Extraction, Chemical Modification, and Assessment of Antioxidant Potential of Pectin from Pakistani Punica granatum Peels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Collection and Pretreatment of Plant Material
2.3. Extraction and Precipitation of Crude Pectin
2.4. Modification of Pectin
2.5. Characterization of Pectin
2.5.1. SEM Analysis
2.5.2. FTIR Analysis
2.5.3. EDX Analysis
2.5.4. XRD Analysis
2.6. Antioxidant Activities
2.6.1. Hydroxyl Radical Antioxidant Assay
2.6.2. DPPH Radical Antioxidant Assay
2.6.3. Ferric-Reducing Antioxidant Power
2.6.4. Phosphomolybdenum Antioxidant Power
2.7. Statistical Analysis
3. Results and Discussion
3.1. Yield of Extract
3.2. Modification of Pectin
3.3. Characterization of Pectin
3.3.1. Scanning Electron Microscopy (SEM)
3.3.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.3.3. Energy Dispersive X-ray Spectroscopy (EDX)
3.3.4. X-ray Diffraction (XRD) Analysis
3.4. Antioxidant Activities
3.4.1. Hydroxyl Radical Antioxidant Assay
3.4.2. DPPH Radical Scavenging Assay
3.4.3. Ferric-Reducing Antioxidant Power
3.4.4. Phosphomolybdenum Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shibuya, K.; Nakane, M. Pectic polysaccharides of rice endosperm cell walls. Phytochem. 1984, 23, 1425–1429. [Google Scholar] [CrossRef]
- Guillon, F.; Bouchet, B.; Jamme, F.; Robert, P.; Quéméner, B.; Barron, C.; Larré, C.; Dumas, P.; Saulnier, L. Brachypodium distachyon grain: Characterization of endosperm cell walls. J. Exp. Bot. 2011, 62, 1001–1015. [Google Scholar] [CrossRef] [PubMed]
- Leboeuf, M.; Cavé, A.; Bhaumik, P.; Mukherjee, B.; Mukherjee, R. The phytochemistry of the Annonaceae. Phytochemistry 2005, 21, 2783–2813. [Google Scholar] [CrossRef]
- Koubala, B.; Mbome, L.; Kansci, G.; Mbiapo, F.T.; Crepeau, M.-J.; Thibault, J.-F.; Ralet, M.-C. Physicochemical properties of pectins from ambarella peels (Spondias cytherea) obtained using different extraction conditions. Food Chem. 2008, 106, 1202–1207. [Google Scholar] [CrossRef]
- Dumville, J.C.; Fry, S.C. Uronic acid-containing oligosaccharins: Their biosynthesis, degradation and signaling roles in non-diseased plant tissues. Plant Physiol. Biochem. 2000, 38, 125–140. [Google Scholar] [CrossRef]
- May, C.D. Industrial pectins: Sources, production and applications. Carbohydr. Polym. 1990, 12, 79–99. [Google Scholar] [CrossRef]
- Reitsma, J.C.E.; Pilnik, W. Analysis of mixtures of pectins and amidated pectins. Carbohydr. Polym. 1989, 10, 315–319. [Google Scholar] [CrossRef]
- Visser, J.; Voragen, A.G.J. (Eds.) Pectins and Pectinases; Elsevier: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Ngouémazong, E.D.; Christiaens, S.; Shpigelman, A.; Van Loey, A.; Hendrickx, M. The emulsifying and emulsion-stabilizing properties of pectin: A review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 705–718. [Google Scholar] [CrossRef]
- Sharma, D.C.; Mishra, A.K.; Mishra, K.K. Fungal Pectinases: Diversity and Multifarious Applications. In Fungi and Fungal Products in Human Welfare and Biotechnology; Springer: Singapore, 2003; pp. 435–464. [Google Scholar]
- Hua, X.; Wang, K.; Yang, R.; Kang, J.; Zhang, J. Rheological properties of natural low-methoxyl pectin extracted from sunflower head. Food Hydrocoll. 2015, 44, 122–128. [Google Scholar] [CrossRef]
- Yu, Y.W.; Zhang, B.; Gao, H. Bright “merger-nova” from the remnant of a neutron star binary merger: A signature of a newly born, massive, millisecond magnetar. Astrophys. J. Lett. 2013, 776, L40. [Google Scholar] [CrossRef]
- Thakur, B.R.; Singh, R.K.; Handa, A.K.; Rao, M.A. Chemistry and uses of pectin—A review. Crit. Rev. Food Sci. Nutr. 1997, 37, 47–73. [Google Scholar] [CrossRef] [PubMed]
- Lara-Espinoza, C.; Carvajal-Millán, E.; Balandrán-Quintana, R.; López-Franco, Y.; Rascón-Chu, A. Pectin and Pectin-Based Composite Materials: Beyond Food Texture. Molecules 2018, 23, 942. [Google Scholar] [CrossRef]
- Braccini, I.; Pérez, S. Molecular basis of Ca2+-induced gelation in alginates and pectins: The egg-box model revisited. Biomacromolecules 2001, 2, 1089–1096. [Google Scholar] [CrossRef]
- FAO; Eckner, F.A.; Riebe, B.H.; Moulder, P.V.; Blackstone, E.H. Polysaccharide synthesis in tissue sections. Histochemie 1969, 19, 340–354. [Google Scholar] [CrossRef] [PubMed]
- Gnanasambandam, R.; Proctor, A. Preparation of soy hull pectin. Food Chem. 1999, 65, 461–467. [Google Scholar] [CrossRef]
- Da Silva, J.L.; Rao, M. 11 pectins: Structure, functionality, and uses. In Food Polysaccharides and Their Applications; CRC Press: Boca Raton, FL, USA, 2006; p. 353. [Google Scholar]
- Zhang, T.; Wang, Z.; Yu, S.; Guo, X.; Ai, C.; Tang, X.; Meng, H. Effects of pH and temperature on the structure, rheological and gel-forming properties of sugar beet pectins. Food Hydrocoll. 2021, 116, 106646. [Google Scholar] [CrossRef]
- Mukhidinov, Z.K.; Kasymova, G.F.; Usmanova, S.R.; Murzagulova, K.B.; Kim, M.E.; Yanovich, A.V. Production of rifampicin-containing microcapsules based on apple pectin complexes with β-lactoglobulin. Pharm. Chem. J. 2012, 46, 306–309. [Google Scholar] [CrossRef]
- Shakhmatov, E.G.; Makarova, E.N.; Belyy, V.A. Structural studies of biologically active pectin-containing polysaccharides of pomegranate (Punica granatum). Int. J. Biol. Macromol. 2019, 122, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Nisar, T.; Hou, Y.; Gou, X.; Sun, L.; Guo, Y. Pomegranate peel pectin can be used as an effective emulsifier. Food Hydrocoll. 2018, 85, 30–38. [Google Scholar] [CrossRef]
- Bhat, S.A.; Singh, E.R. Extraction and characterization of pectin from guava fruit peel. Int. J. Res. Eng. Adv. Technol. 2014, 2, 447–454. [Google Scholar]
- Rahman, S.; Khan, S.S.; Ahmed, W.; Jony, E.; Das, P.C.; Uddin, B. Extraction of pectin from Elephant Apple and Pomelo fruit peels: Valorization of fruit waste towards circular economy. Food Chem. Adv. 2023, 3, 100544. [Google Scholar] [CrossRef]
- Karatchanov, C.; Denev, P.; Karatchanov, M. Reaction of apple pectin with ammonia. Int. J. Food Sci. Technol. 1989, 24, 261–267. [Google Scholar] [CrossRef]
- Cheng, H.-N.; Gu, Q.-M.; Nickol, R.G. Amine Modified Polysaccharides; Trademark Office: Washington, DC, USA, 2000; Volume 7, pp. 159–721.
- Mishra, P.; Mishra, S.; Mahanta, C.L. Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food Bioprod. Process. 2014, 92, 252–258. [Google Scholar] [CrossRef]
- Monsoor, M.A.; Proctor, A. Preparation and functional properties of soy hull pectin. J. Am. Oil Chem. Soc. 2001, 78, 709. [Google Scholar] [CrossRef]
- Mohammed, R.R.; Chong, M.F. Treatment and decolorization of biologically treated Palm Oil Mill Effluent using banana peel as novel biosorbent. J. Environ. Manag. 2014, 132, 237–249. [Google Scholar] [CrossRef]
- Bae, I.Y.; Rha, H.J.; Lee, S.; Lee, H.G. Preparation and characterization of pectin hydroxamates from Citrus unshiu peels. J. Excip. Food Chem. 2016, 2, 11–23. [Google Scholar]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef]
- Duan, X.; Wu, G.; Jiang, Y. Evaluation of the antioxidant properties of litchi fruit phenolics in relation to pericarp browning prevention. Molecules 2007, 12, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Foo, L.Y. Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem. 2001, 75, 197–202. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K. The antioxidant and free radical scavenging activities of processed cowpea (Vigna unguiculata (L.) Walp.) seed extracts. Food Chem. 2007, 101, 10–19. [Google Scholar] [CrossRef]
- Loo, A.Y.; Jain, K.; Darah, I. Antioxidant activity of compounds isolated from the pyroligneous acid Rhizophora apiculata. Food Chem. 2008, 107, 1151–1160. [Google Scholar] [CrossRef]
- Bhavya, D.K.; Shrilakshmi; Suraksha, R. Value Added Products from Agriculture: Extraction of Pectin from Agro Waste Product Musa Acuminata and Citrus Fruit. Res. J. Agric. For. Sci. 2015, 3, 13–18. [Google Scholar]
- Musabayane, C.T.; Munjeri, O.; Bwititi, P.; Osim, E.E. Orally administered, insulin-loaded amidated pectin hydrogel beads sustain plasma concentrations of insulin in streptozotocin-diabetic rats. J. Endocrinol. 2000, 164, 1–6. [Google Scholar] [CrossRef]
- Wathoni, N.; Shan, C.Y.; Shan, W.Y.; Rostinawati, T.; Indradi, R.B.; Pratiwi, R.; Muchtaridi, M. Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind. Heliyon 2000, 5, e02299. [Google Scholar] [CrossRef]
- Kacurakova, M.; Capek, P.; Sasinkova, V.; Wellner, N.; Ebringerova, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Fertonani, H.C.R.; Scabio, A.; Schemin, M.H.C.; Carneiro, E.B.B.; Nogueira, A.; Wosiacki, G. Influence of acid concentration on extraction and quality of apple pomace pectin. Semin. Ciências Agrárias 2006, 27, 599–612. [Google Scholar] [CrossRef]
- Scabio, A.; Fertonani, H.C.R.; Schemin, M.H.C.; Petkowicz, C.D.O.; Carneiro, E.B.B.; Nogueira, A.; Wosiacki, G. A model for pectin extraction from apple pomace. Braz. J. Food Technol. 2007, 10, 259–265. [Google Scholar]
- Jabli, M.; Sebeia, N.; Bchetnia, A. Synthesis and Characterization of Pectin-Manganese Oxide and Pectin-Tin Oxide Nanocomposites: Application to the Degradation of Calmagite in Water. J. Polym. Environ. 2023, 31, 4326–4337. [Google Scholar] [CrossRef]
- Khule, N.R.; Mahale, N.B.; Shelar, D.S.; Rokade, M.M.; Chaudhari, S.R. Extraction of pectin from citrus fruit peel and use as natural binder in paracetamol tablet. Pharm. Lett. 2012, 4, 558–564. [Google Scholar]
- Rehman, Z.U.; Salariya, A.M.; Habib, F.; Shah, W.H. Utilization of mango peels as a source of pectin. J. Chem. Soc. Pak. 2004, 26, 73–76. [Google Scholar]
- Marcon, M.V.; Vriesmann, L.C.; Wosiacki, G.; Beleski-Carneiro, E.; Petkowicz, C.L. Pectins from apple pomace. J. Polímeros 2005, 15, 127–129. [Google Scholar] [CrossRef]
- Qian, J.Y.; Chen, W.; Zhang, W.M.; Zhang, H. Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation: A primary approach. Carbohydr. Polym. 2009, 78, 620–625. [Google Scholar] [CrossRef]
- Wang, B.S.; Li, B.S.; Zeng, Q.X.; Liu, H.X. Antioxidant and free radical scavenging activities of pigments extracted from molasses alcohol wastewater. Food Chem. 2008, 107, 1198–1204. [Google Scholar] [CrossRef]
- de Mendonça, I.C.G.; Porto, I.C.C.D.M.; do Nascimento, T.G.; de Souza, N.S.; Oliveira, J.M.D.S.; Arruda, R.E.D.S.; Mousinho, K.C.; dos Santos, A.F.; Basílio-Júnior, I.D.; Parolia, A.; et al. Brazilian red propolis: Phytochemical screening, antioxidant activity and effect against cancer cells. Complement. Altern. Med. 2015, 15, 357. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, B.L.; Carlsen, M.H.; Phillips, K.M.; Bøhn, S.K.; Holte, K.; Jacobs, D.R., Jr.; Blomhoff, R. Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. Am. J. Clin. Nutr. 2006, 84, 95–135. [Google Scholar] [CrossRef]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
Plant Name | Part Used | Solvent Used | Yield of Pectin (g/100 g) |
---|---|---|---|
Punica granatum | Peels | Ethanol | 19.1 ± 0.1 |
Hexane | 2.5 ± 0.05 | ||
Acetone | 7.6 ± 0.05 |
Element | Line Type | Apparent Concentration (%) | k Ratio | Weight% |
---|---|---|---|---|
C | K series | 64.2 | 0.64201 | 57.16 ± 0.01 |
O | K series | 55.71 | 0.18747 | 42.02 ± 0.02 |
Cl | K series | 0.73 | 0.00638 | 0.45 ± 0.05 |
K | K series | 0.18 | 0.00151 | 0.1 ± 0.03 |
Ca | K series | 0.44 | 0.0039 | 0.26 ± 0.05 |
Element | Line Type | Apparent Concentration (%) | k Ratio | Weight % |
---|---|---|---|---|
C | K series | 61.36 | 0.61364 | 58.25 ± 0.02 |
O | K series | 48.2 | 0.1622 | 40.14 ± 0.04 |
Na | K series | 1.12 | 0.00473 | 0.63 ± 0.05 |
Cl | K series | 0.48 | 0.0042 | 0.32 ± 0.03 |
K | K series | 0.59 | 0.00503 | 0.37 ± 0.02 |
Ca | K series | 0.45 | 0.00403 | 0.29 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabir, A.; Ali Shahid Chatha, S.; Mustafa Kamal, G.; Bibi, S.; Sohail, N.; Alshammari, A.; Albekairi, N.A.; Chopra, H. Extraction, Chemical Modification, and Assessment of Antioxidant Potential of Pectin from Pakistani Punica granatum Peels. Sustainability 2024, 16, 10454. https://doi.org/10.3390/su162310454
Sabir A, Ali Shahid Chatha S, Mustafa Kamal G, Bibi S, Sohail N, Alshammari A, Albekairi NA, Chopra H. Extraction, Chemical Modification, and Assessment of Antioxidant Potential of Pectin from Pakistani Punica granatum Peels. Sustainability. 2024; 16(23):10454. https://doi.org/10.3390/su162310454
Chicago/Turabian StyleSabir, Asma, Shahzad Ali Shahid Chatha, Ghulam Mustafa Kamal, Shabana Bibi, Noman Sohail, Abdulrahman Alshammari, Norah A. Albekairi, and Hitesh Chopra. 2024. "Extraction, Chemical Modification, and Assessment of Antioxidant Potential of Pectin from Pakistani Punica granatum Peels" Sustainability 16, no. 23: 10454. https://doi.org/10.3390/su162310454
APA StyleSabir, A., Ali Shahid Chatha, S., Mustafa Kamal, G., Bibi, S., Sohail, N., Alshammari, A., Albekairi, N. A., & Chopra, H. (2024). Extraction, Chemical Modification, and Assessment of Antioxidant Potential of Pectin from Pakistani Punica granatum Peels. Sustainability, 16(23), 10454. https://doi.org/10.3390/su162310454