Predicting the Potential Risk Area of the Invasive Plant Galinsoga parviflora in Tibet Using the MaxEnt Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Survey
2.2. Collection of Climate and Environmental Variables
2.3. Parameters Optimization and Construction of the Model
2.4. Changes in Potential Risk Area and Characteristics of Centroid Shift under Climate Change
3. Results
3.1. Reliability Analysis of Models Established for G. parviflora
3.2. Assessing Contributions of Environmental Factors on G. parviflora Distribution
3.3. Potential Risk Areas for G. parviflora Invasion under Current and Future Climate Change Scenarios
3.4. Spatial Transfer Characteristics of Risk Areas for G. parviflora
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, R.; Huang, H.K.; Zhang, H.B.; Zhang, Y.P.; Xue, L.; Chen, B.X.; Yang, N.W.; Guo, J.Y.; Liu, W.X.; Wan, F.H. Analysis of gaps in regulations and management mechanisms for the prevention and control of invasive alien species in China. Plant Prot. 2022, 48, 2–9. [Google Scholar]
- Wei, F.W.; Nie, Y.G.; Miao, H.X.; Lu, H.; Hu, Y.B. Advancements of the researches on biodiversity loss mechanisms. Chin. Sci. Bull. 2014, 59, 430–437. [Google Scholar] [CrossRef]
- Hulme, P.E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 2009, 46, 10–18. [Google Scholar] [CrossRef]
- Pintilioaie, A.M.; Sfîcă, L.; Baltag, E.S. Climatic Niche of an Invasive Mantid Species in Europe: Predicted New Areas for Species Expansion. Sustainability 2023, 15, 10295. [Google Scholar] [CrossRef]
- Ren, J.L.; Chen, J.S.; Xu, C.L.; Koppel, J.V.D.; Thomsen, M.S.; Qiu, S.Y.; Cheng, F.Y.; Song, W.J.; Liu, Q.X.; Xu, C.; et al. An invasive species erodes the performance of coastal wetland protected areas. Sci. Adv. 2021, 7, eabi8943. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Li, B.; Wu, J.H.; Hu, S.J. Invasive plants differentially affect soil biota through litter and rhizosphere pathways: A meta-analysis. Ecol. Lett. 2019, 22, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Warwick, S.I.; Sweet, R.D. The biology of Canadian weeds.:58. Galinsoga parviflora and G. quadriradiata (=G. ciliata). Can. J. Plant Sci. 1983, 63, 695–709. [Google Scholar] [CrossRef]
- Liu, H.Y.; Yang, R.; Jiang, Y.Y.; Liu, Q.R. Taxonomy and distribution of invasive Galinsoga Ruiz & Pavón in China. J. Beijing Norm. Univ. 2022, 58, 216–222. [Google Scholar]
- Iany, J.A.; Sweet, R.D. Germination, growth, development, and control of Galinsoga. Weed Sci. 1973, 21, 41–45. [Google Scholar] [CrossRef]
- Damalas, C.A. Distribution, biology, and agricultural importance of Galinsoga parviflora (Asteraceae). Weed Biol. Manag. 2008, 8, 147–153. [Google Scholar] [CrossRef]
- Adhikari, D.; Barik, S.; Upadhaya, K. Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically endangered tree species of northeastern India. Ecol. Eng. 2012, 40, 37–43. [Google Scholar] [CrossRef]
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Çoban, H.O.; Örücü, Ö.K.; Arslan, E.S. MaxEnt Modeling for Predicting the Current and Future Potential Geographical Distribution of Quercus libani Olivier. Sustainability 2020, 12, 2671. [Google Scholar] [CrossRef]
- Gaston, K.J. Species richness: Measure and measurement. In Biodibersity: A Biology of Numbers and Difference; Blackwell Science: Hoboken, NJ, USA, 1996; pp. 77–113. [Google Scholar]
- Wang, J.W.; Chen, Y.H.; Xu, M.; Chen, J.F.; La, Q. Prediction of potential risk area of the invasive plant Datura stramonium L. in Tibet under the background of climate change. Acta Ecol. Sin. 2023, 43, 8620–8630. [Google Scholar]
- Liu, D.; Xie, C.; Jim, C.Y.; Liu, Y.; Hou, S. Predicting the Potential Distribution of the Alien Invasive Alligator Gar Atractosteus spatula in China. Sustainability 2023, 15, 6419. [Google Scholar] [CrossRef]
- Sorbe, F.; Gränzig, T.; Förster, M. Evaluating sampling bias correction methods for invasive species distribution modeling in Maxent. Ecol. Inform. 2023, 76, 102–124. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.W.; Lu, Y.X.; Fang, Y.J.; Xin, X.G.; Li, L.; Li, W.P.; Jie, W.H.; Zhang, J.; Liu, Y.M.; Zhang, L.; et al. The Beijing climate center climate system model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci. Model Dev. 2019, 12, 1573–1600. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Zhang, K.L.; Yao, L.J.; Meng, J.S.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef]
- Li, D.X.; Li, Z.X.; Liu, Z.W.; Yang, Y.J.; Khoso, A.G.; Wang, L.; Liu, D. Climate change simulations revealed potentially drastic shifts in insect community structure and crop yields in China’s farmland. J. Pest Sci. 2023, 96, 55–69. [Google Scholar] [CrossRef]
- Simberloff, D.; Martin, J.L.; Genovesi, P.; Maris, V.; Wardle, D.A.; Aronson, J.; Courchamp, F.; Galil, B.; García-Berthou, E.; Pascal, M.; et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 2013, 28, 58–66. [Google Scholar] [CrossRef]
- Yang, W.J.; Sun, S.X.; Wang, N.X.; Fan, P.X.; You, C.; Wang, R.Q.; Zheng, P.M.; Wang, H. Dynamics of the distribution of invasive alien plants (Asteraceae) in China under climate change. Sci. Total Environ. 2023, 903, 166260. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Zhang, Q.C.; Wang, J.G.; Lei, Y.H. Predicting Distribution of the Asian Longhorned Beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae) and Its Natural Enemies in China. Insects 2022, 13, 687. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Dudik, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Osorio-Olvera, L. kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef]
- Aidoo, O.F.; Souza, P.G.C.; da Silva, R.S.; Santana, J.P.A.; Picanço, M.C.; Kyerematen, R.; Sètamou, M.; Ekesi, S.; Borgemeister, C. Climate-induced range shifts of invasive species (Diaphorina citri Kuwayama). Pest Manag. Sci. 2022, 78, 2534–2549. [Google Scholar] [CrossRef]
- Lemke, P.; Ren, J.F.; Alley, R.B.; Allison, I.; Carrasco, J.F.; Flato, G.; Fujii, Y.; Kaser, G.; Mote, P.; Thomas, R.H. IPCC: Contribution of Working Groups I, II, III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Lambrinos, J.G. The expansion history of a sexual and asexual species of Cortaderia in California, USA. J. Ecol. 2001, 89, 88–98. [Google Scholar] [CrossRef]
- Xing, D.L.; Zhang, J.; He, F.L. Comment on “Interspecific competition limits bird species’ ranges in tropical mountains”. Science 2023, 369, eade2109. [Google Scholar] [CrossRef]
- Khwarahm, N.R. Predicting the Spatial Distribution of Hyalomma ssp., Vector Ticks of Crimean–Congo Haemorrhagic Fever in Iraq. Sustainability 2023, 15, 13669. [Google Scholar] [CrossRef]
- Ding, J.; Li, F.; Yang, G.B.; Chen, L.Y.; Zhang, B.B.; Liu, L.; Fang, K.; Qin, S.Q.; Chen, Y.L.; Peng, Y.F.; et al. The permafrost carbon inventory on the Tibetan Plateau: A new evaluation using deep sediment cores. Glob. Chang. Biol. 2016, 22, 2688–2701. [Google Scholar] [CrossRef]
- Pshegusov, R.H.; Chadaeva, V.A. Ecological Niche Modeling of Galinsoga Ruiz et Pav. Species in the Native and Caucasian Part of the Invasive Ranges. Russ. J. Biol. Invasions 2022, 13, 245–258. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Brundu, G.; Richardson, D.M. Planted forests and invasive alien trees in Europe: A code for managing existing and future plantings to mitigate the risk of negative impacts from invasions. NeoBiota 2016, 30, 5–47. [Google Scholar] [CrossRef]
- Chu, L.S.; Li, H.Y.; Yang, Y.F.; Guo, J. Effects of mowing on growth and reproductive characteristics of invasive plant Galinsoga parviflora. J. Plant Resour. Environ. 2022, 31, 34–42. [Google Scholar]
- Ripanda, A.; Luanda, A.; Sule, K.S.; Mtabazi, G.S.; Makangara, J.J. Galinsoga parviflora (Cav.): A comprehensive review on ethnomedicinal, phytochemical and pharmacological studies. Heliyon 2023, 9, e13517. [Google Scholar] [CrossRef]
- Afza, N.; Yasmeen, S.; Ferheen, S.; Malik, A.; Ali, M.I.; Kalhoro, M.A.; Ifzal, R. New aromatic esters from Galinsoga parviflora. J. Asian Nat. Prod. Res. 2012, 14, 424–428. [Google Scholar] [CrossRef]
- Yang, K.B. Chinese farmland soil heavy metal pollution and its phytoremediation. World Agricult. 2007, 340, 58–61. [Google Scholar]
- Wang, Y.; Wang, X.; Deng, Q.X.; Mao, M.J.; Xia, H.; Wang, J.; Lv, X.L.; Wang, Y.Q.; Zhang, H.F.; Zhang, X.A.; et al. Living plants and straws of four hyperaccumulator plants increase the cadmium uptake of Ziziphus acidojujuba seedlings. Int. J. Environ. Anal. Chem. 2023, 103, 1804–1816. [Google Scholar] [CrossRef]
- Kucewicz, M.; Gojło, E. Influence of achene heteromorphism on life-cycle traits in the annual weed gallant soldier (Galinsoga parviflora Cav.). Flora-Morphol. Distrib. Funct. Ecol. Plants 2014, 209, 649–654. [Google Scholar] [CrossRef]
- Lorenzi, H.; Souza, H.M. Ornamental Plants of Brazil: Shrubs, Herbs and Vines, 3rd ed.; Plantarum: Nova Odessa, Brazil, 2014; p. 558. [Google Scholar]
- Guan, S.P.; Chen, P.D.; Qu, X.L.; Wang, X.L.; Wang, S.P.; Li, H.Y.; Fang, J.P.; Wang, Y.; Chen, J.R.; Huang, W.; et al. Invasiveness and impact of invasive species on the Tibetan Plateau are inconsistent. J. Plant Ecol. 2023, 16, rtad039. [Google Scholar] [CrossRef]
- Areington, C.A.; Neto, M.C.L.; Watt, P.M. Assessing the utility of selected photosynthetic and related traits in screening Amaranthus dubius Mart. ex Thell. and Galinsoga parviflora Cav. 1796 seedlings for elevated temperature stress tolerance. S. Afr. J. Bot. 2022, 145, 444–457. [Google Scholar] [CrossRef]
- Alexander, J.M.; Lembrechts, J.J.; Cavieres, L.A.; Daehler, C.; Haider, S.; Kueffer, C.; Liu, G.; McDougall, K.; Milbau, A.; Pauchard, A.; et al. Plant invasions into mountains and alpine ecosystems: Current status and future challenges. Alp. Bot. 2016, 126, 89–103. [Google Scholar] [CrossRef]
Variables | Details | Percent Contribution (%) |
---|---|---|
Bio1 | Mean Annual Temperature (°C) | 39.2 |
Elev | Elevation (m) | 20.0 |
Bio19 | Precipitation of Coldest Quarter (mm) | 11.5 |
Bio11 | Mean Temperature of Coldest Quarter (°C) | 8.9 |
Bio6 | Min Temperature of Coldest Month (°C) | 5.4 |
Awc_class | Available water storage (mm/m) | 4.3 |
pH | pH | 4.2 |
Slope | Slope | 3.4 |
Bio14 | Precipitation of Driest Month (mm) | 2.6 |
Bio18 | Precipitation of Warmest Quarter (mm) | 0.3 |
HF | Human footprint | 0.2 |
Aspect | Aspect | 0.1 |
Climate Change Scenarios | Risk Area | Non-Risk Area | ||
---|---|---|---|---|
Area (×104 km2) | Proportion (%) | Area (×104 km2) | Proportion (%) | |
Current | 5.02 | 4.08 | 117.82 | 95.92 |
SSP126-2050 | 4.44 | 3.61 | 118.4 | 96.39 |
SSP126-2090 | 6.25 | 5.09 | 116.59 | 94.91 |
SSP585-2050 | 7.62 | 6.21 | 115.22 | 93.79 |
SSP585-2090 | 24.53 | 19.97 | 98.31 | 80.03 |
Climate Change Scenarios | Expansion | Stability | Contraction | Without Change | |
---|---|---|---|---|---|
SSP126 | Current–2050 | 2.21 | 4.05 | 0.95 | 115.63 |
2050–2090 | 0.17 | 6.08 | 0.18 | 116.41 | |
SSP585 | Current–2050 | 3.62 | 4.01 | 1.00 | 114.21 |
2050–2090 | 17.59 | 6.94 | 0.69 | 97.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zeng, Z.; Chen, Y.; La, Q. Predicting the Potential Risk Area of the Invasive Plant Galinsoga parviflora in Tibet Using the MaxEnt Model. Sustainability 2024, 16, 4689. https://doi.org/10.3390/su16114689
Wang J, Zeng Z, Chen Y, La Q. Predicting the Potential Risk Area of the Invasive Plant Galinsoga parviflora in Tibet Using the MaxEnt Model. Sustainability. 2024; 16(11):4689. https://doi.org/10.3390/su16114689
Chicago/Turabian StyleWang, Junwei, Zhefei Zeng, Yonghao Chen, and Qiong La. 2024. "Predicting the Potential Risk Area of the Invasive Plant Galinsoga parviflora in Tibet Using the MaxEnt Model" Sustainability 16, no. 11: 4689. https://doi.org/10.3390/su16114689
APA StyleWang, J., Zeng, Z., Chen, Y., & La, Q. (2024). Predicting the Potential Risk Area of the Invasive Plant Galinsoga parviflora in Tibet Using the MaxEnt Model. Sustainability, 16(11), 4689. https://doi.org/10.3390/su16114689