Traffic Calming Measures and Their Slowing Effect on the Pedestrian Refuge Approach Sections
Abstract
:1. Introduction
1.1. Review of Studies on the Speed-Reducing Effect of Horizontal Deflections Located on the Refuge Island Approach Sections
1.2. Review of Previous Before-And-After Speed Studies with the Use of the Heuristic Method
- flow chart presenting the steps of the analysis,
- check sheet, specifically statistical tests to check speed consistency among the consecutive survey sites deployed on the street under analysis,
- normal distribution histograms,
- scatter diagram showing relationships,
- control chart showing speed changes along the analysed street,
- cause-and-effect diagram (diagram fishbone diagram or Ishikawa diagram) for defining the primary and secondary factors,
- Pareto chart to define the final identified speed reduction determinants.
- -
- information on the study site (a two-way city street with 50 km/h speed limit) and details of the respective study sections with different parking and TCM arrangements,
- -
- traffic safety analyses before and after changes to the traffic organisation plan,
- -
- description of the heuristic method used in the study.
2. Materials and Methods
2.1. Study Area
2.2. Traffic Safety and Volume Count Data for the Analysed Street
2.3. Measurement and Analysis Method
- -
- 85th percentile speeds varied by up to 0.1–0.2 km/h,
- -
- average speeds ranged from 0.5 to 1.0 km/h.
2.4. Research Methods
3. Results
4. Discussion
4.1. Primary and Secondary Determinants—Cause-and-Effect Diagram
4.2. Analysis of Determinants Based on the Pareto Chart
- (a)
- effective (WE1)—with a change of on-street parking configuration from parallel to diagonal or vice-versa requiring the driver to change the travel path, a 1:5 taper or road and island geometry designed to get free view “a”—larger so that a vehicle parked in the travel lane is visible as a side obstacle and the travel lane at the road surface level past the island is not visible by the driver approaching the island, altogether resulting in lower island approach speeds;
- (b)
- moderately effective (WE2, WE3, and EW2) with narrower free view width of “a”—small, a 1:5 or 1:10 painted taper, and change in parking configuration and different ways of targeting parking spaces, which in combination produce different geometry and visibility configurations offering the driver a reliable assessment of the road situation during approaching and passing the island and resulting in moderate speed reduction;
- (c)
- ineffective (EW2 and EW3) with “a” + free view, no change of parking configuration, no painted tapers, no horizontal deflection, and no sight restrictions for the driver approaching and passing the island, discouraging speed reduction.
5. Conclusions
- -
- of free view
- -
- visibility of pedestrians, and,
- -
- refuge island surroundings.
- -
- change in the parking configuration, both on the way to and past the island, and,
- -
- taper angle.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- National Association of City Transportation Officials. Urban Street Design Guide; National Association of City Transportation Officials: Washington, DC, USA, 2013. [Google Scholar]
- Vejdirektoratet-Vejregeludvalget. Urban Traffic Areas—Part 7—Speed Reducers; Vejdirektoratet-Vejregeludvalget: Copenhagen, Denmark, 1991. [Google Scholar]
- Institute of Transportation Engineers. Traffic Calming Guidelines; Devon County Council Engineering & Planning Department: Devon, UK, 1992. [Google Scholar]
- East Ayrshire, Strathclyde Regional Council. Roads Development Guide; East Ayrshire, Strathclyde Regional Council: London, UK, 2010. [Google Scholar]
- Working Group Highway Design. Directives for the Design of Urban Roads RASt 06; Working Group Highway Design FGSV: Köln, Germany, 2006. [Google Scholar]
- Elvik, R. Area-wide urban traffic calming schemes: A meta-analysis of safety effects. Accid. Anal. Prev. 2001, 33, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Hervik, A. Restraining car traffic in European cities: An emerging role for road pricing. Transp. Res. Part A Policy Pract. 1992, 26, 133–145. [Google Scholar] [CrossRef]
- Mei, Z.Y.; Feng, C.; Kong, L.; Zhang, L.H.; Chen, J. Assessment of different parking pricing strategies: A simulation-based analysis. Sustainability 2020, 12, 2056. [Google Scholar] [CrossRef]
- Mingardo, G.; van Wee, B.; Rye, T. Urban parking policy in Europe: A conceptualization of past and possible future trends. Transp. Res. Part A Policy Pract. 2015, 74, 268–281. [Google Scholar] [CrossRef]
- VanHoose, K.; de Gante, A.R.; Bertolini, L.; Kinigadner, J.; Büttner, B. From temporary arrangements to permanent change: Assessing the transitional capacity of city street experiments. J. Urban Mobil. 2022, 2, 100015. [Google Scholar] [CrossRef]
- Jazcilevich, A.; Vázquez, M.J.M.; Ramírez, P.L.; Pérez, I.R. Economic-environmental analysis of traffic-calming devices. Transp. Res. Part D Transp. Environ. 2015, 36, 86–95. [Google Scholar] [CrossRef]
- Lee, G.; Joo, S.; Oh, C.; Choi, K. An evaluation framework for traffic calming measures in residential areas. Transp. Res. Part D Transp. Environ. 2013, 25, 68–76. [Google Scholar] [CrossRef]
- Bellefleur, O. Urban Traffic Calming and Air Quality: Effects and Implications for Practice; National Collaborating Centre for Healthy Public Policy: Québec, QC, Canada, 2012. [Google Scholar]
- Bellefleur, O.; Gagnon, F. Urban Traffic Calming and Health: A Literature Review; National Collaborating Centre for Healthy Public Policy: Montréal, QC, Canada, 2011. [Google Scholar]
- Daham, B.; Andrews, G.E.; Li, H.; Partridge, M.; Bell, M.C.; Tate, J. Quantifying the Effects of Traffic Calming on Emissions Using On-road Measurements (Report No. 2005-01-1620); SAE International: Warrendale, PA, USA, 2005; Available online: http://eprints.whiterose.ac.uk/2050/1/2005-01-1620SOrion_peedbump.pdf (accessed on 2 August 2023).
- Boulter, P.G.; Hickman, A.J.; Latham, S.; Layfield, R.; Davison, P.; Whiteman, P.P. The impact of traffic calming measures on vehicle exhaust emissions; Report 482; Transport Research Laboratory TRL: Wokingham, Berkshire, UK, 2001. [Google Scholar]
- Sun, M.; Sun, X.; Shan, D. Pedestrian crash analysis with latent class clustering method. Accid. Anal. Prev. 2019, 124, 50–57. [Google Scholar] [CrossRef]
- Guéguen, N.; Meineri, S.; Eyssartier, C. A pedestrian’s stare and drivers’ stopping behavior: A field experiment at the pedestrian crossing. Saf. Sci. 2015, 75, 87–89. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Bhardwaj, R. Pedestrians’ perception and response towards vehicles during road-crossing at nighttime. Accid. Anal. Prev. 2018, 110, 128–135. [Google Scholar] [CrossRef]
- Li, Y.; Fan, W. Modelling severity of pedestrian-injury in pedestrian-vehicle crashes with latent class clustering and partial proportional odds model: A case study of North Carolina. Accid. Anal. Prev. 2019, 131, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Sołowczuk, A.; Kacprzak, D. Identification of determinants of the speed-reducing effect of pedestrian refuges in villages located on a chosen regional road. Symmetry 2019, 11, 597. [Google Scholar] [CrossRef]
- Balant, M.; Lep, M. Comprehensive traffic calming as a key element of sustainable urban mobility plans-impacts of a neighbourhood redesign in Ljutomer. Sustainability 2020, 12, 8143. [Google Scholar] [CrossRef]
- Road and Transportation Research Association. Directives for the Design of Urban Roads; Road and Transportation Research Association: Köln, Germany, 2012. [Google Scholar]
- Zalewski, A.; Kempa, J. Traffic calming as a comprehensive solution improving traffic road safety. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: New York, NY, USA, 2019; Volume 471, p. 062035. [Google Scholar] [CrossRef]
- Jamroz, K.; Gaca, S.; Michalski, L.; Kieć, M.; Budzyński, M.; Gumińska, L.; Kustra, W.; Mackun, T.; Oskarbska, I.; Rychlewska, J.; et al. Protection of Pedestrians. Guidelines for Pedestrian Traffic Organizers; National Road Safety Council: Gdańsk, Poland; Warsaw, Poland; Cracow, Poland, 2014. (In Polish) [Google Scholar]
- Rokade, S.; Kumar, R.; Rokade, K.; Dubey, S.; Vijayawargiya, V. Assessment of effectiveness of vertical deflection type traffic calming measures and development of speed prediction models in urban perspective. Int. J. Civ. Eng. Technol. 2017, 8, 1135–1146. Available online: https://iaeme.com/MasterAdmin/Journal_uploads/IJCIET/VOLUME_8_ISSUE_5/IJCIET_08_05_120.pdf (accessed on 23 July 2023).
- Mohammadipour, A.; Archilla, A.R.; Papacostas, C.S.; Alavi, S.H. Pedestrian (RPC) influence on speed reduction. In Proceedings of the Conference: Transportation Research Board (TRB) 91st Annual Meeting, Washington, DC, USA, 22–26 January 2012; Available online: https://www.researchgate.net/publication/273687736_Pedestrian_RPC_Influence_on_Speed_Reduction (accessed on 3 August 2023).
- Gonzalo-Orden, H.; Rojo, M.; Perez-Acebo, H.; Linares, A. Traffic calming measures and their effect on the variation of speed, Paper presented at the 12th Conference on Transport Engineering (CIT), Valencia 7–9 June, Spain. Transp. Res. Procedia 2016, 18, 349–356. [Google Scholar] [CrossRef]
- Distefano, N.; Leonardi, S. Evaluation of the benefits of traffic calming on vehicle speed reduction. Civ. Eng. Archit. 2019, 7, 200–214. [Google Scholar] [CrossRef]
- Distefano, N.; Leonardi, S. Effects of speed table, chicane and road narrowing on vehicle speeds in urban areas. In Proceedings of the VI International Symposium New Horizons 2017 of Transport and Comunications, Doboj, Serbia, 17–18 November 2017. [Google Scholar]
- Kruszyna, M.; Matczuk-Pisarek, M. The Effectiveness of Selected Devices to Reduce the Speed of Vehicles on Pedestrian Crossings. Sustainability 2021, 13, 9678. [Google Scholar] [CrossRef]
- Sołowczuk, A. Effect of Traffic Calming in a Downtown District of Szczecin, Poland. Energies 2021, 14, 5838. [Google Scholar] [CrossRef]
- Akgol, K.; Gunay, B.; Aydin, M.M. Geometric optimisation of chicanes using driving simulator trajectory data. Proc. Inst. Civ. Eng. Transp. 2022, 175, 238–248. [Google Scholar] [CrossRef]
- Aydin, M.M.; Akgöl, K.; Günay, B. The investigation of different chicane applications in traffic calming studies using driving symulator. J. Fac. Eng. Archit. Gazi Univ. 2019, 34, 1793–1805. [Google Scholar] [CrossRef]
- Hussain, Q.; Alhajyaseen, W.K.M.; Kharbeche, W.; Almallah, M. Safer pedestrian crossing facilities on low-speed roads: Comparison of innovative treatments. Accid. Anal. Prev. 2023, 180, 106908. [Google Scholar] [CrossRef] [PubMed]
- Sayer, I.A.; Parry, D.I. Speed Control Using Chicanes—A Trial at TRL; TRL Project Report PR 102; Transport Research Laboratory: Crowthorne, UK, 1994; Available online: https://trid.trb.org/view/425130 (accessed on 2 July 2023).
- Sayer, I.A.; Parry, D.I.; Barker, J.K. Traffic Calming—An Assessment of Selected On-Road Chicane Schemes; Transport Research Laboratory TRL Report 313; Transport Research Laboratory: Crowthorne, UK, 1998. [Google Scholar]
- Zhang, C.; Qin, S.; Yu, H.; Zheng, B.; Li, Z. A Review on Chicane Design based on Calming Theory. J. Eng. Sci. Technol. Rev. 2020, 13, 188–197. [Google Scholar] [CrossRef]
- Wirksamkeit Geschwindigkeitsdämpfender Maßnahmen Außerorts; Hessisches Landesamt für Straßen- und Verkehrswesen: Hessen, Germany, 1997. Available online: https://docplayer.org/57666796-Wirksamkeit-geschwindigkeitsdaempfender-massnahmen.html (accessed on 2 August 2020).
- Hunnel, T.; Mackie, A.; Wells, P. Traffic Calming Measures in Built-Up Areas. Literature Review; Unpublished Project Report PR/SE/622/02 Vägverket TR80 2002:15779; Swedish National Road Administration: Borlänge, Sweden, 2002. [Google Scholar]
- Juran, J.M.; Gryna, F.M. Juran’s Quality Control Handbook, 6th ed.; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Stephens, K.S. Juran, Quality, and a Century of Improvement, 15 ed.; ASQ: Milwaukee, WI, USA, 2004. [Google Scholar]
- Feigenbaum, A.V. Quality Control: Principles, Practice, and Administration; McGraw Hill Book Company Inc.: New York, NY, USA, 1951. [Google Scholar]
- Deming, W.E. Out of the Crisis, 5th ed.; The MIT Press: Cambridge, UK, 2000. [Google Scholar]
- Ishikawa, K.; Loftus, J.H. Introduction to Quality Control, 3rd ed.; 3A Corporation: Tokyo, Japan, 1990. [Google Scholar]
- Ishikawa, K. Introduction to Quality Control; Taylor & Francis: Philadelphia, PA, USA, 1990. [Google Scholar]
- Ishikawa, K. What Is Total Quality Control? The Japanese Way; Prentice-Hall Direct: University Michigan: Michigan, MI, USA, 1985. [Google Scholar]
- Juran, J.M. The Non-Pareto Principle; Mea Culpa. In Juran on Quality by Design; Juran, J., Ed.; Free Press: New York, NY, USA, 1992; pp. 68–71. [Google Scholar]
- SAS/QC® 14.1. User’s Guide: The Pareto Procedure; SAS Institute Inc.: Cary, NC, USA, 2015. [Google Scholar]
- Iyer, R.G. The Art of Creating Pareto Analysis: A Complete End-to-End Guide to Understand Pareto Charts and Easily Create them in Excel; Advanced Innovation Group Pro Excellence: Birmingham, UK, 2021. [Google Scholar]
- Koch, R. The 80/20 Principle: The Secret to Achieving More with Less; Independently Published: Chicago, IL, USA, 2021. [Google Scholar]
- Mydlarz, A. 7 Sztuczek Najlepszych Audytorów Jakości; Sztuka Jakości Artur Mydlarz: Rzeszów, Poland, 2022. (In Polish) [Google Scholar]
- Mydlarz, A. Siedem Złotych Narzędzi Jakości. Praktyczny Poradnik Inżyniera; Sztuka Jakości Artur Mydlarz: Rzeszów, Poland, 2022. (In Polish) [Google Scholar]
- Sołowczuk, A. Metod TQM v zadačah ocenki tehničeskogo sostoâniâ dorog. Transp. Stroit. 2005, 7, 11–12. [Google Scholar]
- Sołowczuk, A. Naučnye osnowy ocenki tehničeskogo sostoâniâ dorog po potrebitel’skim svojstvam. Dorogi i Mosty 2005, 13, 165–175. [Google Scholar]
- Evans, S.R.; Norbacka, J.P.P. An Heuristic Method for Solving Time-Sensitive Routing Problems. J. Oper. Res. Soc. 1984, 35, 407–414. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z. A novel two-phase heuristic method for vehicle routing problem with backhauls. Comput. Math. Appl. 2009, 57, 1923–1928. [Google Scholar] [CrossRef]
- Ichoua, S.; Gendreau, M.; Potvin, J.-Y. Vehicle dispatching with time-dependent travel Times. Eur. J. Oper. Res. 2003, 144, 379–396. [Google Scholar] [CrossRef]
- Malandraki, C.; Daskin, M.S. Time dependent vehicle routing problems: Formulations, properties and heuristic algorithms. Transp. Sci. 1992, 26, 185–200. [Google Scholar] [CrossRef]
- Hill, A.C.; Benton, W.C. Modelling intra-city time-dependent travel speeds for vehicle scheduling problems. J. Oper. Res. Soc. 1992, 43, 343–351. [Google Scholar] [CrossRef]
- Kim, J.-S.; Jeong, J. Development of the Dripping Speed Measurement System of Medical Liquid using Heuristic. J. Korean Inst. Intell. Syst. 2014, 24, 542–547. [Google Scholar] [CrossRef]
- Bujak, K. Traffic Organization Design Along 5 Lipca Street on the Section from Bohaterów Warszawy Avenue to Szarych Szeregów Place; City Office of Szczecin: Szczecin, Poland, 2015. (In Polish) [Google Scholar]
- Ustawa—Prawo o Ruchu Drogowym, Dziennik Ustaw z dnia 20 Czerwca 1997 Nr 98 poz. 602, z późn. zm. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu19970980602 (accessed on 2 July 2023). (In Polish)
- Google Earth. Available online: https://earth.google.com (accessed on 2 July 2023).
- Accident and Collision Registration System SEWIK. Available online: https://sewik.pl/ (accessed on 2 July 2023).
- Vitronic. Speed Displays Traffic Detection, Radar, Detection, Software; Vitronic: Kędzierzyn Koźle, Poland, 2015. [Google Scholar]
- Sobczyńska, D. Art of Experimental Research, habilitation monograph. In Scientific Papers of the Philosophy and Logic; series No. 71; Scientific Publishing House UAM: Poznań, Poland, 1993. [Google Scholar]
- Roess, R.P.; Prassas, E.S.; McShane, W.R. Traffic Engineering, 4th ed.; Pearson Higher Education: London, UK, 2018. [Google Scholar]
- Taylor, J.R. An Introduction to Error Analysis, 6th ed.; Scientific Publishing House: Warszawa, Poland, 2022. [Google Scholar]
- Ziółkowski, R. Zachowania Kierowców Pojazdów w Otoczeniu Środków Uspokojenia Ruchu w Warunkach Miejskich. Ph.D. Dissertation, Politechnika Białostocka, Białystok, Poland, 2022. Available online: https://pb.edu.pl/oficyna-wydawnicza/wp-content/uploads/sites/4/2022/10/Zachowania-kierowcow-pojazdow-w-otoczeniu-srodkow-uspokojenia-ruchu-w-warunkach-miejskich.pdf (accessed on 2 August 2023). (In Polish).
- Daniel, B.D.; Nicholson, A.; Koorey, G. Investigating Speed Patterns and Estimating Speed on Traffic-Calmed Streets; IPENZ Transportation Group Conference, Auckland, 27 March 2011. Available online: https://www.researchgate.net/publication/267370096_INVESTIGATING_SPEED_PATTERNS_AND_ESTIMATING_SPEED_ON_TRAFFIC-CALMED_STREETS (accessed on 30 November 2022).
- Alavi, S.H. Analyzing Raised Crosswalks Dimensions Influence on Speed Reduction in Urban Streets. In Proceedings of the 3rd Urban Street Symposium, Seattle, WA, USA, 24–27 June 2007; Available online: https://www.researchgate.net/publication/273687736_Pedestrian_RPC_Influence_on_Speed_Reduction (accessed on 1 December 2015).
- Domenichini, L.; Branzi, V.; Meocci, M. Virtual testing of speed reduction schemes on urban collector roads. Accid. Anal. Prev. 2018, 110, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, M.; Agerholm, N.; Lahrmann, H.; Araghi, B. Driving Speed on Throughfares in Minor. Towns in Denmark; Aalborg University: Aalborg Ost, Denmark, 2014; Available online: https://www.ictct.net/wp-content/uploads/26-Maribor-2013/26-Agerholm-Full-paper.pdf (accessed on 19 November 2015).
- Kang, B. Identifying street design elements associated with vehicle-to-pedestrian collision reduction at intersections in New York City. Accid. Anal. Prev. 2019, 122, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Jamroz, K.; Gumińska, L.; Mackun, T.; Rychlewska, J. Widoczność na przejściach dla pieszych. Drogownictwo 2015, 4–5, 142–149. Available online: https://www.researchgate.net/publication/352121417_Widocznosc_na_przejsciach_dla_pieszych (accessed on 2 August 2023). (In Polish).
- Jamroz, K.; Kempa, J.; Rychlewska, J.; Mackun, T. Metoda wyznaczania obszaru dobrej widoczności na przejściach dla pieszych w Polsce. Transport Miejski i Regionalny 2015, 4, 10–21. Available online: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-42c6a790-a9b5-4ff0-9171-13d47b93c747 (accessed on 18 August 2023).
- Das Land Kärnten: Abteilung 7. Kompetenzzentrum Wirtschaftsrecht und Infrastruktur Richtlinie. Grundlagen für die Anordnung eines Schutzweges. 2013. Available online: https://docplayer.org/64254869-Richtlinie-grundlagen-fuer-die-anordnung-eines-schutzweges.html (accessed on 18 August 2023).
- Antoine, D.; Janssens, I.; Chevalier, N.; Dullaert, I.; Trussart, S.; Blanquet, D.; Delbart, E. Visibilité et Sécurité des abords d’écoles, Dirk DE SMET, Directeur général DGO1, Namur, Belgium. 2011. Available online: https://rue-avenir.ch/wp-content/uploads/files/resources/Securite-abords-ecoles-Wallonie.pdf (accessed on 18 August 2023).
- Liu, C.; Wang, W. Integrating Visibility, Parking Restriction, and Driver’s Field View for Enhancing Pedestrian Crossing Safety. Int. J. Transp. Sci. Technol. 2013, 2, 351–356. [Google Scholar] [CrossRef]
- KfV, Leitfaden für die Anlage von Schutzwegen und Sonstigen Fußgängerquerungsstellen, Kuratorium für Verkehrs, LF/Schutzweg/V02, Land Oberösterreich 2006. Available online: https://www.tirol.gv.at/fileadmin/themen/verkehr/service/downloads/lf_schutzweg_v02end.pdf (accessed on 2 August 2023).
- Høye, A.; Mosslemi, M. Fartsdempende Tiltak i Gangfelt—Eksempler og Erfaringer, TØI rapport 1033/2009, Transportøkonomisk Institutt, Oslo 2009. Available online: https://www.toi.no/getfile.php?mmfileid=16942 (accessed on 2 August 2023).
- Fressancourt, M. Une Limitation de la Vitesse Pour un Meilleur Partage de la Route…, AQTr 21 June 2011. Available online: https://aqtr.com/association/actualites/limitation-vitesse-meilleur-partage-route (accessed on 3 August 2023).
- How to Calculate Stopping Distances! Available online: https://www.drivingcrawley.co.uk/blog/how-to-calculate-stopping-distances (accessed on 3 August 2023).
- Stopping Distances and The Theory Test 2018. Available online: https://driving-test-success.myshopify.com/pages/stopping-distances-and-the-theory-test (accessed on 3 August 2023).
- What Is Stopping Distance? Available online: https://www.reddrivingschool.com/stopping-distances/ (accessed on 3 August 2023).
- Everything You Need to Know about Vehicle Stopping Distances. Available online: https://www.unicominsurance.com/insurance-news/everything-you-need-to-know-about-vehicle-stopping-distances (accessed on 3 August 2023).
Years | Traffic Accidents in General | Pedestrian Accidents |
---|---|---|
Before data: 1 January 2000–31 December 2015 | 27 | 6 |
After data: 1 January 2016–31 May 2023 | 6 | 1 |
The Chi-square significance test χ2 was used to confirm or refute the efficacy of a given TCM and the resulting traffic safety improvement. Null hypothesis H0: χ2 = (n1 t2 − n2 t1)2/(t1 t2 (n1 + n2))1 ≤ χα2; (no statistically significant difference exists). Alternative hypothesis H1: χ2 > χα2; (a statistically significant difference does exist). The following inequation should be satisfied at the same time: n1/t1 > n2/t2. Critical value χα2 = 3.84 at the significance level α = 0.05. | ||
χ2 = | 3.0 < 3.84 | 1.0 < 3.84 |
n1/t1 > n2/t2 | 1.7 > 0.8 | 0.38 > 0.13 |
No. | Traffic Volume, veh/h | Traffic Flow Directions | |||||||
---|---|---|---|---|---|---|---|---|---|
Before Measurement Data | After Measurement Data | ||||||||
W→E | E→W | W→E | E→W | W→E | E→W | W→E | E→W | ||
Test K-S 1 | Median Test 2 | Test K–S 1 | Median Test 2 | ||||||
1 | N ≤ 50 & 50 < N ≤ 100 | 9.8 | 12.4 | 120.3 | 1392.4 | 14.3 | 15.6 | 2469.4 | 1544.9 |
2 | 50 < N ≤ 100 & 100 < N ≤ 150 | 12.1 | 13.5 | 1737.1 | 308.2 | 17.9 | 17.4 | 2344.7 | 3113.2 |
3 | 100 < N ≤ 150 & 150 < N ≤ 200 | 20.4 | 11.9 | 16,893.3 | 189.6 | 16.9 | 20.9 | 1744.0 | 7370.2 |
4 | 150 < N ≤ 200 & 200 < N ≤ 250 | 24.6 | – | 7490.0 | – | 17.3 | 25.4 | 2735.2 | 16,035.3 |
5 | 200 < N ≤ 250 & 250 < N ≤ 300 | – | – | – | – | 19.6 | 23.8 | 4905.4 | 5532.8 |
6 | 250 < N ≤ 300 & 300 < N ≤ 350 | – | – | – | – | 24.2 | 19.3 | 26,238.0 | 2549.3 |
7 | 300 < N ≤ 350 & 350 < N ≤ 400 | – | – | – | – | 33.8 | – | 56,117.9 | – |
8 | 350 < N ≤ 400 & 400 < N ≤ 450 | – | – | – | – | 32.2 | – | 21,759.6 | – |
Determinants | Scores Given to the Study Sections | |||||
---|---|---|---|---|---|---|
WE1 | WE2 | WE3 | EW1 | EW2 | EW3 | |
Free view | 1 | 0.5 | 1 | 0 | 0.5 | 0 |
Side obstruction in the travel lane past the refuge island | 1 | 0 | 0.5 | 0 | 0 | 0 |
Lack of visibility of a pedestrian on the right-hand side of the island | 1 | 0 | 0 | 0 | 1 | 1 |
Lack of visibility of the road surface past the junction | 0 | 0 | 0.5 | 0 | 0 | 0.5 |
Painted taper applied to the section | 1 | 1 | 0.5 | 0 | 1 | 0 |
Left-hand curve in the junction | 0 | 0 | 0.5 | 0 | 0 | 0 |
Parking configuration changed from diagonal to parallel | 0 | 1 | 0 | 0 | 1 | 0 |
Parking configuration changed from parallel to diagonal | 1 | 0 | 0 | 0 | 0 | 1 |
Apparent carriageway narrowing past the junction | 0 | 0 | 0.5 | 0.5 | 0 | 0 |
Total quantification measure scores: | 5 | 2.5 | 3.5 | 0.5 | 3.5 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majer, S.; Sołowczuk, A. Traffic Calming Measures and Their Slowing Effect on the Pedestrian Refuge Approach Sections. Sustainability 2023, 15, 15265. https://doi.org/10.3390/su152115265
Majer S, Sołowczuk A. Traffic Calming Measures and Their Slowing Effect on the Pedestrian Refuge Approach Sections. Sustainability. 2023; 15(21):15265. https://doi.org/10.3390/su152115265
Chicago/Turabian StyleMajer, Stanisław, and Alicja Sołowczuk. 2023. "Traffic Calming Measures and Their Slowing Effect on the Pedestrian Refuge Approach Sections" Sustainability 15, no. 21: 15265. https://doi.org/10.3390/su152115265