“Harmonization” or “Fragmentation”: The Impact of Low-Carbon Policy Synergy on Inclusive Low-Carbon Development
Abstract
:1. Introduction
2. Literature Review and Theoretical Analysis
2.1. LCP Synergy, LCP Subject Synergy, and LCP Tools Synergy
2.2. Inclusive Low-Carbon Development
2.3. LCP Synergy and ILCD
3. Methodology and Data
3.1. Data Source and Sample Selection
3.2. Variable Definition
3.2.1. Dependent Variable
3.2.2. Independent Variable
3.2.3. Moderating Variables
3.2.4. Control Variables
3.3. Model Construction
4. Empirical Results and Analysis
4.1. Baseline Regression
4.2. Robustness Test
4.3. Heterogeneity Study
5. Conclusions
- In general, LCP subject synergy, LCP tool synergy, and LCP overall synergy all effectively promote regional ILCD.
- Both LCP subject synergy and LCP tools synergy are indispensable. Policy synergy positively affects ILCD only when both policy subjects and policy instruments are highly synergistic, while ILCD is significantly weakened when both policy subjects and policy instruments are not synergistic.
- Regional innovation capacity plays a positive moderating role between ICP synergy and ILCD: the stronger the innovation capacity of provinces, the stronger the contribution of LCP synergy to ILCD.
- In non-resource-based regions, the effect of LCP subject synergy on regional ILCD is more significant, and the effect of LCP tools synergy is not significant, while the opposite is the case in resource-based regions.
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, B.; Li, Z. Towards world’s low carbon development: The role of clean energy. Appl. Energy 2022, 307, 118160. [Google Scholar] [CrossRef]
- Grainger, A.; Smith, G. The role of low carbon and high carbon materials in carbon neutrality science and carbon economics. Curr. Opin. Environ. Sustain. 2021, 49, 164–189. [Google Scholar] [CrossRef]
- Liu, C.; Xin, L.; Li, J. Environmental regulation and manufacturing carbon emissions in China: A new perspective on local government competition. Environ. Sci. Pollut. Res. 2022, 29, 36351–36375. [Google Scholar] [CrossRef] [PubMed]
- Bianco, V.; Proskuryakova, L.; Starodubtseva, A. Energy inequality in the eurasian economic union. Renew. Sustain. Energy Rev. 2021, 146, 111155. [Google Scholar] [CrossRef]
- Wu, X.; Xu, Y.; Lou, Y.; Chen, Y. Low carbon transition in a distributed energy system regulated by localized energy markets. Energy Policy 2018, 122, 474–485. [Google Scholar] [CrossRef]
- He, L.; Wang, B.; Xu, W.; Cui, Q.; Chen, H. Could China’s longterm low-carbon energy transformation achieve the double dividend effect for the economy and environment? Environ. Sci. Pollut. Res. 2022, 29, 20128–20144. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Ding, D.; Fang, X.; Zhang, H.; Li, J. How do fossil energy prices affect the stock prices of new energy companies? Evidence from Divisia energy price index in China’s market. Energy 2019, 169, 637–645. [Google Scholar] [CrossRef]
- Pan, D.; Hong, W. Benefits and costs of campaign-style environmental implementation: Evidence from China’s central environmental protection inspection system. Environ. Sci. Pollut. Res. 2022, 29, 45230–45247. [Google Scholar] [CrossRef]
- Shi, X.; Xu, Y.; Sun, W. Evaluating China’s pilot carbon Emission Trading Scheme: Collaborative reduction of carbon and air pollutants. Environ. Sci. Pollut. Res. 2022, 30, 11357–11358. [Google Scholar] [CrossRef]
- Wang, N.; Chang, Y.C. The evolution of low-carbon development strategies in China. Energy 2014, 68, 61–70. [Google Scholar] [CrossRef]
- Tie, M.; Zhu, M. Interpreting low-carbon transition at the subnational level: Evidence from China using a Natural Language Processing approach. Resour. Conserv. Recycl. 2022, 187, 106636. [Google Scholar] [CrossRef]
- Wang, H.; Gu, K.; Dong, F.; Sun, H. Does the low-carbon city pilot policy achieve the synergistic effect of pollution and carbon reduction? Energy Environ. 2022, 11, 27018–27029. [Google Scholar] [CrossRef]
- Lu, W.; Wu, H.; Yang, S.; Tu, Y.P. Effect of environmental regulation policy synergy on carbon emissions in China under consideration of the mediating role of industrial structure. J. Environ. Manag. 2022, 322, 116053. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, L.P.; Zhu, L.M. Industry-University-Research Collaboration and Firm Innovation: Research on Enterprise Postdoctoral Workstation. J. Renmin Univ. China 2020, 2, 97–113. (In Chinese) [Google Scholar]
- Guha, J.; Chakrabarti, B. Making e-government work: Adopting the network approach. Gov. Inf. Q. 2014, 31, 327–336. [Google Scholar] [CrossRef]
- Geels, F.W.; Berkhout, F.; Van Vuuren, D.P. Bridging analytical approaches for low-carbon transitions. Nat. Clim. Change 2016, 6, 576–583. [Google Scholar] [CrossRef]
- Hughes, N.; Strachan, N. Methodological review of UK and international low carbon scenarios. Energy Policy 2010, 38, 6056–6065. [Google Scholar] [CrossRef]
- Lah, O. Decarbonizing the transportation sector: Policy options, synergies, and institutions to deliver on a low-carbon stabilization pathway. Wiley Interdiscip. Rev. Energy Environ. 2017, 6, e257. [Google Scholar] [CrossRef]
- Maggetti, M.; Trein, P. Multilevel governance and problem-solving: Towards a dynamic theory of multilevel policy-making? Public Adm. 2019, 97, 355–369. [Google Scholar] [CrossRef]
- Yu, S.; Liu, J.; Zhou, S. Synergy evaluation of China’s economy–energy low-carbon transition and its improvement strategy for structure optimization. Environ. Sci. Pollut. Res. 2022, 29, 65061–65076. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Bai, X. Experimenting towards a low-carbon city: Policy evolution and nested structure of innovation. J. Clean. Prod. 2018, 174, 201–212. [Google Scholar] [CrossRef]
- Fragkos, P.; Tasios, N.; Paroussos, L.; Capros, P.; Tsani, S. Energy system impacts and policy implications of the European Intended Nationally Determined Contribution and low-carbon pathway to 2050. Energy Policy 2017, 100, 216–226. [Google Scholar] [CrossRef]
- Jia, Z.; Lin, B. Rethinking the choice of carbon tax and carbon trading in China. Technol. Forecast. Soc. Change 2020, 159, 120187. [Google Scholar] [CrossRef]
- van den Bergh, J.C.J.M.; Castro, J.; Drews, S.; Exadaktylos, F.; Foramitti, J.; Klein, F.; Konc, T.; Savin, I. Designing an effective climate-policy mix: Accounting for instrument synergy. Clim. Policy 2021, 21, 745–764. [Google Scholar] [CrossRef]
- Hou, Y.; Brewer, G.A. Substitution and supplementation between co-functional policy instruments: Evidence from state budget stabilization practices. Public Adm. Rev. 2010, 70, 914–924. [Google Scholar] [CrossRef]
- Nibedita, B.; Irfan, M. The role of energy efficiency and energy diversity in reducing carbon emissions: Empirical evidence on the long-run trade-off or synergy in emerging economies. Environ. Sci. Pollut. Res. 2021, 28, 56938–56954. [Google Scholar] [CrossRef]
- Flanagan, K.; Uyarra, E.; Laranja, M. Reconceptualising the ‘policy mix’ for innovation. Res. Policy 2011, 40, 702–713. [Google Scholar] [CrossRef]
- Yue, X.; Zhao, S.; Ding, X.; Xin, L. How the Pilot Low-Carbon City Policy Promotes Urban Green Innovation: Based on Temporal-Spatial Dual Perspectives. Int. J. Environ. Res. Public Health 2022, 20, 561. [Google Scholar] [CrossRef] [PubMed]
- Guo, J. Impact of Environmental Regulation on Green Technological Innovation: Chinese Evidence of the Porter Effect. China Financ. Econ. Rev. 2019, 8, 96–115. [Google Scholar] [CrossRef]
- Cao, J.; Ho, M.S.; Ma, R.; Teng, F. When carbon emission trading meets a regulated industry: Evidence from the electricity sector of China. J. Public Econ. 2021, 200, 104470. [Google Scholar] [CrossRef]
- Su, Y.; Li, Z.; Yang, C. Spatial Interaction Spillover Effects between Digital Financial Technology and Urban Ecological Efficiency in China: An Empirical Study Based on Spatial Simultaneous Equations. Int. J. Environ. Res. Public Health 2021, 18, 8535. [Google Scholar] [CrossRef] [PubMed]
- Whitmarsh, L.; Seyfang, G.; O’Neill, S. Public engagement with carbon and climate change: To what extent is the public ‘carbon capable’? Glob. Environ. Change 2011, 21, 56–65. [Google Scholar] [CrossRef]
- Peterson, T.R.; Stephens, J.C.; Wilson, E.J. Public perception of and engagement with emerging low-carbon energy technologies: A literature review. MRS Energy Sustain. 2015, 2, E11. [Google Scholar] [CrossRef]
- Asian Development Bank. Strategy 2020: The Long-Term Strategic Framework of the Asian Development Bank (2008–2020); Asian Development Bank: Mandaluyong, Philippines, 2008. [Google Scholar]
- Ge, T.; Qiu, W.; Li, J.; Hao, X. The impact of environmental regulation efficiency loss on inclusive growth: Evidence from China. J. Environ. Manag. 2020, 268, 110700. [Google Scholar] [CrossRef]
- Ge, T.; Li, J. The effect of environmental regulation intensity deviation on China’s inclusive growth. Environ. Sci. Pollut. Res. 2020, 27, 34158–34171. [Google Scholar] [CrossRef]
- Chatterjee, S. Poverty Reduction Strategies—Lessons from the Asian and Pacific Region on Inclusive Development; Asian Development Bank: Mandaluyong, Philippines, 2005. [Google Scholar]
- Ali, I.; Zhuang, J. Inclusive Growth toward a Prosperous Asia: Policy Implications (No. 97); ERD working paper series; Asian Development Bank: Mandaluyong, Philippines, 2007. [Google Scholar]
- Aoyagi, C.; Ganelli, G. Asia’s quest for inclusive growth revisited. J. Asian Econ. 2015, 40, 29–46. [Google Scholar] [CrossRef]
- Adeleye, B.N.; Adedoyin, F.; Nathaniel, S. The criticality of ICT-trade nexus on economic and inclusive growth. Inf. Technol. Dev. 2021, 27, 293–313. [Google Scholar] [CrossRef]
- Jha, S.; Sandhu, S.C.; Wachirapunyanont, R. Inclusive Green Growth Index: A New Benchmark for Quality of Growth; Asian Development Bank: Mandaluyong, Philippines, 2018; Available online: http://hdl.handle.net/11540/8988 (accessed on 21 February 2023).
- Albagoury, S. Inclusive Green Growth in Africa: Ethiopia Case Study; University Library of Munich: Munich, Germany, 2016. [Google Scholar]
- Sun, Y.; Ding, W.; Yang, Z.; Yang, G.; Du, J. Measuring China’s regional inclusive green growth. Sci. Total Environ. 2020, 713, 136367. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.; Fan, Z.; Chen, H. and research on the level of inclusive green growth in Asia-Pacific region. Sustainability 2021, 13, 7482. [Google Scholar] [CrossRef]
- Cao, J. The dynamic coupling nexus among inclusive green growth: A case study in Anhui province, China. Environ. Sci. Pollut. Res. 2022, 29, 49194–49213. [Google Scholar] [CrossRef]
- Shi, X.; Xu, Y. Evaluation of China’s pilot low-carbon city program: A perspective of industrial carbon emission efficiency. Atmos. Pollut. Res. 2022, 13, 101446. [Google Scholar] [CrossRef]
- Xin, L.; Sun, H.; Xia, X. Renewable energy technology innovation and inclusive low-carbon development from the perspective of spatiotemporal consistency. Environ. Sci. Pollut. Res. 2022, 30, 20490–20513. [Google Scholar] [CrossRef]
- Xiao, H.Y.; Sun, H.; Wang, H.; Xin, L. From “pilot” to “diffusion”: Analysis of inclusive low-carbon growth effect of low-carbon city pilot policy. Ind. Econ. Res. 2022, 3, 28–40. (In Chinese) [Google Scholar] [CrossRef]
- Yang, G.; Xiang, X.; Deng, F.; Wang, F. Towards high-quality development: How does digital economy impact low-carbon inclusive development?: Mechanism and path. Environ. Sci. Pollut. Res. 2023, 30, 41700–41725. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Yang, G.; Sun, H. The impact of the digital economy on low-carbon, inclusive growth: Promoting or restraining. Sustainability 2022, 14, 7187. [Google Scholar] [CrossRef]
- Xin, L.; Sun, H.; Xia, X. Spatial–temporal differentiation and dynamic spatial convergence of inclusive low-carbon development: Evidence from China. Environ. Sci. Pollut. Res. 2022, 30, 5197–5215. [Google Scholar] [CrossRef]
- Candel, J.J.; Biesbroek, R. Toward a processual understanding of policy integration. Policy Sci. 2016, 49, 211–231. [Google Scholar] [CrossRef]
- Yang, C.; Li, T.; Albitar, K. Does Energy Efficiency Affect Ambient PM2.5? The Moderating Role of Energy Investment. Front. Environ. Sci. 2021, 9, 707751. [Google Scholar] [CrossRef]
- Gulati, R. Alliances and networks. Strateg. Manag. J. 1998, 19, 293–317. [Google Scholar] [CrossRef]
- Zhao, L.; Gao, X.T.; Liu, Y.X.; Han, Z.L. Evolution Characteristics of Spatial Correlation Network of Inclusive Green Efficiency in China. Econ. Geogr. 2021, 9, 69–78+90. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, J.; Chi, X.; Sun, Z.J. Synergy or Fragment: The Influence of Policy Synergy on Firm Independent Innovation. China Ind. Econ. 2022, 8, 175–192. (In Chinese) [Google Scholar] [CrossRef]
- Liu, P.; Zhang, L.; Tarbert, H.; Yan, Z. Analysis on spatio-temporal characteristics and influencing factors of industrial green innovation efficiency—From the perspective of innovation value chain. Sustainability 2021, 14, 342. [Google Scholar] [CrossRef]
- Yang, X.; Su, X.; Ran, Q.; Ren, S.; Chen, B.; Wang, W.; Wang, J. Assessing the impact of energy internet and energy misallocation on carbon emissions: New insights from China. Environ. Sci. Pollut. Res. 2022, 29, 23436–23460. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, J.; Cao, J.; Ren, S.; Ran, Q.; Wu, H. The spatial spillover effect of urban sprawl and fiscal decentralization on air pollution: Evidence from 269 cities in China. Empir. Econ. 2021, 63, 847–875. [Google Scholar] [CrossRef]
- Liu, P.; Meng, X.; Wang, Y.; Guo, J.; Feng, F. Study of the spatial divergence features and motivating factors of energy green consumption levels in “2 + 26” cities. Environ. Sci. Pollut. Res. 2022, 30, 19776–19789. [Google Scholar] [CrossRef] [PubMed]
- Cartier, C. What’s territorial about China? From geopolitical narratives to the ‘administrative area economy’. Eurasian Geogr. Econ. 2013, 54, 57–77. [Google Scholar] [CrossRef]
- Liu, C.; Xin, L.; Li, J.; Sun, H. The Impact of Renewable Energy Technology Innovation on Industrial Green Transformation and Upgrading: Beggar Thy Neighbor or Benefiting Thy Neighbor. Sustainability 2022, 14, 11198. [Google Scholar] [CrossRef]
- Zhao, S.; Cao, Y.; Feng, C.; Guo, K.; Zhang, J. How do heterogeneous R&D investments affect China’s green productivity: Revisiting the Porter hypothesis. Sci. Total Environ. 2022, 825, 154090. [Google Scholar] [CrossRef]
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
ILCD | ILCD | ILCD | ILCD | |
Sub | 0.0421 ** (2.77) | |||
Tool | 0.0357 *** (3.23) | |||
Syn | 0.0122 *** (3.65) | 0.0151 *** (3.56) | ||
GINNOV | 0.1505 *** (3.71) | |||
Syn × GINNOV | 0.0144 ** (2.68) | |||
Constant | −0.1125 (−0.69) | −0.1272 (−0.87) | −0.1028 (−0.79) | −0.0733 (−1.05) |
Control | YES | YES | YES | YES |
Regional fixed effect | YES | YES | YES | YES |
Year fixed effect | YES | YES | YES | YES |
Observations | 300 | 300 | 300 | 300 |
R-squared | 0.28 | 0.31 | 0.27 | 0.36 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
ILCD | ILCD | ILCD | ILCD | |
Sub_High and Tool_High | 0.0833 *** (3.92) | |||
Sub_High and Tool_Low | 0.0081 (0.81) | |||
Sub_Low and Tool_High | −0.0219 (−1.01) | |||
Sub_Low and Tool_Low | −0.0728 ** (−2.66) | |||
Constant | −0.0327 (−0.48) | −0.1502 (−0.68) | −0.0688 (−0.57) | −0.0479 (−0.45) |
Control | YES | YES | YES | YES |
Regional fixed effect | YES | YES | YES | YES |
Year fixed effect | YES | YES | YES | YES |
Observations | 300 | 300 | 300 | 300 |
R-squared | 0.27 | 0.28 | 0.30 | 0.26 |
Variable | (1) | (2) |
---|---|---|
ILCD (t + 1) | ILCD (t + 2) | |
Syn | 0.0094 * (1.89) | 0.0137 ** (2.45) |
Constant | −0.0136 (−0.34) | −0.0285 (−0.55) |
Control | YES | YES |
Regional fixed effect | YES | YES |
Year fixed effect | YES | YES |
Observations | 300 | 300 |
R-squared | 0.24 | 0.29 |
Variable | Non-Resource-Based Region | Resource-Based Region |
---|---|---|
ILCD | ILCD | |
Sub | 0.0702 *** (3.59) | 0.0147 (1.04) |
Tool | 0.0466 (1.11) | 0.0522 *** (4.63) |
Constant | −0.2683 ** (−2.53) | 0.1024 (0.95) |
Control | YES | YES |
Regional fixed effect | YES | YES |
Year fixed effect | YES | YES |
Observations | 210 | 90 |
R-squared | 0.37 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Sun, H.; Xin, L. “Harmonization” or “Fragmentation”: The Impact of Low-Carbon Policy Synergy on Inclusive Low-Carbon Development. Sustainability 2023, 15, 7009. https://doi.org/10.3390/su15087009
Yan X, Sun H, Xin L. “Harmonization” or “Fragmentation”: The Impact of Low-Carbon Policy Synergy on Inclusive Low-Carbon Development. Sustainability. 2023; 15(8):7009. https://doi.org/10.3390/su15087009
Chicago/Turabian StyleYan, Xinjie, Hui Sun, and Long Xin. 2023. "“Harmonization” or “Fragmentation”: The Impact of Low-Carbon Policy Synergy on Inclusive Low-Carbon Development" Sustainability 15, no. 8: 7009. https://doi.org/10.3390/su15087009
APA StyleYan, X., Sun, H., & Xin, L. (2023). “Harmonization” or “Fragmentation”: The Impact of Low-Carbon Policy Synergy on Inclusive Low-Carbon Development. Sustainability, 15(8), 7009. https://doi.org/10.3390/su15087009