Electricity Capacity Convergence in G20 Countries: New Findings from New Tests
Abstract
:1. Introduction
2. Electricity Capacity, Energy Transition, and G20 Countries
3. Data and Methodology
4. Empirical Results
- ▪
- Capacity data of “Argentina, Indonesia, Italy, Mexico, Saudi Arabia, and Turkey”;
- ▪
- Nuclear energy data of “Argentina, Canada, France, South Korea, and United States”;
- ▪
- Fossil fuels data of “Argentina, Australia, Italy, Mexico, Saudi Arabia and Turkey”;
- ▪
- Renewables data of “Argentina, Brazil, Germany, Indonesia, Italy, Japan, Mexico, South Korea, Turkey, and United Kingdom” are stationary.
- ▪
- Capacity data of “Brazil, Japan, Mexico, Saudi Arabia, South Korea, Turkey, and United Kingdom”;
- ▪
- Nuclear energy data of “Argentina, France, South Korea, United Kingdom, and United States”;
- ▪
- Fossil fuels data of “Argentina, Canada, France, Mexico, Saudi Arabia, Turkey, and United Kingdom”;
- ▪
- Renewables data of “Italy, Japan, South Africa, South Korea, and Turkey” are stationary.
- ▪
- Capacity data of “Brazil, Mexico, and South Korea”;
- ▪
- Nuclear energy data of “Argentina, France, Germany, United Kingdom, and United States”;
- ▪
- Fossil fuels data of “Brazil, Mexico, and South Korea”;
- ▪
- Renewables data of “Australia, Germany, Italy, Japan, Turkey, and United Kingdom” follow a stationary process.
- ▪
- In the capacity field, “Argentina, Brazil, Indonesia, Italy, Japan Mexico, Saudi Arabia, South Korea, Turkey and United Kingdom”;
- ▪
- In the nuclear energy field, “Argentina, Canada, France, Germany South Korea, United Kingdom and United States”;
- ▪
- In the fossil fuels field, “Argentina, Australia, Brazil, Canada, France, Italy, Mexico, Saudi Arabia, South Korea, Turkey and United Kingdom”;
- ▪
- In the renewables field, “Argentina, Australia, Brazil, Germany, Indonesia, Italy, Japan, Mexico, South Africa, South Korea, Turkey and United Kingdom” converged to the average of G20 countries.
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, R.; Ilyas, H.N.; Yin, W.; Liu, X.; Li, B.; Sultan, M.; Imran, M.A.; Abbas, A.; Javed, Z.; Raman, P. Agricultural Residue Management Using Forced Draft Gasifier Cookstove. In Handbook of Energy Management in Agriculture; Rakshit, A., Biswas, A., Sarkar, D., Meena, V.S., Datta, R., Eds.; Springer Nature: Singapore, 2023; pp. 163–179. [Google Scholar] [CrossRef]
- Elahi, E.; Zhu, M.; Khalid, Z.; Wei, K. An empirical analysis of carbon emission efficiency in food production across the Yangtze River basin: Towards sustainable agricultural development and carbon neutrality. Agric. Syst. 2024, 218, 103994. [Google Scholar] [CrossRef]
- Ahmad, R.; Ilyas, H.N.; Li, B.; Sultan, M.; Amjad, M.; Aleem, M.; Abbas, A.; Imran, M.A.; Riaz, F. Current challenges and future prospect of biomass cooking and heating stoves in Asian Countries. Front. Energy Res. 2022, 10, 880064. [Google Scholar] [CrossRef]
- Budzianowski, W.M.; Gomes, J.F.P. Perspectives for low-carbon electricity production until 2030: Lessons learned from the comparison of local contexts in Poland and Portugal. Energy Sources Part B Econ. Plan. Policy 2016, 11, 534–541. [Google Scholar] [CrossRef]
- BP (British Petroleum). BP Energy Outlook. 2022. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2022.pdf (accessed on 11 January 2024).
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2022: Mitigation of Climate Change: Summary of Policymakers. 2022. Available online: https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SPM.pdf (accessed on 25 December 2023).
- EIA (U.S. Energy Information Administration). Electricity Generation, Capacity, and Sales in the United States. Available online: https://www.eia.gov/energyexplained/electricity/electricity-in-the-us-generation-capacity-and-sales.php (accessed on 21 March 2024).
- U.S. Department of Energy. Available online: https://www.energy.gov/ne/articles/what-generation-capacity#:~:text (accessed on 11 September 2024).
- SMARD, Installed Generation Capacity. Available online: https://www.smard.de/page/en/wiki-article/6080/6038#:~:text (accessed on 11 September 2024).
- EMBER. 2023. Available online: https://ember-climate.org/countries-and-regions/regions/g20/ (accessed on 21 March 2024).
- IEA (International Energy Agency). World Energy Outlook. 2022. Available online: https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf (accessed on 21 March 2024).
- Statista, Installed Electricity Capacity Worldwide in 2022. Available online: https://www.statista.com/statistics/267358/world-installed-power-capacity/ (accessed on 11 September 2024).
- EIA. International Electricity Data. Available online: https://www.eia.gov/international/data/world/electricity/electricity-capacity?pd=2&p (accessed on 21 March 2024).
- Karakosta, C.; Pappas, C.; Marinakis, V.; Psarras, J. Renewable energy and nuclear power towards sustainable development: Characteristics and prospects. Renew. Sustain. Energy Rev. 2013, 22, 187–197. [Google Scholar] [CrossRef]
- Pinedo-López, J.; Baena-Navarro, R.; Durán-Rojas, N.; Díaz-Cogollo, L.; Farak-Flórez, L. Energy Transition in Colombia: An Implementation Proposal for SMEs. Sustainability 2024, 16, 7263. [Google Scholar] [CrossRef]
- Wehbi, H. Powering the Future: An Integrated Framework for Clean Renewable Energy Transition. Sustainability 2024, 16, 5594. [Google Scholar] [CrossRef]
- Shahzad, S.; Jasińska, E. Renewable Revolution: A Review of Strategic Flexibility in Future Power Systems. Sustainability 2024, 16, 5454. [Google Scholar] [CrossRef]
- IEA. Energy Transitions in G20 Countries. OECD/IEA. 2018. Available online: https://www.iea.org/reports/energy-transitions-in-g20-countries (accessed on 21 October 2023).
- UN (United Nations). The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 11 September 2024).
- UNDP-OECD. The G20 Contribution to the 2030 Agenda in Times of Crises 2019–2023. 2023. Available online: https://www.undp.org/sites/g/files/zskgke326/files/2023-11/undp-oecd-the-g20-contribution-to-the-2030-agenda-in-times-of-crises-2019-2023-v2.pdf (accessed on 15 August 2024).
- IEA. Advancing Decarbonisation through Clean Electricity Procurement. 2022. Available online: https://www.iea.org (accessed on 11 January 2024).
- IEA. Security of Clean Energy Transitions. Available online: https://www.iea.org/reports/security-of-clean-energy-transitions-2 (accessed on 10 September 2024).
- OECD (Organisation for Economic Co-operation and Development). OECD and G20. Available online: https://www.oecd.org/en/about/oecd-and-g20.html (accessed on 15 September 2024).
- OECD/IEA. Energy, OECD Green Growth Studies; OECD Publishing: Paris, France, 2012. [Google Scholar] [CrossRef]
- Višković, A.; Franki, V. Evaluating and forecasting direct carbon emissions of electricity production: A case study for South East Europe. Energy Sources Part B Econ. Plan. Policy 2022, 17, 2037028. [Google Scholar] [CrossRef]
- IEA. Electricity. 2023. Available online: https://www.iea.org/fuels-and-technologies/electricity (accessed on 21 March 2024).
- OECD. Innovation and Green Transitions. Available online: https://www.oecd.org/en/topics/sub-issues/innovation-and-green-transitions.html (accessed on 15 September 2024).
- IEA. World Energy Outlook 202. Available online: https://www.iea.org/reports/world-energy-outlook-2021 (accessed on 12 September 2024).
- IEA. Electricity. Available online: https://www.iea.org/energy-system/electricity (accessed on 15 September 2024).
- IHA (International Hydropower Association). World Hydropower Outlook. 2023. Available online: https://www.hydropower.org/publications/2023-world-hydropower-outlook (accessed on 17 May 2024).
- Kaygusuz, K. The Role of Hydropower for Sustainable Energy Development. Energy Sources Part B Econ. Plan. Policy 2009, 4, 365–376. [Google Scholar] [CrossRef]
- Dester, M.; Andrade, M.T.O.; Bajay, S.V. New Renewable Energy Sources for Electric Power Generation in Brazil. Energy Sources Part B Econ. Plan. Policy 2012, 7, 390–397. [Google Scholar] [CrossRef]
- IEA. Nuclear Power. 2023. Available online: https://www.iea.org/fuels-and-technologies/nuclear (accessed on 17 May 2024).
- IAEA (International Atomic Energy Agency). Power Reactor Information System. 2022. Available online: https://pris.iaea.org/PRIS/home.aspx (accessed on 11 January 2024).
- WNA (World Nuclear Association). World Nuclear Performance Report. 2022. Available online: https://world-nuclear.org/images/articles/World-Nuclear-Performance-Report-2022.pdf (accessed on 11 January 2024).
- WEF (World Economic Forum). Fostering Effective Energy Transition. 2023. Available online: https://www.weforum.org/publications/fostering-effective-energy-transition-2023/ (accessed on 14 September 2024).
- Carlino, G.A.; Mills, L.O. Are U.S. regional incomes converging? A time series analysis. J. Monet. Econ. 1993, 32, 335–346. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar] [CrossRef]
- Perron, P. The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis. Econometrica 1989, 57, 1361–1401. [Google Scholar] [CrossRef]
- Ranjbar, O.; Chang, T.; Mila Elmi, Z.; Lee, C.C. A new unit root test against asymmetric ESTAR nonlinearity with smooth breaks. Iran. Econ. Rev. 2018, 22, 51–62. [Google Scholar] [CrossRef]
- Güriş, B. A new nonlinear unit root test with Fourier function. Communications in Statistics—Simulation and Computation 2019, 48, 3056–3062. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica 1981, 49, 1057–1072. [Google Scholar] [CrossRef]
- Phillips, P.C.B.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Kwiatkowski, D.; Phillips, P.C.B.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? J. Econom. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- Kapetanios, G.; Shin, Y.; Snell, A. Testing for a unit root in the nonlinear STAR framework. J. Econom. 2003, 112, 359–379. [Google Scholar] [CrossRef]
- Sollis, R. A simple unit root test against asymmetric STAR nonlinearity with an application to real exchange rates in Nordic countries. Econ. Model. 2009, 26, 118–125. [Google Scholar] [CrossRef]
- Kruse, R. A new unit root test against ESTAR based on a class of modified statistics. Stat. Pap. 2011, 52, 71–85. [Google Scholar] [CrossRef]
- Hu, J.; Chen, Z. A unit root test against globally stationary ESTAR models when local condition is non-stationary. Econ. Lett. 2016, 146, 89–94. [Google Scholar] [CrossRef]
(a) | |||
Country | ADF | PP | KPSS |
Argentina | −1.1481 | −1.3446 | 0.2049 *** |
Australia | −0.2548 | −0.0057 | 0.7901 |
Brazil | −0.5442 | −1.2256 | 1.0751 |
Canada | 1.2957 | 1.8524 | 1.0481 |
China | −1.2705 | 0.1133 | 1.0909 |
France | −0.0323 | 1.892 | 0.9577 |
Germany | −1.9161 | −2.3252 | 0.9666 |
India | −0.5502 | −1.1354 | 1.0518 |
Indonesia | −2.3066 | −2.8484 c | 1.0523 |
Italy | −0.9499 | 0.4102 | 0.6378 * |
Japan | 0.9894 | 1.206 | 0.8035 |
Mexico | −1.9342 | −2.5597 | 0.2774 *** |
Saudi Arabia | −1.2718 | −2.9999 b | 1.0243 |
South Africa | −0.1015 | −0.2082 | 0.7567 |
South Korea | −1.4278 | −2.3541 | 0.9786 |
Turkey | −3.6312 a | −3.8578 a | 1.004 |
United Kingdom | −0.3335 | −1.4378 | 1.0974 |
United States | 1.2104 | 2.183 | 0.9972 |
(b) | |||
Country | ADF | PP | KPSS |
Argentina | −1.6763 | −2.3097 | 0.2244 *** |
Canada | −2.399 | −1.941 | 0.2751 *** |
France | −3.9836 a | −7.2178 a | 0.6134 * |
Germany | 2.0943 | 1.5573 | 0.9359 |
India | 0.5984 | 0.6031 | 0.9636 |
South Korea | −1.7998 | −4.0796 a | 0.9926 |
United Kingdom | −0.7334 | −1.3293 | 1.0092 |
United States | −2.553 | −4.356 a | 0.8902 |
(c) | |||
Country | ADF | PP | KPSS |
Argentina | −1.4529 | −1.8565 | 0.5768 * |
Australia | 0.8947 | 0.3875 | 0.69 * |
Brazil | −0.88 | −0.295 | 0.9507 |
Canada | 0.523 | 0.9052 | 1.023 |
China | −1.4682 | −0.7397 | 1.0861 |
France | −0.0929 | 0.4515 | 1.0535 |
Germany | −1.1613 | −0.8334 | 1.0871 |
India | −1.0221 | −1.9117 | 0.9949 |
Indonesia | −1.1229 | −1.919 | 1.0509 |
Italy | 0.0034 | 1.7113 | 0.5805 * |
Japan | 0.7278 | 1.7376 | 0.878 |
Mexico | −2.2783 | −3.3288 b | 0.3525 *** |
Saudi Arabia | −0.9295 | −2.7493 c | 1.0036 |
South Africa | −0.2201 | −0.2108 | 0.763 |
South Korea | −0.9752 | −1.3176 | 0.9757 |
Turkey | −3.9763 a | −3.1924 b | 0.9858 |
United Kingdom | 1.6784 | 1.0464 | 1.058 |
United States | 0.5085 | 1.8378 | 0.97 |
(d) | |||
Country | ADF | PP | KPSS |
Argentina | −0.153 | 0.5869 | 0.6094 * |
Australia | −1.3801 | −1.3795 | 0.8589 |
Brazil | −1.1513 | −0.9352 | 0.2968 *** |
Canada | 2.5468 | 5.0159 | 0.9234 |
China | −0.0227 | 0.8525 | 1.0906 |
France | −0.7221 | −0.5257 | 1.0808 |
Germany | −0.745 | −0.7748 | 0.6652 * |
India | −0.6145 | −0.6642 | 1.0706 |
Indonesia | −1.9953 | −1.6554 | 0.4649 * |
Italy | −3.8442 a | −2.5349 | 0.2164 *** |
Japan | −1.9253 | −1.5597 | 0.6568 * |
Mexico | −1.1173 | −0.5584 | 0.5918 * |
South Africa | −2.9819 b | −0.0598 | 0.3202 *** |
South Korea | 0.8921 | 1.475 | 0.6559 * |
Turkey | −3.1233 b | −4.0818 a | 0.7834 |
United Kingdom | −0.5791 | −0.4074 | 0.5599 * |
United States | −1.8445 | −1.9117 | 1.0055 |
(a) | ||||
Country | KSS | Sollis | Kruse | Hu and Chen |
Argentina | −0.96328 | 0.4552408 | 0.9535518 | 1.339974 |
Australia | −1.222667 | 0.7276253 | 5.137599 | 9.922755 |
Brazil | 0.0300496 | 8.612336 a | 15.07888 a | 15.64319 a |
Canada | 0.575452 | 1.026748 | 4.054758 | 7.689228 |
China | −1.375576 | 1.281853 | 2.579944 | 2.544147 |
France | −0.530898 | 0.5368949 | 2.827799 | 4.442617 |
Germany | −1.2124 | 1.603251 | 1.614926 | 1.819979 |
India | −1.113826 | 1.100541 | 3.598354 | 3.749826 |
Indonesia | −1.502824 | 1.268289 | 4.226254 | 5.850766 |
Italy | 0.2686296 | 0.5052916 | 2.116043 | 3.42112 |
Japan | −0.1581601 | 0.2173848 | 2.072317 | 14.91484 b |
Mexico | −2.609871 | 4.49076 c | 7.656233 | 11.86337 b |
Saudi Arabia | −2.441098 | 9.5347 a | 24.55292 a | 26.39387 a |
South Africa | −0.5153947 | 1.195114 | 3.015475 | 8.091781 |
South Korea | −4.068954 a | 9.218977 a | 16.45989 a | 17.28722 a |
Turkey | −3.0732 b | 4.891913 b | 11.04223 b | 13.27211 b |
United Kingdom | −0.313641 | 7.671482 a | 22.52676 a | 22.66945 a |
United States | 0.1571776 | 0.2216822 | 2.121853 | 2.948915 |
(b) | ||||
Country | KSS | Sollis | Kruse | Hu and Chen |
Argentina | −0.5522099 | 31.0694 a | 50.96526 a | 50.35177 a |
Canada | −2.37317 | 2.779926 | 5.815634 | 6.237425 |
France | −9.235269 a | 43.52832 a | 83.05639 a | 9.818325 |
Germany | 1.383088 | 2.17293 | 3.571016 | 3.602412 |
India | 0.2382547 | 0.2861278 | 1.833527 | 6.139015 |
South Korea | −2.793418 c | 6.247527 b | 11.70455 b | 13.14602 b |
United Kingdom | −2.601177 | 4.993547 b | 11.96005 b | 12.86707 b |
United States | −3.878285 a | 10.50597 a | 14.72657 a | 17.56955 a |
(c) | ||||
Country | KSS | Sollis | Kruse | Hu and Chen |
Argentina | −3.414343 b | 6.310579 b | 11.56504 b | 13.18626 b |
Australia | 0.2368015 | 0.1135515 | 3.035846 | 5.895411 |
Brazil | −0.8023003 | 0.7546822 | 1.829588 | 1.788821 |
Canada | 0.09719241 | 0.673278 | 4.32826 | 14.26188 b |
China | −1.391456 | 1.511357 | 3.047212 | 3.048453 |
France | −1.438707 | 1.021939 | 3.41251 | 6.144974 |
Germany | −1.300709 | 0.8437479 | 2.085229 | 2.325204 |
India | −1.584687 | 1.510996 | 3.973763 | 3.876035 |
Indonesia | −0.9543722 | 1.158294 | 4.314128 | 5.409881 |
Italy | −0.1394776 | 0.6550319 | 3.689135 | 5.215812 |
Japan | 0.6924802 | 1.143331 | 3.459815 | 3.72468 |
Mexico | −3.515727 a | 6.580804 b | 12.61965 b | 15.80296 a |
Saudi Arabia | −1.964824 | 9.717707 a | 28.70667 a | 30.34421 a |
South Africa | −0.5479339 | 1.475356 | 3.3188 | 7.528203 |
South Korea | −1.133112 | 0.6511866 | 1.243837 | 13.72393 b |
Turkey | −3.927699 a | 7.6407 a | 16.08462 a | 9.669748 |
United Kingdom | 0.8339648 | 0.8965771 | 18.80523 a | 22.57728 a |
United States | −0.075958 | 0.3116329 | 2.560664 | 2.937699 |
(d) | ||||
Country | KSS | Sollis | Kruse | Hu and Chen |
Argentina | −0.3615124 | 0.1267714 | 2.309492 | 3.490982 |
Australia | −1.801832 | 1.605841 | 3.158769 | 3.071093 |
Brazil | 0.2225996 | 0.4751485 | 1.183926 | 1.15324 |
Canada | 1.080914 | 0.6413894 | 3.662768 | 6.71908 |
China | −0.5592698 | 0.1647772 | 0.6448231 | 0.7231848 |
France | −0.7976173 | 2.991726 | 8.412265 | 8.218227 |
Germany | −1.223121 | 1.065666 | 2.192082 | 5.107793 |
India | −0.6943622 | 0.4708963 | 1.591045 | 1.548007 |
Indonesia | −1.642082 | 1.463777 | 2.697442 | 3.087788 |
Italy | −7.344169 a | 27.28009 a | 52.40803 a | 51.09948 a |
Japan | −3.37656 b | 7.778994 a | 17.63408 a | 18.61247 a |
Mexico | −0.753841 | 0.3087423 | 1.558301 | 3.22672 |
South Africa | −1.273477 | 8.303856 a | 13.13454 b | 12.80208 b |
South Korea | 1.067806 | 4.308442 c | 12.87497 b | 22.40701 a |
Turkey | −3.878912 a | 7.3279 a | 14.82467 a | 14.47196 b |
United Kingdom | −0.4314542 | 0.9022945 | 1.64814 | 1.607526 |
United States | −1.766643 | 1.520589 | 4.653908 | 8.164854 |
(a) | ||||
Country | k | Fourier KSS | Fourier Sollis | Fourier Kruse |
Argentina | 1 | −1.584908 | 1.246182 | 2.447855 |
Australia | 1 | −1.534643 | 1.574975 | 3.871115 |
Brazil | 1 | 1.218632 | 2.026911 | 39.85618 a |
Canada | 1 | 0.2348625 | 0.7977697 | 3.250397 |
China | 1 | −0.09297564 | 0.1411299 | 0.6285877 |
France | 1 | −0.6260242 | 0.273246 | 7.291185 |
Germany | 1 | 0.01516562 | 0.1082036 | 0.5374367 |
India | 1 | −0.8572308 | 0.7641046 | 2.035184 |
Indonesia | 1 | −0.5135262 | 0.862677 | 2.960196 |
Italy | 3 | 1.194024 | 3.527648 | 3.355796 |
Japan | 1 | −1.167482 | 1.429873 | 3.419455 |
Mexico | 1 | −0.3440077 | 6.60772 c | 13.86095 c |
Saudi Arabia | 1 | −2.355944 | 3.67687 | 12.09487 |
South Africa | 1 | −1.998916 | 2.223829 | 3.911687 |
South Korea | 1 | 0.7202891 | 11.22245 a | 22.70679 a |
Turkey | 1 | −0.1252521 | 3.348131 | 7.380276 |
United Kingdom | 1 | 0.5237792 | 0.7888109 | 3.19601 |
United States | 1 | −0.255956 | 0.5532724 | 2.082747 |
(b) | ||||
Country | k | Fourier KSS | Fourier Sollis | Fourier Kruse |
Argentina | 1 | −7.842079 a | 13.01248 a | 13.32932 c |
Canada | 1 | −2.811021 | 4.02147 | 7.992213 |
France | 1 | −9.121041 a | 41.01317 a | 81.01748 a |
Germany | 1 | −0.2190593 | 4.33778 | 12.99732 c |
India | 1 | 0.1860517 | 1.846318 | 3.787548 |
South Korea | 1 | −0.5448368 | 5.548069 | 7.173527 |
United Kingdom | 1 | −3.55568 c | 6.170661 | 14.72362 b |
United States | 1 | −3.292802 | 5.481763 | 15.2483 b |
(c) | ||||
Country | k | Fourier KSS | Fourier Sollis | Fourier Kruse |
Argentina | 1 | −2.373105 | 3.093956 | 5.56178 |
Australia | 1 | 0.06824546 | 1.350791 | 3.123732 |
Brazil | 1 | −1.290332 | 13.37183 a | 15.8187 b |
Canada | 1 | −0.5780634 | 1.308002 | 3.109097 |
China | 1 | −0.2464227 | 0.6782569 | 2.296368 |
France | 1 | −2.008711 | 2.618397 | 3.929928 |
Germany | 1 | −0.7247471 | 0.7060554 | 2.548825 |
India | 1 | −1.071635 | 0.9968951 | 2.481698 |
Indonesia | 1 | −0.4102417 | 0.7184362 | 3.060475 |
Italy | 1 | −0.176456 | 1.665774 | 1.319625 |
Japan | 1 | −0.8090796 | 2.366205 | 5.453398 |
Mexico | 1 | −1.963462 | 5.730915 | 13.0611 c |
Saudi Arabia | 1 | −2.004057 | 3.215761 | 11.5355 |
South Africa | 1 | −1.714394 | 1.606715 | 2.86332 |
South Korea | 1 | 0.4098855 | 10.40146 a | 20.99665 a |
Turkey | 1 | −1.646874 | 5.3897 | 4.234966 |
United Kingdom | 1 | 0.6783743 | 1.107579 | 3.716023 |
United States | 1 | −0.5488978 | 0.9978238 | 2.847976 |
(d) | ||||
Country | k | Fourier KSS | Fourier Sollis | Fourier Kruse |
Argentina | 1 | −2.289619 | 2.876956 | 5.640058 |
Australia | 1 | −5.261486 a | 17.19795 a | 27.07525 a |
Brazil | 1 | −1.644249 | 2.433034 | 4.983768 |
Canada | 1 | 0.2406146 | 0.9257656 | 3.662768 |
China | 1 | 0.1031212 | 0.06417191 | 0.03335174 |
France | 1 | 0.7314646 | 1.472337 | 4.738661 |
Germany | 1 | −5.845463 a | 17.36887 a | 35.59916 a |
India | 1 | −0.2520066 | 0.3102083 | 1.563644 |
Indonesia | 1 | −2.306794 | 3.282096 | 5.798085 |
Italy | 1 | −4.984037 a | 20.03878 a | 30.84232 a |
Japan | 1 | −3.189015 | 12.93771 a | 25.67388 a |
Mexico | 1 | −1.824127 | 2.187861 | 3.821736 |
South Africa | 2 | −1.226308 | 3.007768 | 7.688848 |
South Korea | 2 | 1.700694 | 2.715441 | 6.660241 |
Turkey | 1 | −2.504614 | 4.658177 | 13.03157 c |
United Kingdom | 1 | −5.647399 a | 16.26296 a | 44.53441 a |
United States | 1 | −1.172199 | 1.810378 | 5.031246 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doğan, E. Electricity Capacity Convergence in G20 Countries: New Findings from New Tests. Sustainability 2024, 16, 8411. https://doi.org/10.3390/su16198411
Doğan E. Electricity Capacity Convergence in G20 Countries: New Findings from New Tests. Sustainability. 2024; 16(19):8411. https://doi.org/10.3390/su16198411
Chicago/Turabian StyleDoğan, Ebru. 2024. "Electricity Capacity Convergence in G20 Countries: New Findings from New Tests" Sustainability 16, no. 19: 8411. https://doi.org/10.3390/su16198411
APA StyleDoğan, E. (2024). Electricity Capacity Convergence in G20 Countries: New Findings from New Tests. Sustainability, 16(19), 8411. https://doi.org/10.3390/su16198411