CLIMAEXTREMO: A New Risk Indicator for the Health Risk to Building Occupants during Extreme Weather Events in Portugal
Abstract
:1. Introduction
- Improving the current forecasting models for risk by integrating new sources of public data;
- Increasing the spatial and time resolution of the warnings, if possible, to the municipality or the parish level and for longer forecasting periods (7 days).
2. Review of the Literature
2.1. Climate Change and Heat Waves
2.2. Heat Wave Definitions
2.3. Heat–Health Warning Systems
2.4. The Existing HHWS for Portugal
2.5. Guidelines to Improve the HHWS
2.6. Designing a Risk Indicator for Heat Waves
3. Materials and Methods
3.1. Hazard: Thermal Comfort and Indoor Temperatures
3.2. Exposure: Increased Relative Risk (RR) of Mortality
3.3. Vulnerability: Social, Economic, and Environmental Characteristics
3.4. Designing the CLIMAEXTREMO Index
3.5. Potential Application of the Methods to Other Regions and Limitations
4. Results
4.1. Heat Wave in June 2023
4.2. Heat Wave in August 2023
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ballester, J.; Rodó, X.; Robine, J.-M.; Herrmann, F.R. European seasonal mortality and influenza incidence due to winter temperature variability. Nat. Clim. Chang. 2016, 6, 927–930. [Google Scholar] [CrossRef]
- Fowler, T.; Southgate, R.J.; Waite, T.; Harrell, R.; Kovats, S.; Bone, A.; Doyle, Y.; Murray, V. Excess winter deaths in Europe: A multi-country descriptive analysis. Eur. J. Public Health 2014, 25, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Kirch, W.; Menne, B.; Bertollini, R. Extreme Weather Events and Public Health Responses. 2005. Available online: https://api.semanticscholar.org/CorpusID:127880815 (accessed on 29 April 2024).
- Matos, A.M.; Delgado, J.M.P.Q.; Guimarães, A.S. Linking Energy Poverty with Thermal Building Regulations and Energy Efficiency Policies in Portugal. Energies 2022, 15, 329. [Google Scholar] [CrossRef]
- Nogueira, P.; Paixão, E. Models for mortality associated with heat waves: Update of the Portuguese heat health warning system. Int. J. Climatol. 2008, 28, 545–562. [Google Scholar] [CrossRef]
- Antunes, L.; Silva, S.P.; Marques, J.; Nunes, B.; Antunes, S. The effect of extreme cold temperatures on the risk of death in the two major Portuguese cities. Int. J. Biometeorol. 2017, 61, 127–135. [Google Scholar] [CrossRef]
- United Nations. The UN Sustainable Development Goals; United Nations: New York, NY, USA, 2015; Available online: https://sdgs.un.org/goals (accessed on 3 June 2024).
- IPCC. Summary for Policymakers: Synthesis Report. Climate Change 2023 Synthesis Report. Contribution of Working Groups I, II III to Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2023, pp. 1–34. Available online: https://reliefweb.int/attachments/dd4beacc-1f69-4231-aa6e-85c0f767f6bf/IPCC_AR6_SYR_SPM.pdf (accessed on 29 April 2024).
- WMO World Meteorological Organization. Early Warnings for All; Executive Action Plan. WMO Bulletin. 2023. Available online: https://wmo.int/media/news/early-warnings-all-action-plan-unveiled-cop27 (accessed on 29 April 2024).
- Torres, A.R.; Silva, S.; Nunes, B.; Rodrigues, A.P. Excesso de mortalidade em Portugal associado ao período de calor extremo em agosto de 2018: Um instrumento ao serviço da intervenção em saúde pública. Bol. Epidemiológico Obs. 2020, 9, 9–13. Available online: http://hdl.handle.net/10400.18/7079 (accessed on 29 April 2024).
- Ye, X.; Wolff, R.; Yu, W.; Vaneckova, P.; Pan, X.; Tong, S. Ambient temperature and morbidity: A review of epidemiological evidence. Environ. Health Perspect. 2011, 120, 19–28. [Google Scholar] [CrossRef]
- Lindemann, U.; Stotz, A.; Beyer, N.; Oksa, J.; Skelton, D.A.; Becker, C.; Rapp, K.; Klenk, J. Effect of Indoor Temperature on Physical Performance in Older Adults during Days with Normal Temperature and Heat Waves. Int. J. Environ. Res. Public Health 2017, 14, 186. [Google Scholar] [CrossRef] [PubMed]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing frequency, intensity and duration of observed global heat waves and warm spells. Geophys. Res. Lett. 2012, 39, 1–5. [Google Scholar] [CrossRef]
- World Meteorological Organization; World Health Organisation. Heat Waves and Health: Guidance on Warning-System Development; No. 1142; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- U.S. Environmental Protection Agency. Heat Waves; EPA Technical Report; US Environmental Protection Agency (EPA): Washington, DC, USA, 2021; Volume 77, pp. 24–25.
- Varghese, B.M.; Barnett, A.G.; Hansen, A.L.; Bi, P.; Nairn, J.; Rowett, S.; Nitschke, M.; Hanson-Easey, S.; Heyworth, J.S.; Sim, M.R.; et al. Characterising the impact of heat waves on work-related injuries and illnesses in three Australian cities using a standard heat wave definition-Excess Heat Factor (EHF). J. Expo. Sci. Environ. Epidemiol. 2019, 29, 821–830. [Google Scholar] [CrossRef]
- Díaz, J.; Carmona, R.; Mirón, I.J.; Ortiz, C.; León, I.; Linares, C. Geographical variation in relative risks associated with heat: Update of Spain’s Heat Wave Prevention Plan. Environ. Int. 2015, 85, 273–283. [Google Scholar] [CrossRef]
- Sanderson, M.G.; Economou, T.; Salmon, K.H.; Jones, S.E.O. Historical Trends and Variability in Heat Waves in the United Kingdom. Atmosphere 2017, 8, 191. [Google Scholar] [CrossRef]
- IPMA (Instituto Português do Mar e a Atmosfera). Glossários-Glossário Climatológico/Meteorológico; IPMA: Lisbon, Portugal, 2024. [Google Scholar]
- Casanueva, A.; Burgstall, A.; Kotlarski, S.; Messeri, A.; Morabito, M.; Flouris, A.D.; Nybo, L.; Spirig, C.; Schwierz, C. Overview of Existing Heat-Health Warning Systems in Europe. Int. J. Environ. Res. Public Health 2019, 16, 2657. [Google Scholar] [CrossRef]
- Lass, W.; Haas, A.; Hinkel, J.; Jaeger, C. Avoiding the avoidable: Towards a European heat waves risk governance. Int. J. Disaster Risk Sci. 2011, 2, 1–14. [Google Scholar] [CrossRef]
- IPMA (Instituto Português do Mar e a Atmosfera). Critérios de Emissão dos Avisos Meteorológicos; IPMA: Lisbon, Portugal, 2024. [Google Scholar]
- Leite, A.; Santos, A.J.; Silva, S.; Nunes, B.; Mexia, R.; Rodrigues, A.P. Assessing the use and understanding of the Portuguese heat–health warning system (ÍCARO). J. Public Health 2020, 42, 395–402. [Google Scholar] [CrossRef]
- Yu, M.; Yang, C.; Li, Y. Big Data in Natural Disaster Management: A Review. Geosciences 2018, 8, 165. [Google Scholar] [CrossRef]
- Alexander, D.E. Resilience and disaster risk reduction: An etymological journey. Nat. Hazards Earth Syst. Sci. 2013, 13, 2707–2716. [Google Scholar] [CrossRef]
- Cardona, O.D. Indicators of Disaster Risk and Risk Management-Program for Latin America and the Caribbean Summary Report, 2nd ed.; IDB: Washington, DC, USA, 2008. [Google Scholar]
- Molarius, R.; Könönen, V.; Leviäkangas, P.; Zulkarnain Rönty, J.; Hietajärvi, A.M.; Oiva, K. The extreme weather risk indicators (EWRI) for the European transport system. Nat. Hazards 2014, 72, 189–210. [Google Scholar] [CrossRef]
- Yamagata, Y.; Murakami, D.; Yoshida, T. Spatiotemporal Heat wave Risk Evaluation: Considering Hazard, Exposure, and Vulnerability. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5524–5527. [Google Scholar] [CrossRef]
- Wisner, B.; Blaikie, P.; Cannon, T.; Davis, I. At Risk: Natural Hazards, People’s Vulnerability and Disasters; Routledge: London, UK, 2004. [Google Scholar]
- Reckien, D. What is in an index? Construction method, data metric, and weighting scheme determine the outcome of composite social vulnerability indices in New York City. Reg. Environ. Chang. 2018, 18, 1439–1451. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Roquette, R.; Nunes, B. Mapeamento de índice de vulnerabilidade a ondas de calor. In Conferência Internacional de Riscos Urbanos; Teves, C.P., Luis, Z.J., Cristina, C., Mamaral, F.M., Ricardo, G., Luis, M., Pais, I., João, R.M., Ines, R., Sousa, M.L., Eds.; CERU—European Centre on Urban Risks: Lisbon, Portugal, 2016; pp. 681–687. Available online: https://repositorio.insa.pt/bitstream/10400.18/3870/1/ICUR2016_Poster_final.pdf (accessed on 29 April 2024).
- Nogueira, P.J.; Falcão, J.M.; Contreiras, M.T.; Paixão, E.; Brandão, J.; Batista, I. Mortality in Portugal associated with the heat wave of August 2003: Early estimation of effect, using a rapid method. Eurosurveillance 2005, 10, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Åström, D.O.; Bertil, F.; Joacim, R. Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies. Maturitas 2011, 69, 99–105. [Google Scholar] [CrossRef]
- Ormandy, D.; Ezratty, V. Health and thermal comfort: From WHO guidance to housing strategies. Energy Policy 2012, 49, 116–121. [Google Scholar] [CrossRef]
- McMichael, A.J.; Friel, S.; Nyong, A.; Corvalan, C. Global environmental change and health: Impacts, inequalities, and the health sector. BMJ 2008, 336, 191–194. [Google Scholar] [CrossRef]
- Jin, L.; Schubert, S.; Fenner, D.; Salim, M.H.; Schneider, C. Estimation of mean radiant temperature in cities using an urban parameterization and building energy model within a mesoscale atmospheric model. Meteorol. Z. 2022, 31, 31–52. [Google Scholar] [CrossRef]
- Anders, J.; Schubert, S.; Sauter, T.; Tunn, S.; Schneider, C.; Salim, M. Modelling the impact of an urban development project on microclimate and outdoor thermal comfort in a mid-latitude city. Energy Build. 2023, 296, 113324. [Google Scholar] [CrossRef]
- Monteiro, C.S.; Costa, C.; Pina, A.; Santos, M.Y.; Ferrão, P. An urban building database (UBD) supporting a smart city information system. Energy Build. 2018, 158, 244–260. [Google Scholar] [CrossRef]
- Al-Rabghi, O.M.A.; Al-Johani, K.M. Utilizing transfer function method for hourly cooling load calculations. Energy Convers. Manag. 1997, 38, 319–332. [Google Scholar] [CrossRef]
- Gomes, R.; Ferreira, A.; Azevedo, L.; Neto, R.C.; Aelenei, L.; Silva, C. Retrofit measures evaluation considering thermal comfort using building energy simulation: Two Lisbon households. Adv. Build. Energy Res. 2021, 15, 291–314. [Google Scholar] [CrossRef]
- ADENE, Agência para a Energia. Sistema de Certificação Energética. 2008. Available online: https://www.sce.pt/ (accessed on 29 April 2024).
- IPMA, Instituto Português do Mar e Atmosfera. Séries Longas. 2024. Available online: https://www.ipma.pt/pt/oclima/series.longas/ (accessed on 29 April 2024).
- MARETEC, Marine, Environment and Technology Center. Meteo Tecnico Weather Forecast. Available online: https://meteo.tecnico.ulisboa.pt/ (accessed on 29 April 2024).
- Cheng, J.; Xu, Z.; Bambrick, H.; Prescott, V.; Wang, N.; Zhang, Y.; Su, H.; Tong, S.; Hu, W. Cardiorespiratory effects of heat waves: A systematic review and meta-analysis of global epidemiological evidence. Environ. Res. 2019, 177, 108610. [Google Scholar] [CrossRef]
- Gasparrini, A.; Guo, Y.; Hashizume, M. Mortalité attribuable au froid et à la chaleur: Analyse multi-pays. Environ. Risques Sante 2015, 14, 464–465. [Google Scholar] [CrossRef] [PubMed]
- e-Mortality Surveillance. Mortalidade em Tempo Real. DGS, SNS. 2023. Available online: https://evm.min-saude.pt/ (accessed on 29 April 2024).
- Statistics Portugal. Statistics Portugal Web Portal. Available online: https://www.ine.pt/xportal/xmain?xpgid=ine_main&xpid=INE (accessed on 29 April 2024).
- Bhaskaran, K.; Gasparrini, A.; Hajat, S.; Smeeth, L.; Armstrong, B. Time series regression studies in environmental epidemiology. Int. J. Epidemiol. 2013, 42, 1187–1195. [Google Scholar] [CrossRef]
- Brito, A.; Nunes, B.; Silva, C.S.; Roquette, R.; Silva, S. First Steps for New Extreme Temperatures Health Early Warning System in Portugal. In Proceedings of the ISEE 2022: 34th Annual Conference of the International Society of Environmental Epidemiology, Athens, Greece, 2022; Available online: https://ehp.niehs.nih.gov/doi/abs/10.1289/isee.2022.P-0620 (accessed on 29 April 2024).
- Alho, A.M.; Oliveira, A.P.; Viegas, S.; Nogueira, P. Effect of heat waves on daily hospital admissions in Portugal, 2000–2018: An observational study. Lancet Planet. Health 2024, 8, e318–e326. [Google Scholar] [CrossRef]
- Copernicus Land Monitoring Service. CORINE Land Cover 2018. 2018. Available online: https://land.copernicus.eu/en/products/corine-land-cover/clc2018 (accessed on 29 April 2024).
- Rogers, D.P.; Shapiro, M.A.; Brunet, G.; Cohen, J.-C.; Connor, S.J.; Diallo, A.A.; Elliott, W.; Haidong, K.; Hales, S.; Hemming, D.; et al. Health and climate–opportunities. Procedia Environ. Sci. 2010, 1, 37–54. [Google Scholar] [CrossRef]
- Fouillet, A.; GRey Jougla, E.; Hémon, D. Estimation de la Surmortalité, Observée et Attendue au cours, de la Vague de Chaleur du mois de Juillet 2006. Rapport remis à l’Institut de Veille Sanitaire. 2006. Available online: https://hal-lara.archives-ouvertes.fr/hal-01571668v1/file/INSERM_rapport_canicule2006.pdf (accessed on 29 April 2024).
- Perácek, T.; Majercáková, D.; Mittelman, A. The Constitutional Protection of Water as Irreplaceable Component of Environment and All Living Ecosystems. In The Conditions of the Slovak Republic, Proceedings of the 16th International Multidisciplinary Scientific Geoconference (SGEM 2016), 2016, Ecology, Economics, Education and Legislation Conference Proceedings, SGEM 2016, Bulgaria Albena, Bulgaria, 30 June–6 July 2016; SGEM Geoconferences: Sofia, Boulgaria, 2016; Volume I, pp. 995–1000. [Google Scholar]
- Kaššaj, M.; Peráček, T. Sustainable Connectivity—Integration of Mobile Roaming, WiFi4EU and Smart City Concept in the European Union. Sustainability 2024, 16, 788. [Google Scholar] [CrossRef]
Hazard (Indoor Temperature) | Exposure (Mortality Increase) | Vulnerability | ||
---|---|---|---|---|
Cold | Heat | |||
0 | ||||
1 | ||||
2 | ||||
3 |
Municipality | Week 23 | Week 24 | Week 25 | Week 26 | Week 27 | Week 28 | 2023 Average |
---|---|---|---|---|---|---|---|
Alandroal | 1 | 1 | 3 | 2 | 0 | 1 | 2 |
Arronches | 1 | 2 | 2 | 1 | 0 | 1 | 1 |
Barrancos | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
Beja | 4 | 9 | 16 | 13 | 9 | 6 | 10 |
Castanheira de Pêra | 0 | 0 | 0 | 0 | 2 | 0 | 1 |
Figueira de Castelo Rodrigo | 1 | 3 | 3 | 0 | 4 | 1 | 2 |
Municipality | Week 29 | Week 30 | Week 31 | Week 32 | Week 33 | Week 34 | Week 35 | Week 36 | 2023 Average |
---|---|---|---|---|---|---|---|---|---|
Mértola | 3 | 3 | 2 | 4 | 1 | 1 | 3 | 2 | 2 |
Redondo | 0 | 2 | 6 | 0 | 2 | 3 | 1 | 0 | 2 |
Serpa | 4 | 3 | 2 | 8 | 4 | 5 | 3 | 3 | 5 |
Marvão | 3 | 0 | 2 | 0 | 1 | 1 | 2 | 0 | 1 |
Santarém (Parish Arneiro de Milharaças) | 12 | 18 | 9 | 9 | 12 | 18 | 12 | 13 | 14 |
Portel | 1 | 2 | 1 | 3 | 2 | 1 | 0 | 0 | 2 |
Mesão Frio | 1 | 0 | 1 | 2 | 1 | 2 | 1 | 1 | 1 |
Alcoutim | 1 | 1 | 1 | 1 | 2 | 3 | 0 | 1 | 1 |
Ourique | 4 | 1 | 2 | 4 | 3 | 4 | 1 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, C.S.; Fernandes, D.V.; Gomes, R.; Costa, F.P.; Pinto, L.; Scuri, S.; Brito, A.; Nunes, B.; Silva, S.P. CLIMAEXTREMO: A New Risk Indicator for the Health Risk to Building Occupants during Extreme Weather Events in Portugal. Sustainability 2024, 16, 5171. https://doi.org/10.3390/su16125171
Silva CS, Fernandes DV, Gomes R, Costa FP, Pinto L, Scuri S, Brito A, Nunes B, Silva SP. CLIMAEXTREMO: A New Risk Indicator for the Health Risk to Building Occupants during Extreme Weather Events in Portugal. Sustainability. 2024; 16(12):5171. https://doi.org/10.3390/su16125171
Chicago/Turabian StyleSilva, Carlos Santos, Diana Vieira Fernandes, Ricardo Gomes, Francisco Pires Costa, Ligia Pinto, Sabrina Scuri, Andre Brito, Baltazar Nunes, and Susana Pereira Silva. 2024. "CLIMAEXTREMO: A New Risk Indicator for the Health Risk to Building Occupants during Extreme Weather Events in Portugal" Sustainability 16, no. 12: 5171. https://doi.org/10.3390/su16125171
APA StyleSilva, C. S., Fernandes, D. V., Gomes, R., Costa, F. P., Pinto, L., Scuri, S., Brito, A., Nunes, B., & Silva, S. P. (2024). CLIMAEXTREMO: A New Risk Indicator for the Health Risk to Building Occupants during Extreme Weather Events in Portugal. Sustainability, 16(12), 5171. https://doi.org/10.3390/su16125171