Google Scholar]
- Dong, J.; Zong, M.; Chen, J. A method to predict the carbon emissions of civil aviation based on stirpat model. Environ. Eng. 2014, 32, 165–169. [Google Scholar]
- Kong, D.P.; Dai, Z.; Tang, J.Y.; Zhang, H. Forecasting urban carbon emissions using an Adaboost-STIRPAT model. Front. Environ. Sci. 2023, 11, 1284028. [Google Scholar] [CrossRef]
- Chen, Z.M.; Ohshita, S.; Lenzen, M.; Wiedmann, T.; Jiborn, M.; Chen, B.; Lester, L.; Guan, D.B.; Meng, J.; Xu, S.Y.; et al. Consumption-based greenhouse gas emissions accounting with capital stock change highlights dynamics of fast-developing countries. Nat. Commun. 2018, 9, 3581. [Google Scholar] [CrossRef]
- Luo, X.C.; Liu, C.K.; Zhao, H.H. Driving factors and emission reduction scenarios analysis of CO2 emissions in Guangdong-Hong Kong-Macao Greater Bay Area and surrounding cities based on LMDI and system dynamics. Sci. Total Environ. 2023, 870, 161966. [Google Scholar] [CrossRef]
- Guo, H.N.; Wu, S.B.; Tian, Y.J.; Zhang, J.; Liu, H.T. Application of machine learning methods for the prediction of organic solid waste treatment and recycling processes: A review. Bioresour. Technol. 2021, 319, 124114. [Google Scholar] [CrossRef]
- Aleskerov, F.; Demin, S.; Richman, M.B.; Shvydun, S.; Trafalis, T.B.; Yakuba, V. Constructing an Efficient Machine Learning Model for Tornado Prediction. Int. J. Inf. Technol. Decis. Mak. 2020, 19, 1177–1187. [Google Scholar] [CrossRef]
- Chen, Z.X.; Liu, L.K.; Li, C.H. Prediction and Control of Carbon Emissions of Electric Vehicles Based on BP Neural Network under Carbon Neutral Background. In Proceedings of the International Conference on Neural Networks, Information and Communication Engineering, Qingdao, China, 27–29 August 2021. [Google Scholar]
- Huo, Z.G.; Zha, X.T.; Lu, M.Y.; Ma, T.Q.; Lu, Z.C. Prediction of Carbon Emission of the Transportation Sector in Jiangsu Province-Regression Prediction Model Based on GA-SVM. Sustainability 2023, 15, 3631. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Liu, R.R.; Liu, Z.S.; Liu, L.; Wang, J.J.; Liu, W.X. A Review of Macroscopic Carbon Emission Prediction Model Based on Machine Learning. Sustainability 2023, 15, 6876. [Google Scholar] [CrossRef]
- Kayakus, M. Forecasting carbon dioxide emissions in Turkey using machine learning methods. Int. J. Glob. Warm. 2022, 28, 199–210. [Google Scholar] [CrossRef]
- Liu, B.; Chang, H.D.; Li, Y.; Zhao, Y.P. Carbon emissions predicting and decoupling analysis based on the PSO-ELM combined prediction model: Evidence from Chongqing Municipality, China. Environ. Sci. Pollut. Res. 2023, 30, 78849–78864. [Google Scholar] [CrossRef]
- Utkin, L.; Konstantinov, A. Ensembles of Random SHAPs. Algorithms 2022, 15, 431. [Google Scholar] [CrossRef]
- Rashid, A.; Rasheed, R.; Ngah, A.H.; Amirah, N.A. Unleashing the power of cloud adoption and artificial intelligence in optimizing resilience and sustainable manufacturing supply chain in the USA. J. Manuf. Technol. Manag. 2024, 35, 1329–1353. [Google Scholar] [CrossRef]
- Wang, H.; Wei, Z.J.; Fang, T.; Xie, Q.J.; Li, R.; Fang, D.B. Carbon emissions prediction based on the GIOWA combination forecasting model: A case study of China. J. Clean. Prod. 2024, 445, 141340. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y. Analysis and forecast of carbon emissions in the Yangtze River Delta region. J. Anhui Agric. Univ. 2023, 50, 1051–1058. [Google Scholar]
- Cheng, A.; Han, X.R.; Jiang, G.G. Decomposition and Scenario Analysis of Factors Influencing Carbon Emissions: A Case Study of Jiangsu Province, China. Sustainability 2023, 15, 6718. [Google Scholar] [CrossRef]
- Huang, M.L.; Jiang, H. The Spatial and Temporal Characteristics of Surface Ultraviolet Radiation and Total Ozone in Urban Agglomeration of Yangtze River Delta. In Proceedings of the Joint Workshop on Urban Remote Sensing, Shanghai, China, 20–22 May 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 436–442. [Google Scholar]
- Lv, T.G.; Zhao, Q.; Zhang, X.M.; Hu, H.; Geng, C. Spatiotemporal pattern and influencing factors of regional carbon emission efficiency: An empirical analysis of Jiangsu Province in China. Int. J. Low-Carbon Technol. 2023, 18, 1048–1059. [Google Scholar] [CrossRef]
- He, J.; Yan, W.; Duan, X.; Zou, H. Location Identification and Spatial Evolution of Industrial Heat Sources Along Yangtze River in Jiangsu Province. Resour. Environ. Yangtze Basin 2022, 31, 995–1005. [Google Scholar]
- Li, Z.; Li, Y.B.; Shao, S.S. Analysis of Influencing Factors and Trend Forecast of Carbon Emission from Energy Consumption in China Based on Expanded STIRPAT Model. Energies 2019, 12, 3054. [Google Scholar] [CrossRef]
- He, Y.Y.; Wei, Z.X.; Liu, G.Q.; Zhou, P. Spatial network analysis of carbon emissions from the electricity sector in China. J. Clean. Prod. 2020, 262, 121193. [Google Scholar] [CrossRef]
- Lv, W. Calculation and Analysis of Greenhouse Gas Emission Factors for Organizational Purchased Electricity. Environ. Sci. Technol. 2014, 37, 199–204. [Google Scholar]
- Sun, Y.; Lü, L.; Cai, Y.K.; Lee, P. Prediction of black carbon in marine engines and correlation analysis of model characteristics based on multiple machine learning algorithms. Environ. Sci. Pollut. Res. 2022, 29, 78509–78525. [Google Scholar] [CrossRef]
- Gou, G.H. SVR-based prediction of carbon emissions from energy consumption in Henan Province. In Proceedings of the 3rd International Conference on Advances in Energy Resources and Environment Engineering (ICAESEE), Harbin, China, 8–10 December 2017; IOP: Bristol, UK, 2017. [Google Scholar]
- Chang, Z.Y.; Jiao, Y.M.; Wang, X.J. Influencing the Variable Selection and Prediction of Carbon Emissions in China. Sustainability 2023, 15, 13848. [Google Scholar] [CrossRef]
- Duo, L.; Zhong, Y.; Wang, J.; Chen, Y.; Guo, X. Spatio-temporal characteristics and scenario prediction of carbon emissions from land use in Jiangxi Province, China. Int. J. Environ. Sci. Technol. 2024. [Google Scholar] [CrossRef]
- Zou, X.; Sun, X.; Ge, T.; Xing, S. Carbon Emission Differences, Influence Mechanisms and Carbon Peak Projections in Yangtze River Delta Region. Resour. Environ. Yangtze Basin 2023, 32, 548–557. [Google Scholar]
- Yao, M.; Wang, M.; Lei, Y. Research on Shanghai Carbon Peak Forecast Based on STIRPAT Model. J. Fudan University. Nat. Sci. 2023, 62, 226–237. [Google Scholar]
- Liu, W.S.; Ren, D.C.; Ke, C.B.; Ying, W. Carbon Emission Influencing Factors and Scenario Prediction for Construction Industry in Beijing-Tianjin-Hebei. Adv. Civ. Eng. 2023, 2023, 2286573. [Google Scholar] [CrossRef]
- Liu, C.; Qian, X. Prediction of carbon emissions from energy consumption in China under the “dual carbon” goal. Resour. Sci. 2023, 45, 1931–1946. [Google Scholar] [CrossRef]
- Wang, S.J.; Mo, H.B.; Fang, C.L. Carbon emissions dynamic simulation and its peak of cities in the Pearl River Delta Urban Agglomeration. Chin. Sci. Bull. -Chin. 2022, 67, 670–684. [Google Scholar] [CrossRef]
- Liu, Z.; Guan, D.B.; Wei, W.; Davis, S.J.; Ciais, P.; Bai, J.; Peng, S.S.; Zhang, Q.; Hubacek, K.; Marland, G.; et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015, 524, 14677. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997-2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef]
- Gao, M.; Wu, X. Temporal and spatial characteristics and peak prediction of carbon emissions in Guangxi Zhuang Autonomous Region. Carsologica Sin. 2023, 42, 763–774. [Google Scholar]
- Liu, L.Y.; Tang, Y.L.; Chen, Y.Y.; Zhou, X.; Bedra, K.B. Urban Sprawl and Carbon Emissions Effects in City Areas Based on System Dynamics: A Case Study of Changsha City. Appl. Sci. 2022, 12, 3244. [Google Scholar] [CrossRef]
- Wei, Y.; Li, S.; Zhang, H. Temporal-spatial evolution of carbon emission and driving factors in the Chengdu-Chongqing urban agglomeration. China Environ. Sci. 2022, 42, 4807–4816. [Google Scholar]
- Wu, Z.; Wang, D.; Su, Y. Study on Spatial-temporal Variation and Influencing Factors of Urban Carbon Emissions in Guangdong Province Based on EDGAR Data. Areal Res. Dev. 2020, 39, 127. [Google Scholar]
- Xiang, S.-J.; Yang, C.-M.; Xie, Y.-Q.; Wang, D.; Wang, Z.-F.; Gao, M. Spatiotemporal Dynamic Evolution and Gravity Center Migration of Carbon Emissions in the Main Urban Area of Chongqing over the Past 20 Years. Huan Jing Ke Xue = Huanjing Kexue 2023, 44, 560–571. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, J.Y.; Wang, R.; Zhang, M.X.; Gao, C.; Yu, Y. Use of random forest based on the effects of urban governance elements to forecast CO2 emissions in Chinese cities. Heliyon 2023, 9, e16693. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Sun, W.; He, W.; Guo, Y.; Guo, C. Study on the Carbon Emission Prediction Model for Railway Tunnel Construction Based on Machine Learning. Mod. Tunn. Technol. 2023, 60, 29–39. [Google Scholar]
- Singh, P.K.; Pandey, A.K.; Ahuja, S.; Kiran, R. Multiple forecasting approach: A prediction of CO2 emission from the paddy crop in India. Environ. Sci. Pollut. Res. 2022, 29, 25461–25472. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Wang, Y.; Zhang, C. Forecasting CO2 emissions in Hebei, China, through moth-flame optimization based on the random forest and extreme learning machine. Environ. Sci. Pollut. Res. 2018, 25, 28985–28997. [Google Scholar] [CrossRef]
- Strumbelj, E.; Kononenko, I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 2014, 41, 647–665. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.I. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Wang, S.; Ren, Y.; Xia, B. PM2.5 and O3 concentration estimation based on interpretable machine learning. Atmos. Pollut. Res. 2023, 14, 101866. [Google Scholar] [CrossRef]
- Park, J.; Lee, W.H.; Kim, K.T.; Park, C.Y.; Lee, S.; Heo, T.Y. Interpretation of ensemble learning to predict water quality using explainable artificial intelligence. Sci. Total Environ. 2022, 832, 155070. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Y.; He, H.; Xiao, H.; Wang, S.; Zhang, Y.; Li, H.; Qian, X. Time series prediction of the chemical components of PM2.5 based on a deep learning model. Chemosphere 2023, 342, 140153. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.X.; Zhou, C.X.; Wang, X.L. Projections in Various Scenarios and the Impact of Economy, Population, and Technology for Regional Emission Peak and Carbon Neutrality in China. Int. J. Environ. Res. Public Health 2022, 19, 2126. [Google Scholar] [CrossRef]
- Huang, R.; Lu, Y.; Lu, M. Projection of Energy Consumption Carbon Emission Peak for Jiangsu, Zhejiang and Shanghai Under Different Energy Policies. Resour. Environ. Yangtze Basin 2017, 26, 15–25. [Google Scholar]
- Tang, J.; Zheng, J.; Yang, G.; Li, C.; Zhao, X. Carbon emission prediction in a region of Hainan Province based on improved STIRPAT model. Environ. Sci. Pollut. Res. Int. 2024, 31, 58795–58817. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Li, M.; Zhang, L.; Cai, B. Research on Carbon Dioxide Emission Peaking in the Yangtze River Delta Urban Agglomeration. Environ. Eng. 2020, 38, 33. [Google Scholar]
- Li, S.; Ma, W.; Hao, H.; Zhao, J. CO2 emission characteristics and emission reduction measures of country energy consumption: A case study of Huailai County, Hebei Province. Chin. J. Environ. Eng. 2023, 17, 2277–2285. [Google Scholar]
- Zhao, M.; Lu, L.; Wang, S.; Bai, Z.; Zhang, N.; Luo, H.; Fu, J. Meta Regression Analysis of Pathway of Peak Carbon Emissions in China. Res. Environ. Sci. 2021, 34, 2056–2064. [Google Scholar]
- Song, P.; Zhang, H.; Mao, X. Research on Chongqing’s carbon emission reduction path towards the goal of carbon peak. China Environ. Sci. 2022, 42, 1446–1455. [Google Scholar]
- Ma, D.; Chen, W. China’s carbon emissions peak path-based on China TIMES model. J. Tsinghua Univ. Sci. Technol. 2017, 57, 1070–1075. [Google Scholar]
- Rashid, A.; Rasheed, R.; Altay, N. Greening manufacturing: The role of institutional pressure and collaboration in operational performance. J. Manuf. Technol. Manag. 2024; ahead of print. [Google Scholar] [CrossRef]
- Yan, G.; Zheng, Y.; Wang, X.; Li, B.; He, J.; Shao, Z.; Li, Y.; Wu, L.; Ding, Y.; Xu, W.; et al. Pathway for Carbon Dioxide Peaking in China Based on Sectoral Analysis. Res. Environ. Sci. 2022, 35, 309–319. [Google Scholar]
- Miao, A.-K.; Yuan, Y.; Wu, H.; Ma, X.; Shao, C.-Y. Pathway and Policy for China’s Provincial Carbon Emission Peak. Huan Jing Ke Xue = Huanjing Kexue 2023, 44, 4623–4636. [Google Scholar] [CrossRef]
- Zhao, Y.; Duan, X.Y.; Yu, M. Calculating carbon emissions and selecting carbon peak scheme for infrastructure construction in Liaoning Province, China. J. Clean. Prod. 2023, 420, 138396. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Chen, L.; Ke, T.; He, H.; Li, D.; Liu, K.; Li, H. Carbon Emission Trend Prediction for Regional Cities in Jiangsu Province Based on the Random Forest Model. Sustainability 2024, 16, 10450. https://doi.org/10.3390/su162310450
Yang W, Chen L, Ke T, He H, Li D, Liu K, Li H. Carbon Emission Trend Prediction for Regional Cities in Jiangsu Province Based on the Random Forest Model. Sustainability. 2024; 16(23):10450. https://doi.org/10.3390/su162310450
Chicago/Turabian StyleYang, Wanru, Long Chen, Tong Ke, Huan He, Dehu Li, Kai Liu, and Huiming Li. 2024. "Carbon Emission Trend Prediction for Regional Cities in Jiangsu Province Based on the Random Forest Model" Sustainability 16, no. 23: 10450. https://doi.org/10.3390/su162310450
APA StyleYang, W., Chen, L., Ke, T., He, H., Li, D., Liu, K., & Li, H. (2024). Carbon Emission Trend Prediction for Regional Cities in Jiangsu Province Based on the Random Forest Model. Sustainability, 16(23), 10450. https://doi.org/10.3390/su162310450