Added Value of Local Sheep Breeds in Alpine Agroecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Alpagota and Lamon Breeds
2.3. Project Description
2.4. Genetic Analysis of Rams
2.5. On Farm Survey and Farmland Mapping
2.6. Meeting with Farmers and Stakeholders and SWOT Analysis for Organic Farming Conversion
3. Results
3.1. Genetic Analysis and Genomic Information
3.2. Farming Systems and Integration with Agroecosystems
Smartphone Application: Development and Implementation
3.3. Conversion to Organic Farming and SWOT Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Plan for Action for Animal Genetic Resources and the Interlaken Declaration; Commission on Genetic Resources for Food and Agriculture: Interlaken, Switzerland, 2007. [Google Scholar]
- Ovaska, U.; Soini, K. Local Breeds—Rural Heritage or New Market Opportunities? Colliding Views on the Conservation and Sustainable Use of Landraces. Sociol. Rural. 2017, 57, 709–729. [Google Scholar] [CrossRef] [Green Version]
- Belanche, A.; Martín-Collado, D.; Rose, G.; Yáñez-Ruiz, D.R. A multi-stakeholder participatory study identifies the priorities for the sustainability of the small ruminants farming sector in Europe. Animal 2021, 15, 100131. [Google Scholar] [CrossRef] [PubMed]
- Taberlet, P.; Valentini, A.; Rezaei, H.R.; Naderi, S.; Pompanon, F.; Negrini, R.; Ajmone-Marsan, P. Are cattle, sheep, and goats endangered species? Mol. Ecol. 2008, 17, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Dalvit, C.; de Marchi, M.; Zanetti, E.; Cassandro, M. Genetic variation and population structure of Italian native sheep breeds undergoing in situ conservation. J. Anim. Sci. 2009, 87, 3837–3844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Animal Genetic Resources; FAO: Rome, Italy, 2010. [Google Scholar]
- FAO. Ecosystem Services Provided by Livestock Species and Breeds, with Special Consideration to the Contributions of Small-Scale Livestock Keepers and Pastoralist; Background Study Paper 66; FAO: Rome, Italy, 2014. [Google Scholar]
- Leroy, G.; Baumung, R.; Boettcher, P.; Besbes, B.; From, T.; Hoffmann, I. Animal genetic resources diversity and ecosystem services. Glob. Food Sec. 2018, 17, 84–91. [Google Scholar] [CrossRef]
- Marsoner, T.; Egarter Vigl, L.; Manck, F.; Jaritz, G.; Tappeiner, U.; Tasser, E. Indigenous livestock breeds as indicators for cultural ecosystem services: A spatial analysis within the Alpine Space. Ecol. Indic. 2018, 94, 55–63. [Google Scholar] [CrossRef]
- Mastrangelo, S.; Tolone, M.; Di Gerlando, R.; Fontanesi, L.; Sardina, M.T.; Portolano, B. Genomic inbreeding estimation in small populations: Evaluation of runs of homozygosity in three local dairy cattle breeds. Animal 2016, 10, 746–754. [Google Scholar] [CrossRef] [Green Version]
- Perucho, L.; Paoli, J.C.; Ligda, C.; Moulin, C.H.; Hadjigeorgiou, I.; Lauvie, A. Diversity of breeding practices is linked to the use of collective tools for the genetic management of the Corsican sheep breed. Ital. J. Anim. Sci. 2020, 19, 158–172. [Google Scholar] [CrossRef]
- EEA. High Nature Value Farmland: Characteristics, Trends and Policy Challenges; European Environmental Agency: Copenhagen, Denmark, 2004; p. 27. [Google Scholar]
- Bernués, A.; Ruiz, R.; Olaizola, A.; Villalba, D.; Casasús, I. Sustainability of pasture-based livestock farming systems in the European Mediterranean context: Synergies and trade-offs. Livest. Sci. 2011, 139, 44–57. [Google Scholar] [CrossRef]
- Bertaglia, M.; Joost, S.; Roosen, J. Identifying European marginal areas in the context of local sheep and goat breeds conservation: A geographic information system approach. Agric. Syst. 2007, 94, 657–670. [Google Scholar] [CrossRef]
- González Díaz, J.A.; Celaya, R.; Fernández García, F.; Osoro, K.; Rosa García, R. Dynamics of rural landscapes in marginal areas of northern Spain: Past, present, and future. Land Degrad. Dev. 2019, 30, 141–150. [Google Scholar] [CrossRef]
- Claps, S.; Mecca, M.; Di Trana, A.; Sepe, L. Local Small Ruminant Grazing in the Monti Foy Area (Italy): The Relationship Between Grassland Biodiversity Maintenance and Added-Value Dairy Products. Front. Vet. Sci. 2020, 7, 951. [Google Scholar] [CrossRef] [PubMed]
- Sidiropoulou, A.; Karatassiou, M.; Galidaki, G.; Sklavou, P. Landscape pattern changes in response to transhumance abandonment on mountain vermio (North Greece). Sustainability 2015, 7, 15652–15673. [Google Scholar] [CrossRef] [Green Version]
- Gómez Sal, A.; Lorente, I. The present status and ecological consequences of transhumance in Spain. In Transhumance and Biodiversity in European Mountains; Report from the EU-FP5 project Transhumount; IALE Publication Series No. 1; Bunce, R.G.H., Pérez-Soba, M., Jongman, R.H.G., Sal, A.G., Herzog, F., Austad, I., Eds.; Alterra: Wageningen, The Netherlands, 2004; pp. 233–248. [Google Scholar]
- Pardo, G.; del Prado, A. Guidelines for small ruminant production systems under climate emergency in Europe. Small Rumin. Res. 2020, 193, 106261. [Google Scholar] [CrossRef]
- Ripoll-Bosch, R.; Díez-Unquera, B.; Ruiz, R.; Villalba, D.; Molina, E.; Joy, M.; Olaizola, A.; Bernués, A. An integrated sustainability assessment of mediterranean sheep farms with different degrees of intensification. Agric. Syst. 2012, 105, 46–56. [Google Scholar] [CrossRef]
- Bertolozzi-Caredio, D.; Garrido, A.; Soriano, B.; Bardaji, I. Implications of alternative farm management patterns to promote resilience in extensive sheep farming. A Spanish case study. J. Rural Stud. 2021, 86, 633–644. [Google Scholar] [CrossRef]
- Boyazoglu, J.; Morand-Fehr, P. Mediterranean dairy sheep and goat products and their quality: A critical review. Small Rumin. Res. 2001, 40, 1–11. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Lee, M.R.F. Review: Use of human-edible animal feeds by ruminant livestock. Animal 2018, 12, 1735–1743. [Google Scholar] [CrossRef]
- Ripoll-Bosch, R.; de Boer, I.J.M.; Bernués, A.; Vellinga, T.V. Accounting for multi-functionality of sheep farming in the carbon footprint of lamb: A comparison of three contrasting Mediterranean systems. Agric. Syst. 2013, 116, 60–68. [Google Scholar] [CrossRef]
- Rodríguez-Ortega, T.; Olaizola, A.M.; Bernués, A. A novel management-based system of payments for ecosystem services for targeted agri-environmental policy. Ecosyst. Serv. 2018, 34, 74–84. [Google Scholar] [CrossRef]
- MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Gutierrez Lazpita, J.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manage. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Cocca, G.; Sturaro, E.; Gallo, L.; Ramanzin, M. Is the abandonment of traditional livestock farming systems the main driver of mountain landscape change in Alpine areas? Land Use Policy 2012, 29, 878–886. [Google Scholar] [CrossRef]
- Muñoz-Ulecia, E.; Bernués, A.; Casasús, I.; Olaizola, A.M.; Lobón, S.; Martín-Collado, D. Drivers of change in mountain agriculture: A thirty-year analysis of trajectories of evolution of cattle farming systems in the Spanish Pyrenees. Agric. Syst. 2021, 186, 102983. [Google Scholar] [CrossRef]
- Bertolozzi-Caredio, D.; Bardaji, I.; Coopmans, I.; Soriano, B.; Garrido, A. Key steps and dynamics of family farm succession in marginal extensive livestock farming. J. Rural Stud. 2020, 76, 131–141. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Collier, M.J. Farmland abandonment in Europe: An overview of drivers, consequences, and assessment of the sustainability implications. Environ. Rev. 2018, 26, 396–416. [Google Scholar] [CrossRef]
- Van der Zanden, E.H.; Verburg, P.H.; Schulp, C.J.E.; Verkerk, P.J. Trade-offs of European agricultural abandonment. Land Use Policy 2017, 62, 290–301. [Google Scholar] [CrossRef]
- Schirpke, U.; Scolozzi, R.; Dean, G.; Haller, A.; Jäger, H.; Kister, J.; Kovács, B.; Sarmiento, F.O.; Sattler, B.; Schleyer, C. Cultural ecosystem services in mountain regions: Conceptualising conflicts among users and limitations of use. Ecosyst. Serv. 2020, 46, 101210. [Google Scholar] [CrossRef]
- Sil, Â.; Fernandes, P.M.; Rodrigues, A.P.; Alonso, J.M.; Honrado, J.P.; Perera, A.; Azevedo, J.C. Farmland abandonment decreases the fire regulation capacity and the fire protection ecosystem service in mountain landscapes. Ecosyst. Serv. 2019, 36, 100908. [Google Scholar] [CrossRef] [Green Version]
- Liechti, K.; Biber, J.P. Pastoralism in Europe: Characteristics and challenges of highland-lowland transhumance. OIE Rev. Sci. Tech. 2016, 35, 561–575. [Google Scholar] [CrossRef] [Green Version]
- Navarro, A.; López-Bao, J.V. Towards a greener Common Agricultural Policy. Nat. Ecol. Evol. 2018, 2, 1830–1833. [Google Scholar] [CrossRef]
- EEA. Distribution and Targeting of the CAP Budget from a Biodiversity Perspective; European Environment Agency Publications: Copenhagen, Denmark, 2009. [Google Scholar]
- Taberlet, P.; Coissac, E.; Pansu, J.; Pompanon, F. Conservation genetics of cattle, sheep, and goats. Comptes Rendus-Biol. 2011, 334, 247–254. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Farm to Fork Strategy: For a Fair, Healthy and Environmentally-Friendly Food System; European Union: Brussels, Belgium, 2020. [Google Scholar]
- Meemken, E.M.; Qaim, M. Organic Agriculture, Food Security, and the Environment. Annu. Rev. Resour. Econ. 2018, 10, 39–63. [Google Scholar] [CrossRef] [Green Version]
- Bryła, P. The development of organic food market as an element of sustainable development concept implementation. Probl. Ekorozw. 2015, 10, 79–88. [Google Scholar]
- De Rancourt, M.; Fois, N.; Lavín, M.P.; Tchakérian, E.; Vallerand, F. Mediterranean sheep and goats production: An uncertain future. Small Rumin. Res. 2006, 62, 167–179. [Google Scholar] [CrossRef]
- Coppa, M.; Cabiddu, A.; Elsässer, M.; Hulin, S.; Lind, V.; Martin, B.; Mosquera-Losada, M.R.; Peeters, A.; Prache, S.; Van den Pol-van Dasselaar, A.; et al. Grassland-based products: Quality and authentication. In Grassland Resources for Extensive Farming System in Marginal Lands: Major Drivers and Future Scenarios, Proceedings of the 19th Symposium of the European Grassland Federetion, Alghero, Italy, 7–10 May 2017; Porqueddu, C., Franca, A., Lombardi, G., Molle, G., Peratoner, G., Hopkins, A., Eds.; CNR-ISPAAM: Portici, Italy, 2017. [Google Scholar]
- Porqueddu, C.; Melis, R.A.M.; Franca, A.; Sanna, F.; Hadjigeorgiou, I.; Casasús, I. The role of grasslands in the less favoured areas of Mediterranean Europe. In Grassland Resources for Extensive Farming System in Marginal Lands: Major Drivers and Future Scenarios, Proceedings of the 19th Symposium of the European Grassland Federation, Alghero, Italy, 7–10 May 2017; Porqueddu, C., Franca, A., Lombardi, G., Molle, G., Peratoner, G., Hopkins, A., Eds.; CNR-ISPAAM: Portici, Italy, 2017. [Google Scholar]
- Vipond, J.E.; Frater, P. Adding value to sheep production in the marginal areas of Northern Europe. In Grassland Resources for Extensive Farming System in Marginal Lands: Major Drivers and Future Scenarios, Proceedings of the 19th Symposium of the European Grassland Federetion, Alghero, Italy, 7–10 May 2017; Porqueddu, C., Franca, A., Lombardi, G., Molle, G., Peratoner, G., Hopkins, A., Eds.; CNR-ISPAAM: Portici, Italy, 2017. [Google Scholar]
- Fusté-Forné, F. Developing cheese tourism: A local-based perspective from Valle de Roncal (Navarra, Spain). J. Ethn. Foods 2020, 7, 26. [Google Scholar] [CrossRef]
- Sala, G.; Viola, F. Alla Scoperta del Territorio, Territorio e Ambiente nella Provincia di Belluno; Tipografia Piave: Belluno, Italia, 1989. [Google Scholar]
- Geiger, R. Classification of climates after W. Köppen. In Landolt-Böernstein—Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, alte Serie; Springer: Berlin, Germany, 1954; Volume 3, pp. 603–607. [Google Scholar]
- Sistema Statistico Regionale Veneto (SISTAR). L’utilizzo del Suolo Nelle Province del Veneto per Tipologia (Livello di Classificazione Corine Land-Cover. 2012. Available online: https://statistica.regione.veneto.it/ (accessed on 5 July 2021).
- Cavallero, A.; Talamucci, P.; Grignani, C.; Reyneri, A.; Ziliotto, U.; Scotton, M.; Bianchi, A.A.; Santilocchi, R.; Basso, F.; Postiglione, L.; et al. Caratterizzazione della dinamica produttiva di pascoli naturali italiani. Rivista di Agronomia 1992, 26 (Suppl. 3), 325–343. [Google Scholar]
- ISTAT. III Censimento Generale dell’Agricoltura; Istituto Nazionale di Statistica: Rome, Italy, 1982. [Google Scholar]
- ISTAT. IV Censimento Generale dell’Agricoltura; Istituto Nazionale di Statistica: Rome, Italy, 1990. [Google Scholar]
- ISTAT. V Censimento Generale dell’Agricoltura; Istituto Nazionale di Statistica: Rome, Italy, 2002. [Google Scholar]
- ISTAT. VI Censimento Generale dell’Agricoltura; Istituto Nazionale di Statistica: Rome, Italy, 2012. [Google Scholar]
- Bittante, G.; Pellattiero, E.; Cecchinato, A.; Tagliapietra, F.; Sturaro, E.; Ramanzin, M.; Pazzola, M.; Vacca, G.M.; Schiavon, S. Performance, carcass conformation and meat quality of suckling, weaned and heavy lambs, and culled fattened ewes of autochthonous alpine sheep breeds. Ital. J. Anim. Sci. 2021, 20, 970–984. [Google Scholar] [CrossRef]
- Veneto Agricoltura. BIONET 2017/2022. Rete Regionale per la Biodiversità di Interesse Agrario e Alimentare del Veneto; Protocolli di Conservazione in Veneto; Europrint S.r.l.-Quinto di Treviso: Treviso, Italy, 2018. [Google Scholar]
- Ministero delle Politiche Agricole, Alimentari e Forestali (MIPAF). Linee Guida per la conservazione e la caratterizzazione della biodiversità vegetale, animale e microbica d’interesse per l’agricoltura. Piano nazionale sulla biodiversità di interesse agricolo. Minerva Anestesiol. 2012, 68, 735–750. [Google Scholar]
- Dray, S.; Dufour, A.B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef] [Green Version]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [Green Version]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2020. Available online: http://qgis.osgeo.org (accessed on 4 May 2021).
- Risius, A.; Hamm, U. The effect of information on beef husbandry systems on consumers’ preferences and willingness to pay. Meat Sci. 2017, 124, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Bittante, G. Italian animal genetic resources in the Domestic Animal Diversity Information System of FAO. Ital. J. Anim. Sci. 2011, 10, e29. [Google Scholar] [CrossRef]
- Pilling, D.; Bélanger, J.; Diulgheroff, S.; Koskela, J.; Leroy, G.; Mair, G.; Hoffmann, I. Global status of genetic resources for food and agriculture: Challenges and research needs. Genet. Resour. 2020, 1, 4–16. [Google Scholar] [CrossRef]
- Sturaro, E.; Cocca, G.; Gallo, L.; Mrad, M.; Ramanzin, M. Sistemi zootecnici e stili aziendali sulle Alpi Orientali Italiane: Indagine su un campione di allevamenti. Ital. J. Anim. Sci. 2009, 8, 541–554. [Google Scholar] [CrossRef]
- Riedel, J.L.; Casasús, I.; Bernués, A. Sheep farming intensification and utilization of natural resources in a Mediterranean pastoral agro-ecosystem. Livest. Sci. 2007, 111, 153–163. [Google Scholar] [CrossRef]
- Sturaro, E.; Marchiori, E.; Cocca, G.; Penasa, M.; Ramanzin, M.; Bittante, G. Dairy systems in mountainous areas: Farm animal biodiversity, milk production and destination, and land use. Livest. Sci. 2013, 158, 157–168. [Google Scholar] [CrossRef]
- Hutchinson, C. Arid Lands: Today and Tomorrow; Routledge: London, UK, 2019; 1455p. [Google Scholar]
- Monteiro, A.; Costa, J.; Esteves, F.; Santos, S. Sheep Grazing Management in the Mountain Region: Serra da Estrela, Portugal; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Lindenmayer, D. Small patches make critical contributions to biodiversity conservation. Proc. Natl. Acad. Sci. USA 2019, 116, 717–719. [Google Scholar] [CrossRef] [Green Version]
- Ríos-Díaz, C.L.; Moreno, C.E.; Ortega-Martínez, I.J.; Zuria, I.; Escobar, F.; Castellanos, I. Sheep herding in small grasslands promotes dung beetle diversity in a mountain forest landscape. J. Insect Conserv. 2020, 25, 13–26. [Google Scholar] [CrossRef]
- Barron, L.J.R.; Andonegi, A.; Gamboa, G.; Garmendia, E.; García, O.; Aldai, N.; Aldezabal, A. Sustainability assessment of pasture-based dairy sheep systems: A multidisciplinary and multiscale approach. Sustainability 2021, 13, 3994. [Google Scholar] [CrossRef]
- Schleenbecker, R.; Hamm, U. Consumers’ perception of organic product characteristics. A review. Appetite 2013, 71, 420–429. [Google Scholar] [CrossRef]
- Escribano, A.J. Organic Livestock Farming—Challenges, Perspectives, and Strategies to Increase Its Contribution to the Agrifood System’s Sustainability—A Review. In Organic Farming—A Promising Way of Food Production; IntechOpen: London, UK, 2016. [Google Scholar]
- Baumont, R.; Carrère, P.; Jouven, M.; Lombardi, G.; López-Francos, A.; Martin, B.; Peeters, A.; Porqueddu, C. Forage Resources and Ecosystem Services Provided by Mountain and Mediterranean Grasslands and Rangelands; CIHEAM: Zaragoza, Spain, 2014; Volume 109, ISBN 2-85352-531-7. [Google Scholar]
- Cabo, P.; Castro, M.; Rodrigues, S.; Teixeira, A. Towards a sustainable sheep production in mountain territories: Value added products. In XII Congreso de Economia Agraria: La Sustenibiliad Agro-Territorial desde Europa: Livro de Atas; Asociación Española de Economía Agraria: Lugo, Spain, 2019; pp. 534–537. ISBN 978-84-09-13436-6. [Google Scholar]
- O’Rourke, E.; Charbonneau, M.; Poinsot, Y. High nature value mountain farming systems in Europe: Case studies from the Atlantic Pyrenees, France and the Kerry Uplands, Ireland. J. Rural Stud. 2016, 46, 47–59. [Google Scholar] [CrossRef]
- Poux, Z.; Pointereau, P. L’Agriculture à “Haute Valeur Naturelle” en France Métropolitane. In Un Indicateur Pour le Suivi de la Biodiversité et l’évaluation de la Politique de Développement Rural; Rapport d’étude au Ministère de l’agriculture de l’àgroalimentaire et de la forêt’ AscA, SOLAGRO: Paris, France, 2014; Available online: https://agriculture.gouv.fr/ (accessed on 15 January 2022).
Years | ||||
---|---|---|---|---|
1982 | 1990 | 2002 | 2012 | |
Cattle | ||||
Farms | 4763 | 2562 | 1137 | 717 |
Heads | 35,830 | 27,161 | 20,606 | 18,293 |
Sheep | ||||
Farms | 431 | 316 | 342 | 127 |
Heads | 4099 | 4638 | 5615 | 13,943 |
Goats | ||||
Farms | 399 | 211 | 244 | 74 |
Heads | 1354 | 1795 | 2318 | 2069 |
Variable | Unit | All Farms | Alpagota | Lamon |
---|---|---|---|---|
Farms | N | 35 | 17 | 18 |
Farmers’ features | ||||
Worker units, mean | N | 1.8 ± 1.3 | 1.8 ± 1.5 | 1.8 ± 1.1 |
Farmer age, mean | N | 47 ± 15 | 49 ± 15 | 45 ± 15 |
Other employment | % | 77 | 82 | 72 |
Local sheep breeds | ||||
Number of sheep 1,2, total | N | 1989 | 1652 | 337 |
LU 4 of local sheep breed/farm | N/farm | 8.5 | 14.6 ** 3 | 2.8 ** 3 |
Total LU 4,5/farm | LU/farm | 21.8 ± 40.5 | 22.0 ± 26.7 | 21.6 ± 51.1 |
Forage, mean | kg DM 6/head/day | 1.81 ± 0.50 | 1.81± 0.54 | 1.80 ± 0.40 |
Forage self-sufficiency | % | 88 | 91 | 84 |
Concentrate, mean | kg DM 6/head/day | 0.24 ± 0.22 | 0.19 ± 0.17 | 0.40 ± 0.24 |
Concentrate self-sufficiency | % | 10 | 6 | 13 |
Variable | Unit | All Farms | Alpagota | Lamon |
---|---|---|---|---|
Farms, mean | ||||
UAA 1 | ha | 30.2 ± 34.3 | 40.2 ± 40.9 | 20.2 ± 1.6 |
Grassland 2 | ha | 21.6 ± 26.7 | 27.4 ± 31.1 | 16.2 ± 21.4 |
Arable land | ha | 1.6 ± 2.5 | 1.3 ± 2.7 | 1.6 ± 2.3 |
Forest | ha | 7 ± 14.9 | 11.5 ± 19.5 | 1.9 ± 2.7 |
LU 3/UAA | N/ha | 0.7 | 0.6 | 0.9 |
LU/Grassland | N/ha | 1.0 | 0.8 | 1.3 |
Patches of grassland | ||||
Number | N | 3335 | 2131 | 1204 |
Patches/farm | 95 | 125 | 67 | |
Surface, mean | ha | 0.2 ± 0.8 | 0.2 ± 1.0 | 0.2 ± 0.4 |
Altitude, mean | m a.s.l. | 682 ± 292 | 680 ± 255 | 684 ± 350 |
Slope, mean | ° | 11 ± 8 | 12 ± 7 | 11 ± 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teston, M.; Orsi, M.; Bittante, G.; Cecchinato, A.; Gallo, L.; Gatto, P.; Macedo Mota, L.F.; Ramanzin, M.; Raniolo, S.; Tormen, A.; et al. Added Value of Local Sheep Breeds in Alpine Agroecosystems. Sustainability 2022, 14, 4698. https://doi.org/10.3390/su14084698
Teston M, Orsi M, Bittante G, Cecchinato A, Gallo L, Gatto P, Macedo Mota LF, Ramanzin M, Raniolo S, Tormen A, et al. Added Value of Local Sheep Breeds in Alpine Agroecosystems. Sustainability. 2022; 14(8):4698. https://doi.org/10.3390/su14084698
Chicago/Turabian StyleTeston, Marta, Matteo Orsi, Giovanni Bittante, Alessio Cecchinato, Luigi Gallo, Paola Gatto, Lucio Flavio Macedo Mota, Maurizio Ramanzin, Salvatore Raniolo, Antonella Tormen, and et al. 2022. "Added Value of Local Sheep Breeds in Alpine Agroecosystems" Sustainability 14, no. 8: 4698. https://doi.org/10.3390/su14084698
APA StyleTeston, M., Orsi, M., Bittante, G., Cecchinato, A., Gallo, L., Gatto, P., Macedo Mota, L. F., Ramanzin, M., Raniolo, S., Tormen, A., & Sturaro, E. (2022). Added Value of Local Sheep Breeds in Alpine Agroecosystems. Sustainability, 14(8), 4698. https://doi.org/10.3390/su14084698