The Key to the Sustainability and Conservation of Extractive Reserves in the Amazon
Abstract
:1. Introduction
2. Toward the Development of Global Sustainability and the Challenges of Nations
3. Materials and Method
3.1. Research Subjects
- n = sample size (384 interviewees);
- N = size of the universe (7152 locals);
- p = proportion found (50%);
- Z = confidence level (95%);
- E = margin of error (5%).
3.2. Study Delineation
3.3. Procedures
3.4. Data Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, W.; Sonne, C.; Lam, S.S.; Ok, Y.S.; Alstrup, A.K.O. The ongoing cutdown of the Amazon rainforest threatens the climate and requires global tree planting projects: A short review. Environ. Res. 2019, 181, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Coe, M.T.; Costa, M.H.; Soares-Filho, B.S. The influence of historical and potential future deforestation on the stream flow of the Amazon River—Land surface processes and atmospheric feedbacks. J. Hydrol. 2009, 369, 165–174. [Google Scholar] [CrossRef]
- Homma, A.K.O. (Ed.) Propostas agrícolas para a Amazônia. In Sinergias de Mudança da Agricultura Amazônica; Conflitos e oportunidades: Brasilia, Brazil, 2022; pp. 445–464. [Google Scholar]
- Greenleaf, M. The value of the untenured forest: Land rights, green labor, and forest carbon in the Brazilian Amazon. J. Peasant. Stud. 2019, 47, 286–305. [Google Scholar] [CrossRef]
- Singh, S.R. Biodiversity-meaning, different levels, importance, and its conservation. In Environment Conservation, Challenges Threats in Conservation of Biodiversity; Barwant, M.M., Manan, V.K., Eds.; Science Publications: Dubai, United Arab Emirates, 2022; pp. 105–112. [Google Scholar]
- Jige, S.B. Biodiversity: A future real wealth of nation. In Environment Conservation, Challenges Threats in Conservation of Biodiversity; Barwant, M.M., Manam, V.K., Eds.; BMR Group: Boucherville, QC, Canada, 2022; pp. 90–95. [Google Scholar]
- Hopkins, M.J.G. Modelling the known and unknown plant biodiversity of the Amazon Basin. J. Biogeogr. 2007, 34, 1400–1411. [Google Scholar] [CrossRef]
- Dale, V.H.; Pearson, S.M.; Offerman, H.L.; O’Neill, R.V. Relating patterns of land-use change to faunal biodiversity in the Central Amazon. Conserv. Biol. 1994, 8, 1027–1036. [Google Scholar] [CrossRef]
- Groth, A. Landscapes of Inequity: Environmental justice in the Andes-Amazon Region. J. Lat. Am. Geogr. 2022, 21, 198–201. [Google Scholar] [CrossRef]
- Kumar, D.; Purohit, G.N. Cesarean section in cattle: A review. Agric. Rev. 2022, 43, 154–161. [Google Scholar] [CrossRef]
- Roldan, C.M. Climate Change and Biodiversity Governance in the Amazon: At the edge of ecological collapse? Environ. Politics 2022, 31, 1309–1311. [Google Scholar] [CrossRef]
- Fearnside, P.M. A sustentabilidade da agricultura na Amazônia: Meus pensamentos. In Sinergias de Mudança da Agricultura Amazônica; Homma, A.K.O., Ed.; Conflitos e Oportunidades, Embrapa: Brasilia, Brazil, 2022; pp. 46–66. [Google Scholar]
- Sierra, J.P.; Junquas, C.; Espinoza, J.C.; Segura, H.; Condom, T.; Andrade, M.; Sicart, J.E. Deforestation impacts on Amazon-Andes hydroclimatic connectivity. Clim. Dyn. 2022, 58, 2609–2636. [Google Scholar] [CrossRef]
- Rorato, A.C.; Escada, M.I.S.; Camara, G.; Picoli, M.C.; Verstegen, J.A. Environmental vulnerability assessment of Brazilian Amazon Indigenous Lands. Environ. Sci. Policy 2022, 129, 19–36. [Google Scholar] [CrossRef]
- Siqueira-Gay, J.; Metzger, J.P.; Sánchez, L.E.; Sonter, L.J. Strategic planning to mitigate mining impacts on protected areas in the Brazilian Amazon. Nat. Sustain. 2022, 5, 853–860. [Google Scholar] [CrossRef]
- Burity, J. Conservative wave, religion and the secular state in post-impeachment Brazil. Int. J. Lat. Am. Relig. 2020, 4, 83–107. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Aravena, C.; Castillo, N.; Ehrlich, M.; Taou, N.; Wagner, T. Agroforestry Programs in the Colombian Amazon: Selection, Treatment and Exposure Effects on Deforestation (No. 537); National Institute of Economic and Social Research: London, UK, 2022. [Google Scholar]
- Martin, P.; Silva, S.T.; Santos, M.D.; Dutra, C. Governance and metagovernance systems for the Amazon. Rev. Eur. Comp. Int. Environ. Law 2022, 31, 126–139. [Google Scholar] [CrossRef]
- Pallais-Downing, D. International literacy development in the Peruvian Amazon: Three problematic assumptions. In Global Meaning Making (Advances in Research on Teaching); Assaf, L.C., Sowa, P., Zammit, K., Eds.; Emerald Publishing Limited: Bingley, UK, 2022; Volume 39, pp. 9–23. [Google Scholar] [CrossRef]
- Maglia, C. Global networks in national governance? Changes of professional expertise in Amazon environmental governance. Glob. Netw. 2022, 24, 792–815. [Google Scholar] [CrossRef]
- Brogi, R.; Grignolio, D.; Brivio, F.; Apollonio, M. Protected areas as refuges for pest species? The case of wild boar. Glob. Ecol. Conserv. 2020, 22, e00969. [Google Scholar] [CrossRef]
- Gutiérrez-Arellano, C.; Mulligan, M. Small-sized protected areas contribute more per unit area to tropical crop pollination than large protected areas. Ecosyst. Serv. 2020, 44, 101137. [Google Scholar] [CrossRef]
- Rice, W.L.; Newmana, P.; Miller, Z.D.; Taff, B.D. Protected areas and noise abatement: A spatial approach. Landsc. Urban Plan. 2020, 194, 103701. [Google Scholar] [CrossRef]
- Jones, N.; Graziano, M.; Dimitrakopoulos, P.G. Social impacts of European Protected Areas and policy recommendations. Environ. Sci. Policy 2020, 112, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Mackinnon, K.; Richardson, K.; Mackinno, J. Protected and other conserved areas: Ensuring the future of forest biodiversity in a changing climate. Int. For. Rev. 2020, 22, 93–103. [Google Scholar] [CrossRef]
- Saura, S.; Bastin, L.; Battistella, L.; Mandrici, A.; Dubois, G. Protected areas in the world’s ecoregions: How well connected are they? Ecol. Indic. 2017, 76, 144–158. [Google Scholar] [CrossRef]
- Steege, H.; Pitman, N.C.A.; Killeen, T.J.; Laurance, W.F.; Peres, C.A.; Guevara, J.E.; Gamarra, L.V. Estimating the global conservation status of more than 15,000 Amazonian tree species. Sci. Adv. 2015, 1, e1500936. [Google Scholar] [CrossRef]
- Geldmann, J.; Manica, A.; Burgess, N.D.; Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. USA 2019, 116, 23209–23215. [Google Scholar] [CrossRef]
- Strand, J.; Soares-Filho, B.; Costa, M.H.; Oliveira, U.; Sonia Carvalho Ribeiro, S.C.; Pires, G.F.; Oliveira, A.; Rajão, R.; May, P.; Hoff, R.; et al. Spatially explicit valuation of the Brazilian Amazon Forest’s Ecosystem Services. Nat. Sustain. 2018, 1, 657–664. [Google Scholar] [CrossRef]
- Walker, W.S.; Gorelik, S.R.; Baccini, A.; Schwartzman, S. The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proc. Natl. Acad. Sci. USA 2020, 117, 3015–3025. [Google Scholar] [CrossRef]
- Oliveira, U.; Soares-Filho, B.; Bustamante, M.; Gomes, L.; Ometto, R. Determinants of fire impact in the Brazilian biomes. Front. For. Glob. Chang. 2022, 5, 735017. [Google Scholar] [CrossRef]
- Herrera, D.; Pfaff, A.; Robalino, J. Impacts of protected areas vary with the level of government: Comparing avoided deforestation across agencies in the Brazilian Amazon. Proc. Natl. Acad. Sci. USA 2019, 116, 14916–14925. [Google Scholar] [CrossRef]
- Souza, D.G.; Vilela, B.; Phalan, B.; Dobrovolski, R. The role of protected areas in maintaining natural vegetation in Brazil. Sci. Adv. 2021, 7, eabh2932. [Google Scholar] [CrossRef]
- Leite-Filho, A.T.; Soares-Filho, B.S.; Davis, J.L.; Abrahão, G.M.; Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 2021, 12, 2591. [Google Scholar] [CrossRef]
- Ribeiro, S.M.C.; Soares Filho, B.S.; Costa, W.L.; Bachi, L.; Oliveira, A.R.; Bilotta, P.; Saadi, A.; Lopes, E.; O’Riordan, T.; Pennacchio, H.L.; et al. Can multifunctional livelihoods, including recreational ecosystem services (RES) and non-timber forest products (NTFP) maintain biodiverse forests in the Brazilian Amazon? Ecosyst. Serv. 2018, 21, 517–526. [Google Scholar] [CrossRef]
- Fuller, C.; Ondei, S.; Brook, B.; Buettel, J. Protected-area planning in the Brazilian Amazon should prioritize additionality and permanence, not leakage mitigation. University of Tasmania. J. Contrib. 2020, 248, 108673. [Google Scholar]
- Dudley, N.; Ali, N.; Kettunen, M.; MacKinnon, K. Editorial essay: Protected areas and the sustainable development goals. Parks 2017, 23, 9–12. [Google Scholar] [CrossRef]
- Woodhouse, E.; Bedelian, C.; Dawson, N.; Barnes, P. Social impacts of protected areas: Exploring evidence of trade-offs and synergies. In Ecosystem Services and Poverty Reduction: Trade-Offs and Governance; Schreckenberg, K., Mace, G., Poudyal, M., Eds.; Routledge: London, UK, 2018. [Google Scholar]
- Kim, J.; Shin, W.; Kim, W.; Choe, H.; Tanaka, T.; Song, Y. Use of ecosystem services and land ownership to prioritize conservation areas on Jeju Island, Republic of Korea. Ecosyst. Serv. 2024, 66, 101605. [Google Scholar] [CrossRef]
- Awoyemi, A.G.; Ibánez-Rueda, N.; Guardiola, J.; Ibánez-Alamo, J.D. Human-nature interactions in the Afrotropics: Experiential and cognitive connections among urban residents in southern Nigeria. Ecol. Econ. 2018, 218, 108105. [Google Scholar] [CrossRef]
- Fernandes, S.; Athayde, S.; Harrisona, I.; Perry, D. Connectivity and policy confluences: A multi-scalar conservation approach for protecting Amazon riverine ecosystems. Perspect. Ecol. Conserv. 2024, 30. [Google Scholar] [CrossRef]
- Bontempi, A.; Venturi, P.; Bene, D.D.; Scheidel, A.; Aubanell, Q.Z.; Zaragoza, R.M. Conflict and conservation: On the role of protected areas for environmental justice. Glob. Environ. Chang. 2023, 82, 102740. [Google Scholar] [CrossRef]
- Caballero, C.B.; Biggs, T.W.; Vergopolan, N.; West, T.; Ruhoff, A. Transformation of Brazil’s biomes: The dynamics and fate of agriculture and pasture expansion into native vegetation. Sci. Total Environ. 2023, 896, 166323. [Google Scholar] [CrossRef] [PubMed]
- Chiaka, J.C.; Liu, G.; Li, H.; Zhang, W.; Wu, M.; Huo, Z.; Gonella, F. Land cover changes and management effectiveness of protected areas in tropical coastal area of sub-Saharan Africa. Environ. Sustain. Indic. 2024, 22, 100340. [Google Scholar] [CrossRef]
- West, T.A.P.; Caviglia-Harris, J.L.; Martins, F.S.R.V.; Silva, D.E.; Borner, J. Potential conservation gains from improved protected area management in the Brazilian Amazon. Biol. Conserv. 2022, 269, 109526. [Google Scholar] [CrossRef]
- Presidência da República. Lei no. 9.985, de 18 de julho de 2000. Regulamenta o art. 225, § 1o, incisos I, II, III e VII da Constituição Federal, institui o Sistema Nacional de Unidades de Conservação da Natureza e dá outras providências. Brasilia, Governo Federal; 2000. Available online: https://www.planalto.gov.br/ccivil_03/Leis/L9985.htm (accessed on 22 March 2024).
- ICMBio (Instituto Chico Mendes de Conservação da Biodiversidade). Dados Estatísticos de Unidades de Conservação Federal; Brasília, Governo Federal; 2024. Available online: https://www.gov.br/icmbio/pt-br/assuntos/criacao-de-unidades-de-conservacao/legislacao (accessed on 22 March 2024).
- Silva, R.O.; Albuquerque, A.A.; Almeida, R.H.C.; Pereira, J.L.G. Estudos socioambientais para criação de unidades de conservação de uso sustentável: O caso das RESEXs marinhas no Estado do Pará. Rev. Campo Da História 2022, 7, 115–126. [Google Scholar] [CrossRef]
- Brondizio, E. The global açaí: A chronicle of possibilities and predicaments of an Amazonian superfood. In Critical Approaches to Superfoods; Wilk, E., McDonell, R., Eds.; Bloomsbury Academic: London, UK; New York, NY, USA; Oxford, UK; New Delhi, India; Sydney, Australia, 2020. [Google Scholar]
- Almeida, M.W.; Allegretti, M.H.; Postigo, A. O Legado de Chico Mendes: Êxitos e entraves das reservas extrativistas. Desenvolv. E Meio Ambiente 2018, 48, 25–49. [Google Scholar]
- Lopes, R.V.P.; Tejerina-Garro, F.L.; Leite, C.; Nascimento, M.H.R.M.; Nascimento, A.S. Assessing the degree of sustainability in extractive reserves in the Amazon biome using the fuzzy logic tool for decision making. Sustainability 2024, 16, 3279. [Google Scholar] [CrossRef]
- Freitas, L.C.; Santos, R.W.S.; Reis, F.R.; Haminiuk, C.W.I.; Corazza, M.L.C.; Masson, M.L. Green extraction technologies: A path to the Amazon bioeconomy development. Trends Food Sci. Technol. 2024, 147, 104462. [Google Scholar] [CrossRef]
- Ribeiro, S.C.; Soares Filho, B.; Cesalpino, T.; Araújo, A.; Teixeira, J.; Figueiras, D.; Nunes, F.; Rajao, R. Bioeconomic markets based on the use of native species (NS) in Brazil. Ecol. Econ. 2024, 218, 108124. [Google Scholar] [CrossRef]
- Freitas, J.S.; Homma, A.K.O.; Milton Filho, C.F.; Mathis, A.; Ferreira, J.F.C.; Mariani, M.A.; Santos, K.M. Necessity of productive association with technological innovations for sustainability of extractive reserves in the Amazon. J. Manag. Sustain. 2022, 12, 83–95. [Google Scholar] [CrossRef]
- Cavalcante Filho, P.G.; Maciel, R.C.G.; Oliveira, O.F.; Araujo, W.S. Pobreza, segurança alimentar e autoconsumo na Reserva Extrativista (RESEX) Chico Mendes. Rev. Bras. De Gestão E Desenvolv. Reg. 2020, 16, 186–200. [Google Scholar]
- Maciel, R.C.G.; Oliveira, O.F.; Cavalcante Filho, P.G.; Ribeiro, L.N.; Silva, G.S.A.L.; Santos, W.S.; Silva, I.H.B. Distribution of income and poverty in the Chico Mendes Extrative Reserve (RESEX). J. Agric. Stud. 2019, 7, 138–159. [Google Scholar] [CrossRef]
- Milien, E.J.; Rocha, K.S.; Brown, I.F.; Perz, S.G. Roads, deforestation and the mitigating effect of the Chico Mendes Extractive Reserve in the southwestern Amazon. Trees For. People 2021, 3, 100056. [Google Scholar] [CrossRef]
- Freitas, J.S.; Mathis, A.; Caldas, M.M.; Homma, A.K.O.; Farias Filho, M.C.; Rivas, A.A.F.; Santos, K.M. Socio-environmental success or failure of extractive reserves in the Amazon? Res. Soc. Dev. 2021, 10, 5. [Google Scholar] [CrossRef]
- Kelly, A.B. Conservation practice as primitive accumulation. J. Peasant. Stud. 2011, 38, 683–701. [Google Scholar] [CrossRef]
- Moraes, L.A.F.; Floreano, I.X. LULC zoning in the “Madeira river” settlement, legal Amazon, Brazil, before and after implementation of the rural environmental registry (CAR) (2008–2018). Environ. Dev. 2022, 43, 100725. [Google Scholar] [CrossRef]
- Chagnon, C.W.; Durante, F.; Gills, B.K.; Hagolani-Albov, S.E.; Hokkanen, S.; Kangasluoma, S.M.; Konttinen, H.; Kröger, M.; LaFleur, W.; Ollinaho, O.; et al. From extractivism to global extractivism: The evolution of an organizing concept. J. Peasant. Stud. 2022, 49, 760–792. [Google Scholar] [CrossRef]
- Borges, D.M.L.; Araújo, V.M.; Ribeiro, E.M.; Cruz, M.S.; Santos, L.R. A comercialização de produtos do agroextrativismo em feiras livres do Alto Jequitinhonha. Campo-Territ. 2020, 325–356. [Google Scholar] [CrossRef]
- Bispo, T.W.; Diniz, J.D. Agroextrativismo no Vale do rio Urucuia- MG: Uma análise sobre pluriatividade e multifuncionalidade no Cerrado. Sustentabilidade Em Debate 2014, 5, 37–55. [Google Scholar] [CrossRef]
- Melo, S.W.C. Extrativismo Vegetal Como Estratégia de Desenvolvimento Rural no Cerrado; Dissertação de Mestrado em Agronegócios, Universidade de Brasília: Brasília, Brazil, 2013. [Google Scholar]
- Clarke, R.; Timberlake, L. Stockholm Plus Ten: Promises, Promises? The Decade Since the 1972 un Environment Conference; International Institute for Environment and Development (IIED): London, UK, 1982. [Google Scholar]
- Martins, L.A.P.; Brando, F.R. O meio ambiente em discussão: As conferências de Estolcomo e Rio 1992. Cad. De História Da Ciência 2023, 17, 1–23. [Google Scholar] [CrossRef]
- Osborn, D.; Bigg, T. Earth Summit II: Outcomes and Analysis; Earthscan: London, UK, 1998. [Google Scholar]
- Lipschutz, R.D. Crossing borders: Global civil society and the reconfiguration of transnational political space. GeoJournal 2000, 52, 17–23. [Google Scholar] [CrossRef]
- Carr, D.L.; Norman, E.S. Global civil society? The Johannesburg world summit on sustainable development. Geoforum 2008, 39, 358–371. [Google Scholar] [CrossRef]
- Tukker, A. Knowledge collaboration and learning by aligning global sustainability programs: Reflections in the context of Rio+20. J. Clean. Prod. 2013, 48, 272–279. [Google Scholar] [CrossRef]
- Haines, A.; Alleyne, G.; Kickbusch, I.; Dora, C. From the earth summit to Rio+20: Integration of health and sustainable development. Review 2012, 379, 9. [Google Scholar] [CrossRef] [PubMed]
- Baste, I.A.; Watson, R.T. Tackling the climate, biodiversity and pollution emergencies by making peace with nature 50 years after the Stockholm Conference. Glob. Environ. Chang. 2022, 73, 102466. [Google Scholar] [CrossRef]
- Sorooshian, S. The Sustainable Development Goals of the United Nations: A Comparative Midterm Research Review. J. Pre-Proof 2024, 142272. [Google Scholar] [CrossRef]
- Yumnam, G.; Gyanendra, Y.; Singh, C.I. A systematic bibliometric review of the global research dynamics of United Nations Sustainable Development Goals 2030. Sustain. Futures 2024, 7, 100192. [Google Scholar] [CrossRef]
- Yu, K.; Song, Y.; Lin, J.; Qu, S. Evaluating complementaries among urban water, energy, infrastructure, and social Sustainable Development Goals in China. J. Environ. Sci. 2025, 149, 585–597. [Google Scholar] [CrossRef]
- Shahmoradi, S.; Abtahi, S.M.; Guimarães, P. Pedestrian street and its effect on economic sustainability of a historical middle eastern city: The case of Chaharbagh Abbasi in Isfahan, Iran. Geogr. Sustain. 2023, 4, 188–199. [Google Scholar] [CrossRef]
- Zhang, M.; Abbasi, K.R.; Inuwa, N.; Sinisi, C.I. Does economic policy uncertainty, energy transition and ecological innovation affect environmental degradation in the United States? Ecological innovation affect environmental degradation. Econ. Res. Istraživanja 2023, 36, 1–28. [Google Scholar] [CrossRef]
- Grin, E.J.; Pantoja, I. Agenda 2030 and the challenges of the sustainable urban development goals in Brazil: The case of Jundiaí. In Urban Policy in the Framework of the 2030 Agenda; García, M.A.H., Miranda, A.R., Ugalde, V., Rodríguez, R.M., Eds.; The Urban Book Series: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Ellis, H.; Henderson, K. The climate change challenge. Rebuilding Br. 2017, 55–64. [Google Scholar] [CrossRef]
- Vaughan, A. COP26: China’s Climate Plan Promises to Peak CO2 Emissions before 2030. New Sci. 2021. Available online: https://www.newscientist.com/article/2295350-chinas-new-climate-plan-promises-to-peak-co2-emissions-before-2030/ (accessed on 5 January 2024).
- Abbasi, K.R.; Zhang, O.; Ozturk, I.; Alvarado, R.; Musa, M. Energy transition, fossil fuels, and green innovations: Paving the way to achieving sustainable development goals in the United States. Gondwana Res. 2024, 130, 326–341. [Google Scholar] [CrossRef]
- Eurostat. Sustainable Development in the European Union. Monitoring Report on Progress towards the SDGs in an EU Context, 2023rd ed.; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Kluza, K.; Ziolo, M.; Postula, M. Climate policy development and implementation from the Sustainable Development Goals perspective. Evidence from the European Union countries. Energy Strategy Rev. 2024, 52, 101321. [Google Scholar] [CrossRef]
- Nakhle, P.; Stamos, I.; Proietti, P.; Siragusa, A. Environmental monitoring in European regions using the sustainable development goals (SDG) framework. Environ. Sustain. Indic. 2024, 21, 100332. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, F.; Li, R. Does geopolitical risk impact sustainable development? A perspective on linkage between geopolitical risk and sustainable development research. J. Clean. Prod. 2024, 421, 141980. [Google Scholar] [CrossRef]
- Chishti, M.Z.; Khalid, A.A.; Sana, M. Conflict vs. sustainability of global energy, agricultural and metal markets: A lesson from Ukraine-Russia war. Resour. Policy 2023, 84, 103775. [Google Scholar] [CrossRef]
- Shen, L.; Hong, Y. Can geopolitical risks excite Germany economic policy uncertainty: Rethinking in the context of the Russia-Ukraine conflict. Finance Res. Lett. 2023, 51, 103420. [Google Scholar] [CrossRef]
- Pereira, P.; Zhao, W.; Symochko, L.; Inacio, M.; Bogunovic, I.; Barcelo, D. The Russian-Ukrainian armed conflict will push back the sustainable development goals. Geogr. Sustain. 2022, 3, 277–287. [Google Scholar] [CrossRef]
- Wakili, K.G. The world energy crisis—Part 2: Some more vacuum-based solutions. Vacuum 2008, 82, 679. [Google Scholar] [CrossRef]
- Pollitt, M.G.; Fehr, N.M.; Willems, B.; Banet, C.; Coq, C.L.; Chyong, C.K. Recommendations for a future-proof electricity market design in Europe in light of the 2021-23 energy crisis. Energy Policy 2024, 188, 114051. [Google Scholar] [CrossRef]
- Wei, X.; Shi, X.; Li, Y.; Hongling Ma, H.; Ban, S.; Liu, X.; Liu, H.; Yang, C. Analysis of the European energy crisis and its implications for the development of strategic energy storage in China. J. Energy Storage 2024, 82, 110522. [Google Scholar] [CrossRef]
- Kartal, M.T.; Pata, U.K.; Erdogan, S.; Destek, M.A. Facing the challenge of alternative energy sources: The scenario of European Union countries based on economic and environmental analysis. Gondwana Res. 2024, 128, 127–140. [Google Scholar] [CrossRef]
- Maris, G.; Psychalis, M. Energy and environmental challenges in the European Union and green bonds. Soc. Sci. 2014, 13, 50. [Google Scholar] [CrossRef]
- Webb, E.L.; Lalogafu’afu’a, A.I.; Mekuli, O.; Olo, E.; Phelps, J.; Taisegi, L.; Taua, N.; Tualaulelei, A.; Vaito’, J.; Jamaludin, J.; et al. Last stand: Application of a criteria-based framework to inform conservation of a critically threatened tropical lowland forest fragment. Glob. Ecol. Conserv. 2024, 51, 02871. [Google Scholar] [CrossRef]
- IBGE (Instituto Brasileiro de Geografia e Estatística). Censo Demográfico; 2010. Available online: https://senso2010.ibge.gov.br (accessed on 20 January 2024).
- Volpato, G.L. O método lógico para redação científica. Reciis 2015, 9, 1–14. [Google Scholar] [CrossRef]
- Elster, J. Peças e Engrenagens das Ciências Sociais; Relume Dumara: Rio de Janeiro, Brazil, 1994. [Google Scholar]
- Godoy, A.S. Refletindo sobre critérios de qualidade da pesquisa qualitativa. Rev. Eletrônica De Gestão Organ. 2005, 3, 81–89. [Google Scholar]
- Nair, R.; Hunter, R.; Garjani, A.; Middleton, R.M.; Tuite-Dalton, K.A.; Nicholas, R.S.; Evangelou, N. Challenges of developing, conducting, analysing and reporting a COVID-19 study as the COVID-19 pandemic unfolds: An online co-autoethnographic study. BMJ Open 2021, 11, 048788. [Google Scholar] [CrossRef]
- Shareck, M.; Alexander, S.; Glenn, N.M. In-situ at a distance? challenges and opportunities for health and place research methods in a post-COVID-19 world. Health Place 2021, 69, 102572. [Google Scholar] [CrossRef] [PubMed]
- Artioli, G.; Sarli, L. The qualitative method for a humanisation of research. Acta Biomed. Atenei Parm. 2021, 92, e2021041. [Google Scholar] [CrossRef]
- Volpato, G.L.; Barreto, L.E. Estatística sem dor; Best Writing: Botucatu, Brazil, 2011. [Google Scholar]
- Knechtel, M.R. Metodologia da Pesquisa em Educação: Uma Abordagem Teórico-Prática Dialogada; Inter Saberes: Curitiba, India, 2014. [Google Scholar]
- Homma, A.K.O. Sinergias de mudança da agricultura amazônica; Homma, A.K.O., Brasília, D.F., Eds.; Conflitos e oportunidades: Embrapa, India, 2022. [Google Scholar]
- Fearnside, P.M. Amazon environmental services: Why Brazil’s highway BR-319 is so damaging. Ambio 2022, 51, 1367–1370. [Google Scholar] [CrossRef]
- Santana, C.A.M.; Souza, G.S.; Homma, A.K.O.; Gomes, E.G.; Aragão, A.A. 40 anos de transformações na agricultura paraense: Implicações para as políticas públicas. In Sinergias de Mudança da Agricultura Amazônica; Conflitos e Oportunidades, Embrapa: Brasilia, Brazil, 2022; pp. 178–217. [Google Scholar]
- Dias-Filho, M.B.; Lopes, M.J.S. Histórico e desafios da pecuária bovina na Amazônia. In Sinergias de Mudança da Agricultura Amazônica; Homma, A.K.O., Ed.; Conflitos e oportunidades. Embrapa: Brasilia, Brazil, 2020; pp. 267–288. [Google Scholar]
- Chaves, S.F.S.; Alves, R.M.; Dias, A.S. Contribution of breeding to agriculture in the Brazilian Amazon. In Açaí palm and oil palm. Crop Breed. Appl. Biotechnol. 2021, 21, e386221S8. [Google Scholar] [CrossRef]
- Bergamo, D.; Zerbini, O.; Pinho, P.; Moutinho, P. The Amazon bioeconomy: Beyond the use of forest products. Ecol. Econ. 2022, 199, 107448. [Google Scholar] [CrossRef]
- Dantas, D.P.; Flickinger, D.L.; Costa, G.A.; Moraes-Valenti, P.M.; Valenti, W.C. Economic effects of production scale, use of agricultural greenhouses, and integration of tropical aquaculture species when farming in a subtropical climate. Aquac. Int. 2022, 30, 547–579. [Google Scholar] [CrossRef]
- Levin, B. Regenerative agriculture as biodiversity Islands. In Biodiversity Islands: Strategies for Conservation in Human-Dominated Environments. Topics in Biodiversity and Conservation; Montagnini, F., Ed.; Springer: Cham, Switzerland, 2022; p. 20. [Google Scholar] [CrossRef]
- Alexiades, B.; Alexiades, M. Forests, fields, and pastures: Unequal access to Brazil nuts and livelihood strategies in an extractive reserve, Brazilian Amazon. Land 2022, 11, 967. [Google Scholar] [CrossRef]
- Rath, S.; Sahoo, P.P.; Sarangi, K.K.; Kareemulla, K. Environmental implications of agricultural development in Odisha State. J. Financ. Econ. 2022, 3, 2–25. [Google Scholar]
- Oliveira, J.G.O.; Santana Júnior, M.L.; Maia, N.J.C.; Dubeux Junior, C.B.; Gameiro, A.H.; Kunrath, T.R.; Mendonça, G.G.; Simili, F.F. Nitrogen balance and efficiency as indicators for monitoring the proper use of fertilizers in agricultural and livestock systems. Sci. Rep. 2022, 12, 12021. [Google Scholar] [CrossRef] [PubMed]
- Ntuli, H.; Mukong, A.K.; Kimengsi, J.N. Institutions and environmental resource extraction within local communities in Mozambique. For. Policy Econ. 2022, 139, 5. [Google Scholar] [CrossRef]
- Roger, M. The geopolitics of food security and food sovereignty in Latin America: Harmonizing competing visions or reinforcing extractive agriculture? Geopolitics 2020, 1–23. [Google Scholar] [CrossRef]
- Petras, J.; Veltmeyer, H. Extractive Imperialism in the Americas; Capitalism’s New Frontier: Leiden, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Ribot, J. Cause and response: Vulnerability and climate in the Anthropocene. J. Peasant. Stud. 2014, 41, 667–705. [Google Scholar] [CrossRef]
- Ribeiro, R.M.; Amaral, S.; Monteiro, A.M.V.; Dal’Asta, A.P. Cities in the forest and cities of the forest: An environmental Kuznets curve (EKC) spatial approach to analyzing the urbanization-deforestation relationship in a Brazilian Amazon State. Ecol. Soc. 2022, 27, 1. [Google Scholar] [CrossRef]
- Heredia-R, M.; Torres, B.; Vasseur, L.; Puhl, L.; Barreto, D.; Díaz-Ambrona, C.G.H. Sustainability dimensions assessment in four traditional agricultural systems in the Amazon. Front. Sustain. Food Syst. 2022, 5, 782633. [Google Scholar] [CrossRef]
- Bussoni, A.; Juan, C.; Fernández, E.; Boscana, M.; Cubbage, F.; Bentancur, O. Integrated beef and wood production in Uruguay: Potential and limitations. Agrofor. Syst. 2015, 89, 1107–1118. [Google Scholar] [CrossRef]
- Nugroho, E.; Ihle, R.; Heijman, W.; Oosting, S.J. The contribution of forest extraction to income diversification and poverty alleviation for Indonesian smallholder cattle breeders. Small-Scale For. 2022, 21, 417–435. [Google Scholar] [CrossRef]
- Nimwegen, P.; Lloyd, D.J.; Vanclay, J.K. Prospects for Integrated Timber–Forage–Livestock Agroforestry Systems for Economic Diversification in West Timor Farming Communities; Australian Centre for International Agricultural Research: Canberra, Australia, 2009. [Google Scholar]
- López, S. Deforestation, forest degradation, and land use dynamics in the Northeastern Ecuadorian Amazon. Appl. Geogr. 2022, 145, 102749. [Google Scholar] [CrossRef]
- Domingues, S.C.O.; Silva, I.O.C.; Santos, J.S.; Yamashita, O.M.; Carvalho, M.A.C. Dinâmica do arco do desmatamento: Fronteiras agrícolas. Sci. Electron. Arch. 2020, 13, 104–110. [Google Scholar] [CrossRef]
- Silveira, J.G.D.; Oliveira Neto, S.N.D.; Canto, A.C.B.D.; Leite, F.G.D.; Cordeiro, F.R.; Assad, L.T.; Silva, G.C.C.; Marques, R.D.O.; Dalarme, M.S.L.; Ferreira, I.G.M. Land use, land cover change and sustainable intensification of agriculture and livestock in the amazon and the Atlantic Forest in Brazil. Sustainability 2022, 14, 2563. [Google Scholar] [CrossRef]
- Ferreira, R.P.; Lopes, P.F.M.; Campos-Silva, J.V.; Silvano, R.A.M.; Begossi, A. The upper Juruá Extractive Reserve in the Brazilian amazon: Past and present. Braz. J. Biol. 2022, 82, 239188. [Google Scholar] [CrossRef]
- Benzeev, R.; Wilson, B.; Butler, M.; Massoca, P.; Paudel, K.; Redmore, L. What’s governance got to do with it? Examining the relationship between governance and deforestation in the Brazilian Amazon. PLoS ONE 2022, 17, e0269729. [Google Scholar] [CrossRef] [PubMed]
RESEX/Year Creation | Total Area and Inhabitants | Period | Deforestation (ha) | % |
---|---|---|---|---|
Alto Juruá (Acre) 1990 | Until 1997 | 6539 | 1.21 | |
2000–2005 | 4969 | 0.92 | ||
537,946 (ha) | 2006–2010 | 3047 | 0.57 | |
2011–2015 | 1926 | 0.36 | ||
4170 (population) | 2016–2021 | 3806 | 0.70 | |
20,287 | 3.76 | |||
Rio Ouro Preto (Rondônia) 1990 | Until 1997 | 7730 | 3.78 | |
2000–2005 | 8966 | 4.38 | ||
204,631 (ha) | 2006–2010 | 1695 | 0.83 | |
2011–2015 | 1231 | 0.60 | ||
699 (population) | 2016–2021 | 1236 | 0.61 | |
20,858 | 10.20 | |||
Rio Cajari (Amapá) 1990 | Until 1997 | 7720 | 1.45 | |
2000–2005 | 1454 | 0.27 | ||
532,397 (ha) | 2006–2010 | 1940 | 0.36 | |
2011–2015 | 776 | 0.14 | ||
2293 (population) | 2016–2021 | 966 | 0.18 | |
12,856 | 2.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, J.d.S.; Mathis, A.; Farias Filho, M.C.; Homma, A.K.O.; Gois, G.d.; Ferreira, J.F.C.; Rivas, A.A.F.; Costa, J.M.d.; Silva, D.C.C.; Silva, J.A.C.d.; et al. The Key to the Sustainability and Conservation of Extractive Reserves in the Amazon. Sustainability 2024, 16, 4685. https://doi.org/10.3390/su16114685
Freitas JdS, Mathis A, Farias Filho MC, Homma AKO, Gois Gd, Ferreira JFC, Rivas AAF, Costa JMd, Silva DCC, Silva JACd, et al. The Key to the Sustainability and Conservation of Extractive Reserves in the Amazon. Sustainability. 2024; 16(11):4685. https://doi.org/10.3390/su16114685
Chicago/Turabian StyleFreitas, Josimar da Silva, Armin Mathis, Milton Cordeiro Farias Filho, Alfredo Kingo Oyama Homma, Givanildo de Gois, José Francisco Carvalho Ferreira, Alexandre Almir Ferreira Rivas, Jodival Mauricio da Costa, David Costa Correia Silva, José Alessandro Cândido da Silva, and et al. 2024. "The Key to the Sustainability and Conservation of Extractive Reserves in the Amazon" Sustainability 16, no. 11: 4685. https://doi.org/10.3390/su16114685
APA StyleFreitas, J. d. S., Mathis, A., Farias Filho, M. C., Homma, A. K. O., Gois, G. d., Ferreira, J. F. C., Rivas, A. A. F., Costa, J. M. d., Silva, D. C. C., Silva, J. A. C. d., Maia, R. d. R. P., Souza, J. V. F. d., Santos, K. M. d., Florentino, G. D., & Bastos, A. B. (2024). The Key to the Sustainability and Conservation of Extractive Reserves in the Amazon. Sustainability, 16(11), 4685. https://doi.org/10.3390/su16114685