Socialscape Ecology: Integrating Social Features and Processes into Spatially Explicit Marine Conservation Planning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database
2.2. Categorization and Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Margules, C.R.; Pressey, R.L. Systematic conservation planning. Nature 2000, 405, 243–253. [Google Scholar] [CrossRef]
- Adams, V.M.; Mills, M.; Weeks, R.; Segan, D.B.; Pressey, R.L.; Gurney, G.G.; Groves, C.; Davis, F.W.; Álvarez-Romero, J.G. Implementation strategies for systematic conservation planning. Ambio 2019, 48, 139–152. [Google Scholar] [CrossRef] [PubMed]
- St. Martin, K.; Hall-Arber, M. The missing layer: Geo-technologies, communities, and implications for marine spatial planning. Mar. Policy 2008, 32, 779–786. [Google Scholar] [CrossRef]
- Noble, M.M.; Harasti, D.; Pittock, J.; Doran, B. Linking the social to the ecological using GIS methods in marine spatial planning and management to support resilience: A review. Mar. Policy 2019, 108, 103657. [Google Scholar] [CrossRef]
- Cunningham, C.A.; Crick, H.Q.P.; Morecroft, M.D.; Thomas, C.D.; Beale, C.M. Reconciling diverse viewpoints within systematic conservation planning. People Nat. 2023, 5, 621–632. [Google Scholar] [CrossRef]
- Perschke, M.J.; Harris, L.R.; Sink, K.J.; Lombard, A.T. Systematic conservation planning for people and nature: Biodiversity, ecosystem services, and equitable benefit sharing. Ecosyst. Serv. 2024, 68, 101637. [Google Scholar] [CrossRef]
- Fortnam, M.; Chaigneau, T.; Evans, L.; Bastian, L. Practitioner approaches to trade-off decision-making in marine conservation development. People Nat. 2023, 5, 1636–1648. [Google Scholar] [CrossRef]
- Pınarbaşı, K.; Galparsoro, I.; Borja, Á. End users’ perspective on decision support tools in marine spatial planning. Mar. Policy 2019, 108, 103658. [Google Scholar] [CrossRef]
- Kockel, A.; Ban, N.C.; Costa, M.; Dearden, P. Addressing distribution equity in spatial conservation prioritization for small-scale fisheries. PLoS ONE 2020, 15, e0233339. [Google Scholar] [CrossRef]
- Adams, V.M. Costs in conservation: Common costly mistakes and how to avoid them. PLoS Biol. 2024, 22, e3002676. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape Ecology: The Effect of Pattern on Process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Farina, A. Principles and Methods in Landscape Ecology: Towards a Science of the Landscape; Springer: Dordrecht, The Netherlands, 2008; Volume 3. [Google Scholar]
- Naveh, Z.; Lieberman, A.S. Landscape Ecology: Theory and Application; Springer: New York, NY, USA, 2013. [Google Scholar]
- Urban, D.L. Landscape ecology: A hierarchical perspective can help scientists understand spatial patterns. BioScience 1987, 37, 119–127. [Google Scholar] [CrossRef]
- Field, D.R.; Voss, P.R.; Kuczenski, T.K.; Hammer, R.B.; Radeloff, V.C. Reaffirming Social Landscape Analysis in Landscape Ecology: A Conceptual Framework. Soc. Nat. Resour. 2003, 16, 349–361. [Google Scholar] [CrossRef]
- Endter-Wada, J.; Blahna, D.; Krannich, R.; Brunson, M. A framework for understanding social science contributions to ecosystem management. Ecol. Appl. 1998, 8, 891–904. [Google Scholar] [CrossRef]
- Trouillet, B.; Bellanger-Husi, L.; El Ghaziri, A.; Lamberts, C.; Plissonneau, E.; Rollo, N. More than maps: Providing an alternative for fisheries and fishers in marine spatial planning. Ocean Coast. Manag. 2019, 173, 90–103. [Google Scholar] [CrossRef]
- Ribot, J.C.; Peluso, N.L. A Theory of Access. Rural Sociol. 2003, 68, 153–181. [Google Scholar] [CrossRef]
- Bennett, N.J. In Political Seas: Engaging with Political Ecology in the Ocean and Coastal Environment. Coast. Manag. 2019, 47, 67–87. [Google Scholar] [CrossRef]
- Précoma-de la Mora, M.; Bennett, N.J.; Fulton, S.; Munguia-Vega, A.; Lasch-Thaler, C.; Walther-Mendoza, M.; Zepeda-Domínguez, J.A.; Finkbeiner, E.M.; Green, A.L.; Suárez, A.; et al. Integrating Biophysical, Socio-Economic and Governance Principles Into Marine Reserve Design and Management in Mexico: From Theory to Practice. Front. Mar. Sci. 2021, 8, 778980. [Google Scholar] [CrossRef]
- Ban, N.C.; Gurney, G.G.; Marshall, N.A.; Whitney, C.K.; Mills, M.; Gelcich, S.; Bennett, N.J.; Meehan, M.C.; Butler, C.; Ban, S.; et al. Well-being outcomes of marine protected areas. Nat. Sustain. 2019, 2, 524–532. [Google Scholar] [CrossRef]
- Diver, S.; Vaughan, M.B.; Baker-Médard, M.; Lukacs, H. Recognizing “reciprocal relations” to restore community access to land and water. Int. J. Commons 2019, 13, 400–429. [Google Scholar] [CrossRef]
- Vaughan, M.B. Kaiaulu: Gathering Tides; Oregon State University Press: Corvallis, OR, USA, 2018. [Google Scholar]
- Berkes, F. Sacred Ecology; Routledge: New York, NY, USA, 2008. [Google Scholar]
- Winter, K.B.; Vaughan, M.B.; Kurashima, N.; Wann, L.; Cadiz, E.; Kawelo, A.H.; Cypher, M.; Kaluhiwa, L.; Springer, H.K. Indigenous stewardship through novel approaches to collaborative management in Hawai’i. Ecol. Soc. 2023, 28, 26. [Google Scholar] [CrossRef]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Cumming, G.S.; Allen, C.R. Protected areas as social-ecological systems: Perspectives from resilience and social-ecological systems theory. Ecol. Appl. 2017, 27, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Pollnac, R.; Christie, P.; Cinner, J.E.; Dalton, T.; Daw, T.M.; Forrester, G.E.; Graham, N.A.J.; McClanahan, T.R. Marine reserves as linked social–ecological systems. Proc. Natl. Acad. Sci. USA 2010, 107, 18262–18265. [Google Scholar] [CrossRef] [PubMed]
- Mazor, T.; Doropoulos, C.; Schwarzmueller, F.; Gladish, D.W.; Kumaran, N.; Merkel, K.; Di Marco, M.; Gagic, V. Global mismatch of policy and research on drivers of biodiversity loss. Nat. Ecol. Evol. 2018, 2, 1071–1074. [Google Scholar] [CrossRef] [PubMed]
- Rohe, J.R.; Aswani, S.; Schlüter, A.; Ferse, S.C.A. Multiple Drivers of Local (Non-) Compliance in Community-Based Marine Resource Management: Case Studies from the South Pacific. Front. Mar. Sci. 2017, 4, 172. [Google Scholar] [CrossRef]
- Forster, J.; Turner, R.A.; Fitzsimmons, C.; Peterson, A.M.; Mahon, R.; Stead, S.M. Evidence of a common understanding of proximate and distal drivers of reef health. Mar. Policy 2017, 84, 263–272. [Google Scholar] [CrossRef]
- Tulloch, V.J.D.; Brown, C.J.; Possingham, H.P.; Jupiter, S.D.; Maina, J.M.; Klein, C. Improving conservation outcomes for coral reefs affected by future oil palm development in Papua New Guinea. Biol. Conserv. 2016, 203, 43–54. [Google Scholar] [CrossRef]
- Haupt, P.W.; Lombard, A.T.; Goodman, P.S.; Harris, J.M. Accounting for spatiotemporal dynamics in conservation planning for coastal fish in KwaZulu-Natal, South Africa. Biol. Conserv. 2017, 209, 289–303. [Google Scholar] [CrossRef]
- Halpern, B.S.; Frazier, M.; Potapenko, J.; Casey, K.S.; Koenig, K.; Longo, C.; Lowndes, J.S.; Rockwood, R.C.; Selig, E.R.; Selkoe, K.A.; et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 2015, 6, 7615. [Google Scholar] [CrossRef]
- Mascia, M.B.; Brosius, J.P.; Dobson, T.A.; Forbes, B.C.; Horowitz, L.; McKean, M.A.; Turner, N.J. Conservation and the Social Sciences. Conserv. Biol. 2003, 17, 649–650. [Google Scholar] [CrossRef]
- Büscher, B.; Wolmer, W. Introduction: The Politics of Engagement between Biodiversity Conservation and the Social Sciences. Conserv. Soc. 2007, 5, 1–21. [Google Scholar]
- Bennett, N.J.; Roth, R.; Klain, S.C.; Chan, K.; Christie, P.; Clark, D.A.; Cullman, G.; Curran, D.; Durbin, T.J.; Epstein, G.; et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Conserv. 2017, 205, 93–108. [Google Scholar] [CrossRef]
- Venter, O.; Fuller, R.A.; Segan, D.B.; Carwardine, J.; Brooks, T.; Butchart, S.H.M.; Di Marco, M.; Iwamura, T.; Joseph, L.; O’Grady, D.; et al. Targeting Global Protected Area Expansion for Imperiled Biodiversity. PLoS Biol. 2014, 12, e1001891. [Google Scholar] [CrossRef]
- Boonzaier, L.; Pauly, D. Marine protection targets: An updated assessment of global progress. Oryx 2016, 50, 27–35. [Google Scholar] [CrossRef]
- Jantke, K.; Jones, K.R.; Allan, J.R.; Alienor, L.M.C.; James, E.M.W.; Possingham, H.P. Poor ecological representation by an expensive reserve system: Evaluating 35 years of marine protected area expansion. Conserv. Lett. 2018, 11, e12584. [Google Scholar] [CrossRef]
- IUCN; UNEP-WCMC. The World Database on Protected Areas (WDPA); UNEP-WCMC, Ed.; UNEP-WCMC: Cambridge, UK, 2019. [Google Scholar]
- Pınarbaşı, K.; Galparsoro, I.; Borja, Á.; Stelzenmüller, V.; Ehler, C.N.; Gimpel, A. Decision support tools in marine spatial planning: Present applications, gaps and future perspectives. Mar. Policy 2017, 83, 83–91. [Google Scholar] [CrossRef]
- Marxan. MARXAN Conservation Solutions. Available online: https://marxansolutions.org/ (accessed on 23 November 2020).
- Ball, I.R.; Possingham, H.P.; Watts, M.E. Marxan and relatives: Software for spatial conservation prioritization. In Spatial Conservation Prioritization: Quantitative Methods and Computational Tools; Moilanen, A., Possingham, H.P., Wilson, K.A., Eds.; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Watts, M.E.; Ball, I.R.; Stewart, R.S.; Klein, C.J.; Wilson, K.; Steinback, C.; Lourival, R.; Kircher, L.; Possingham, H.P. Marxan with Zones: Software for optimal conservation based land- and sea-use zoning. Environ. Model. Softw. 2009, 24, 1513–1521. [Google Scholar] [CrossRef]
- Klein, C.J.; Steinback, C.; Watts, M.; Scholz, A.J.; Possingham, H.P. Spatial marine zoning for fisheries and conservation. Front. Ecol. Environ. 2010, 8, 349–353. [Google Scholar] [CrossRef]
- Stephanson, S.; Mascia, M. Putting People on the Map through an Approach That Integrates Social Data in Conservation Planning. Conserv. Biol. 2014, 28, 1236–1248. [Google Scholar] [CrossRef]
- Klein, C.J.; Chan, A.; Kircher, L.; Cundiff, A.J.; Gardner, N.; Hrovat, Y.; Scholz, A.; Kendall, B.E.; AiramÉ, S. Striking a Balance between Biodiversity Conservation and Socioeconomic Viability in the Design of Marine Protected Areas. Conserv. Biol. 2008, 22, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Ban, N.C.; Hansen, G.J.A.; Jones, M.; Vincent, A.C.J. Systematic marine conservation planning in data-poor regions: Socioeconomic data is essential. Mar. Policy 2009, 33, 794–800. [Google Scholar] [CrossRef]
- Polasky, S. Why conservation planning needs socioeconomic data. Proc. Natl. Acad. Sci. USA 2008, 105, 6505–6506. [Google Scholar] [CrossRef] [PubMed]
- Ban, N.C.; Klein, C.J. Spatial socioeconomic data as a cost in systematic marine conservation planning. Conserv. Lett. 2009, 2, 206–215. [Google Scholar] [CrossRef]
- Smith, R.J.; Eastwood, P.D.; Ota, Y.; Rogers, S.I. Developing best practice for using Marxan to locate Marine Protected Areas in European waters. ICES J. Mar. Sci. 2009, 66, 188–194. [Google Scholar] [CrossRef]
- Lundquist, C.; Granek, E.F.; Bustamante, R.H. Implementation and management of marine protected areas-introduction. Conserv. Biol. 2005, 19, 1699–1700. [Google Scholar] [CrossRef]
- Lester, S.E.; Dubel, A.K.; Hernán, G.; McHenry, J.; Rassweiler, A. Spatial Planning Principles for Marine Ecosystem Restoration. Front. Mar. Sci. 2020, 7, 328. [Google Scholar] [CrossRef]
- Gusenbauer, M. Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases. Scientometrics 2019, 118, 177–214. [Google Scholar] [CrossRef]
- Burke, B.J.; Heynen, N. Transforming Participatory Science into Socioecological Praxis: Valuing Marginalized Environmental Knowledges in the Face of the Neoliberalization of Nature and Science. Environ. Soc. 2014, 5, 7–27. [Google Scholar] [CrossRef]
- Ban, N.C.; Frid, A. Indigenous peoples’ rights and marine protected areas. Mar. Policy 2018, 87, 180–185. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Baker-Médard, M. Gendering Marine Conservation: The Politics of Marine Protected Areas and Fisheries Access. Soc. Nat. Resour. 2017, 30, 723–737. [Google Scholar] [CrossRef]
- Hicks, C.C.; Crowder, L.B.; Graham, N.A.; Kittinger, J.N.; Cornu, E.L. Social drivers forewarn of marine regime shifts. Front. Ecol. Environ. 2016, 14, 252–260. [Google Scholar] [CrossRef]
- Jones, K.R.; Watson, J.E.M.; Possingham, H.P.; Klein, C.J. Incorporating climate change into spatial conservation prioritisation: A review. Biol. Conserv. 2016, 194, 121–130. [Google Scholar] [CrossRef]
- Aswani, S.; Basurto, X.; Ferse, S.; Glaser, M.; Campbell, L.; Cinner, J.E.; Dalton, T.; Jenkins, L.D.; Miller, M.L.; Pollnac, R. Marine resource management and conservation in the Anthropocene. Environ. Conserv. 2018, 45, 192–202. [Google Scholar] [CrossRef]
- Seto, K.; Campbell, B. The last commons: (re)constructing an ocean future. In Predicting Future Oceans; Cisneros-Montemayor, A.M., Cheung, W.W.L., Ota, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 365–376. [Google Scholar] [CrossRef]
- Ruddle, K.; Hviding, E.; Johannes, R.E. Marine Resources Management in the Context of Customary Tenure. Mar. Resour. Econ. 1992, 7, 249–273. [Google Scholar] [CrossRef]
- Foale, S.; Manele, B. Social and political barriers to the use of Marine Protected Areas for conservation and fishery management in Melanesia. Asia Pac. Viewp. 2004, 45, 373–386. [Google Scholar] [CrossRef]
- Weeks, R.; Russ, G.R.; Bucol, A.A.; Alcala, A.C. Incorporating local tenure in the systematic design of marine protected area networks. Conserv. Lett. 2010, 3, 445–453. [Google Scholar] [CrossRef]
- Mascia, M.B.; Claus, C.A. A Property Rights Approach to Understanding Human Displacement from Protected Areas: The Case of Marine Protected Areas. Conserv. Biol. 2009, 23, 16–23. [Google Scholar] [CrossRef]
- Wilson, D. European colonisation, law, and Indigenous marine dispossession: Historical perspectives on the construction and entrenchment of unequal marine governance. Marit. Stud. 2021, 20, 387–407. [Google Scholar] [CrossRef]
- Aswani, S. Customary Sea Tenure in Oceania as a Case of Rights-based Fishery Management: Does it Work? Rev. Fish Biol. Fish. 2005, 15, 285–307. [Google Scholar] [CrossRef]
- Gruby, R.L.; Basurto, X. Multi-level governance for large marine commons: Politics and polycentricity in Palau’s protected area network. Environ. Sci. Policy 2013, 33, 260–272. [Google Scholar] [CrossRef]
- Vaughan, M.B.; Thompson, B.; Ayers, A.L. Pāwehe Ke Kai a’o Hā’ena: Creating State Law based on Customary Indigenous Norms of Coastal Management. Soc. Nat. Resour. 2017, 30, 31–46. [Google Scholar] [CrossRef]
- Ban, N.C.; Mills, M.; Tam, J.; Hicks, C.C.; Klain, S.; Stoeckl, N.; Bottrill, M.C.; Levine, J.; Pressey, R.L.; Satterfield, T. A social-ecological approach to conservation planning: Embedding social considerations. Front. Ecol. Environ. 2013, 11, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Cheok, J.; Pressey, R.L.; Weeks, R.; Andréfouët, S.; Moloney, J. Sympathy for the Devil: Detailing the Effects of Planning-Unit Size, Thematic Resolution of Reef Classes, and Socioeconomic Costs on Spatial Priorities for Marine Conservation. PLoS ONE 2016, 11, e0164869. [Google Scholar] [CrossRef]
- Álvarez-Romero, J.G.; Mills, M.; Adams, V.M.; Gurney, G.G.; Pressey, R.L.; Weeks, R.; Ban, N.C.; Cheok, J.; Davies, T.E.; Day, J.C.; et al. Research advances and gaps in marine planning: Towards a global database in systematic conservation planning. Biol. Conserv. 2018, 227, 369–382. [Google Scholar] [CrossRef]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E.; et al. A Global Map of Human Impact on Marine Ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [PubMed]
- Banks, S.A.; Skilleter, G.A.; Possingham, H.P. Intertidal habitat conservation: Identifying conservation targets in the absence of detailed biological information. Aquat. Conserv. Mar. Freshw. Ecosyst. 2005, 15, 271–288. [Google Scholar] [CrossRef]
- Ban, N.C.; Picard, C.R.; Vincent, A.C.J. Comparing and Integrating Community-Based and Science-Based Approaches to Prioritizing Marine Areas for Protection. Conserv. Biol. 2009, 23, 899–910. [Google Scholar] [CrossRef]
- Richardson, E.A.; Kaiser, M.J.; Edwards-Jones, G.; Possingham, H.P. Sensitivity of Marine-Reserve Design to the Spatial Resolution of Socioeconomic Data. Conserv. Biol. 2006, 20, 1191–1202. [Google Scholar] [CrossRef]
- Naughton-Treves, L.; Holland, M.B.; Brandon, K. The Role of Protected Areas in Conserving Biodiversity and Sustaining Local Livelihoods. Annu. Rev. Environ. Resour. 2005, 30, 219–252. [Google Scholar] [CrossRef]
- Chan, K.M.A.; Pringle, R.M.; Ranganathan, J.A.I.; Boggs, C.L.; Chan, Y.L.; Ehrlich, P.R.; Haff, P.K.; Heller, N.E.; Al-Khafaji, K.; Macmynowski, D.P. When Agendas Collide: Human Welfare and Biological Conservation Cuando las Agendas Chocan: Bienestar Humano y Conservación Biológica. Conserv. Biol. 2007, 21, 59–68. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 2 December 2023).
- Christensen, R.H.B. Ordinal-Regression Models for Ordinal Data. R Package Version 2022.11-16. 2022. Available online: https://CRAN.R-project.org/package=ordinal (accessed on 2 December 2023).
- Green, A.; Smith, S.E.; Lipsett-Moore, G.; Groves, C.; Peterson, N.; Sheppard, S.; Lokani, P.; Hamilton, R.; Almany, J.; Aitsi, J.; et al. Designing a resilient network of marine protected areas for Kimbe Bay, Papua New Guinea. Oryx 2009, 43, 488. [Google Scholar] [CrossRef]
- Giakoumi, S.; Grantham, H.S.; Kokkoris, G.D.; Possingham, H.P. Designing a network of marine reserves in the Mediterranean Sea with limited socio-economic data. Biol. Conserv. 2011, 144, 753–763. [Google Scholar] [CrossRef]
- McIntosh, E.J.; Pressey, R.L.; Lloyd, S.; Smith, R.J.; Grenyer, R. The Impact of Systematic Conservation Planning. Annu. Rev. Environ. Resour. 2017, 42, 677–697. [Google Scholar] [CrossRef]
- O’Connor, C.; Marvier, M.; Kareiva, P. Biological vs. social, economic and political priority-setting in conservation. Ecol. Lett. 2003, 6, 706–711. [Google Scholar] [CrossRef]
- Ardron, J.A.; Possingham, H.P.; Klein, C.J. Marxan Good Practices Handbook; Pacific Marine Analysis and Research Association: Victoria, BC, Canada, 2008; p. 149. [Google Scholar]
- Giménez, J.; Cardador, L.; Mazor, T.; Kark, S.; Bellido, J.M.; Coll, M.; Navarro, J. Marine protected areas for demersal elasmobranchs in highly exploited Mediterranean ecosystems. Mar. Environ. Res. 2020, 160, 105033. [Google Scholar] [CrossRef] [PubMed]
- Maina, J.M.; Jones, K.R.; Hicks, C.C.; McClanahan, T.R.; Watson, J.E.; Tuda, A.O.; Andréfouët, S. Designing climate-resilient marine protected area networks by combining remotely sensed coral reef habitat with coastal multi-use maps. Remote Sens. 2015, 7, 16571–16587. [Google Scholar] [CrossRef]
- McClanahan, T.R.; Maina, J.M.; Graham, N.A.J.; Jones, K.R. Modeling Reef Fish Biomass, Recovery Potential, and Management Priorities in the Western Indian Ocean. PLoS ONE 2016, 11, e0154585. [Google Scholar] [CrossRef]
- Klein, C.J.; Tulloch, V.J.; Halpern, B.S.; Selkoe, K.A.; Watts, M.E.; Steinback, C.; Scholz, A.; Possingham, H.P. Tradeoffs in marine reserve design: Habitat condition, representation, and socioeconomic costs. Conserv. Lett. 2013, 6, 324–332. [Google Scholar] [CrossRef]
- Lagabrielle, E.; Lombard, A.T.; Harris, J.M.; Livingstone, T.-C. Multi-scale multi-level marine spatial planning: A novel methodological approach applied in South Africa. PLoS ONE 2018, 13, e0192582. [Google Scholar] [CrossRef] [PubMed]
- Beger, M.; McGowan, J.; Treml, E.A.; Green, A.L.; White, A.T.; Wolff, N.H.; Klein, C.J.; Mumby, P.J.; Possingham, H.P. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 2015, 6, 8208. [Google Scholar] [CrossRef]
- Ruiz-Frau, A.; Kaiser, M.J.; Edwards-Jones, G.; Klein, C.J.; Segan, D.; Possingham, H.P. Balancing extractive and non-extractive uses in marine conservation plans. Mar. Policy 2015, 52, 11–18. [Google Scholar] [CrossRef]
- Markantonatou, V.; Giakoumi, S.; Koukourouvli, N.; Maina, I.; Gonzalez-Mirelis, G.; Sini, M.; Maistrelis, K.; Stithou, M.; Gadolou, E.; Petza, D.; et al. Marine spatial plans focusing on biodiversity conservation: The case of the Aegean Sea. Aquat. Conserv. Mar. Freshw. Ecosyst. 2021, 31, 2278–2292. [Google Scholar] [CrossRef]
- Mazor, T.; Giakoumi, S.; Kark, S.; Possingham, H.P. Large-scale conservation planning in a multinational marine environment: Cost matters. Ecol. Appl. 2014, 24, 1115–1130. [Google Scholar] [CrossRef] [PubMed]
- Ban, N.C.; Bodtker, K.M.; Nicolson, D.; Robb, C.K.; Royle, K.; Short, C. Setting the stage for marine spatial planning: Ecological and social data collation and analyses in Canada’s Pacific waters. Mar. Policy 2013, 39, 11–20. [Google Scholar] [CrossRef]
- Short, C.; Smith, J.L.; Bones, J.; Diggon, S.; Heidt, A.; McDougall, C.; Pawluk, K.A. Marine zoning for the Marine Plan Partnership (MaPP) in British Columbia, Canada. Mar. Policy 2023, 152, 105524. [Google Scholar] [CrossRef]
- Diggon, S.; Butler, C.; Heidt, A.; Bones, J.; Jones, R.; Outhet, C. The Marine Plan Partnership: Indigenous community-based marine spatial planning. Mar. Policy 2021, 132, 103510. [Google Scholar] [CrossRef]
- Wendt, H.K.; Weeks, R.; Comley, J.; Aalbersberg, W. Systematic conservation planning within a Fijian customary governance context. Pac. Conserv. Biol. 2016, 22, 173–181. [Google Scholar] [CrossRef]
- Habtemariam, B.T.; Fang, Q. Zoning for a multiple-use marine protected area using spatial multi-criteria analysis: The case of the Sheik Seid Marine National Park in Eritrea. Mar. Policy 2016, 63, 135–143. [Google Scholar] [CrossRef]
- Stewart, R.; Possingham, H. Efficiency, costs and trade-offs in marine reserve system design. Environ. Model. Assess. 2005, 10, 203–213. [Google Scholar] [CrossRef]
- Fletcher, R.J.; Hefley, T.J.; Robertson, E.P.; Zuckerberg, B.; McCleery, R.A.; Dorazio, R.M. A practical guide for combining data to model species distributions. Ecology 2019, 100, e02710. [Google Scholar] [CrossRef] [PubMed]
- Kirlin, J.; Caldwell, M.; Gleason, M.; Weber, M.; Ugoretz, J.; Fox, E.; Miller-Henson, M. California’s Marine Life Protection Act Initiative: Supporting implementation of legislation establishing a statewide network of marine protected areas. Ocean Coast. Manag. 2013, 74, 3–13. [Google Scholar] [CrossRef]
- Klein, C.J.; Steinback, C.; Scholz, A.J.; Possingham, H.P. Effectiveness of marine reserve networks in representing biodiversity and minimizing impact to fishermen: A comparison of two approaches used in California. Conserv. Lett. 2008, 1, 44–51. [Google Scholar] [CrossRef]
- Adams, V.M.; Pressey, R.L.; Álvarez-Romero, J.G. Using Optimal Land-Use Scenarios to Assess Trade-Offs between Conservation, Development, and Social Values. PLoS ONE 2016, 11, e0158350. [Google Scholar] [CrossRef]
Category | Social Nuance Rank | |||
---|---|---|---|---|
1 | 2 | 3 | ||
Stakeholder Involvement | Resource user participation | Minimal participation from stakeholders concerning reserve siting or the overall goals of the spatial prioritization process. | Some engagement of stakeholders concerning different iterations of reserve network design. | Deep engagement with local resource users and other stakeholders at every step of the process from helping shape the goals/priorities of the reserve or network, to helping determine what social data should be collected and analyzed, to weighing in different solutions produced by Marxan. |
Data source | Relied only on proxy data, such as distance from closest population center as a surrogate for fishing pressure. | Used some social data that were ground-truthed or collected by researchers at a local or regional level. | Data sources were specific to the sites in question, ground-truthed and recently collected. Common data sources in this category were surveys of local stakeholders, landings logbooks, VMS records, boat-based surveys, etc. | |
Underlying Drivers | Temporal change | Considered some elements of social or socio-environmental change (e.g., climate change) through proxy factors such as sea surface temperature. | Included some data from a significant period of time (e.g., more than a decade) that show temporal trends of resource use or other social processes. | Included data from a significant period of time and explicitly referenced projected patterns of future resource use, resource conflicts, or other social factors influenced by environmental and/or social processes (e.g., land use change, deforestation, urbanization, etc.) |
Multi-scalar | Focused primarily on proximate drivers of marine resource use. Analyzed social processes primarily at one scale. | Considered proximate and some ultimate drivers of marine resource use. Some input from stakeholders and experts at multiple scales from different backgrounds/fields. | Included input from stakeholders at multiple scales (local, regional, and national) and experts from multiple fields. Considered both proximate as well as ultimate drivers of marine resource use (e.g., inclusion of global or regional human impact aggregates alongside regionally and locally specific social data collection). | |
Rights and Access | Sea tenure | Included some element of fisher or community resource use and access patterns. | Recognized some elements of local marine tenure and included some areas into the reserve siting framework. | Robustly integrated local marine tenure systems and marine resource rights into the reserve planning. Recognized that rights can exist at the individual, collective, or broader community level. |
Local Provisioning & Access | Included at least one way of spatializing human activities and interest in reserve design other than strict avoidance. | Partially focused on improving access to marine resources for local stakeholders. Included explicit ecosystem service provision goals, focused on sustainable use, or considered the benefits in addition to costs of placing a reserve adjacent to high-use areas. | Explicitly focused on improving access to marine resources for local stakeholders, enhancing ecosystem service provision, and the benefits in addition to costs of placing a reserve adjacent to a high use area. Potentially included the protection of traditional or indigenous fishing grounds, historical or cultural sites, and/or other sites of high human value or interest. | |
Count | ||||
Marxan Inputs | Social costs | Total number of social costs listed by authors. Costs in this category are selected against a planning unit in each run of Maxan. Examples include areas of high fishing effort, ports, sewage pollution, and urban centers. | ||
Social targets | Total number of negative social costs or social targets listed by authors. Often, although not exclusively associated with the use of layers in Marxan with Zones. Examples include small-scale fishing effort, recreation areas, and areas adjacent to tourist facilities. | |||
Social parameters | Total number of “shadow” social factors. Examples include “locking out” planning units associated with industrial and commercial interests, or “locking in” units tied to stakeholder preference. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baker-Médard, M.; Concannon, K.; Gantt, C.; Moen, S.; White, E.R. Socialscape Ecology: Integrating Social Features and Processes into Spatially Explicit Marine Conservation Planning. Sustainability 2024, 16, 6078. https://doi.org/10.3390/su16146078
Baker-Médard M, Concannon K, Gantt C, Moen S, White ER. Socialscape Ecology: Integrating Social Features and Processes into Spatially Explicit Marine Conservation Planning. Sustainability. 2024; 16(14):6078. https://doi.org/10.3390/su16146078
Chicago/Turabian StyleBaker-Médard, Merrill, Katherine Concannon, Courtney Gantt, Sierra Moen, and Easton R. White. 2024. "Socialscape Ecology: Integrating Social Features and Processes into Spatially Explicit Marine Conservation Planning" Sustainability 16, no. 14: 6078. https://doi.org/10.3390/su16146078
APA StyleBaker-Médard, M., Concannon, K., Gantt, C., Moen, S., & White, E. R. (2024). Socialscape Ecology: Integrating Social Features and Processes into Spatially Explicit Marine Conservation Planning. Sustainability, 16(14), 6078. https://doi.org/10.3390/su16146078