Understanding Recent Trends in Global Sustainable Development Goal 6 Research: Scientometric, Text Mining and an Improved Framework for Future Research
Abstract
:1. Introduction
1.1. On SDG 6
1.2. On Bibliometrics
2. Materials and Methods
2.1. Literature Search Tool
2.2. Literature Search Strategy
2.2.1. Inclusion Step
2.2.2. Exclusion Step
- (a)
- The duration of the study was set from 2015 to 2021 (until 25 March), and all other years were excluded. From this, we can assume that this study has complete coverage of 6 years (2015–2020).
- (b)
- Upon the second round of manual checking, results that were found to have very little connection with SDG 6 in their research content, were removed.
- (c)
- Duplicate results were removed.
- (d)
- Results that were not published in English were removed.
- (e)
- To comply with our second and third steps of analysis (i.e., text analysis and comprehensive overview), results for which full text was unavailable to us were removed (see Supplementary File S1).
2.3. Text Mining
3. Results
3.1. Characteristics of Publication Outputs
3.2. Subject Categories
3.3. Top Output Analysis
3.3.1. Analysis of Sources (Journals)
3.3.2. Analysis of Authors
3.3.3. Analysis of Affiliations
3.3.4. Analysis of Countries
3.3.5. Analysis of Publication Documents
3.4. Academic Cooperation
3.5. Keyword Analysis and Hotspots
3.6. Research Trajectories
3.7. Text Mining
4. Interrelationships of Sustainable Development Goal 6
5. A proposal for Integrated Assessment of Future SDG 6 Research
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UN-Water. Summary Progress Update 2021—SDG 6—Water and Sanitation for All. Version: 1 March 2021. Geneva, Switzerland. Available online: https://www.unwater.org/publications/summary-progress-update-2021-sdg-6-water-and-sanitation-for-all/ (accessed on 20 March 2021).
- Hassan, S.U.; Haddawy, P.; Zhu, J. A bibliometric study of the world’s research activity in sustainable development and its sub-areas using scientific literature. Scientometrics 2014, 99, 549–579. [Google Scholar] [CrossRef]
- Zhu, J.; Hua, W. Visualizing the knowledge domain of sustainable development research between 1987 and 2015: A bibliometric analysis. Scientometrics 2017, 110, 893–914. [Google Scholar] [CrossRef]
- Körfgen, A.; Förster, K.; Glatz, I.; Maier, S.; Becsi, B.; Meyer, A.; Kromp-Kolb, H.; Stötter, J. It’s a Hit! Mapping Austrian research contributions to the sustainable development goals. Sustainability 2018, 10, 3295. [Google Scholar] [CrossRef] [Green Version]
- Olawumi, T.O.; Chan, D.W. A scientometric review of global research on sustainability and sustainable development. J. Clean. Prod. 2018, 183, 231–250. [Google Scholar] [CrossRef]
- Salvia, A.L.; Filho, W.L.; Brandli, L.L.; Griebeler, J.S. Assessing research trends related to Sustainable Development Goals: Local and global issues. J. Clean. Prod. 2019, 208, 841–849. [Google Scholar] [CrossRef] [Green Version]
- Meschede, C. The Sustainable Development Goals in Scientific Literature: A Bibliometric Overview at the Meta-Level. Sustainability 2020, 12, 4461. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, K.; Yu, Y.; Yang, B. Mapping of water footprint research: A bibliometric analysis during 2006–2015. J. Clean. Prod. 2017, 149, 70–79. [Google Scholar] [CrossRef]
- Mubako, S.T. Blue, Green, and Grey Water Quantification Approaches: A Bibliometric and Literature Review. J. Contemp. Water Res. Educ. 2018, 165, 4–19. [Google Scholar] [CrossRef]
- Martinez, S.; Delgado, M.M.; Marin, R.M.; Alvarez, S. Science mapping on the Environmental Footprint: A scientometric analysis-based review. Ecol. Indic. 2019, 106, 105543. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, S.; Han, X.; Gao, X.; He, G.; Zhao, Y.; Li, H. A Bibliometrics Review of Water Footprint Research in China: 2003–2018. Sustainability 2019, 11, 5082. [Google Scholar] [CrossRef] [Green Version]
- Armitage, C.S.; Lorenz, M.; Mikki, S. Mapping scholarly publications related to the Sustainable Development Goals—Do independent bibliometric approaches get the same results. Quant. Sci. Stud. 2020, 1, 1092–1108. [Google Scholar] [CrossRef]
- Ho, L.; Alonso, A.; Forio, M.A.E.; Vanclooster, M.; Goethals, P.L.M. Water research in support of the Sustainable Development Goal 6: A case study in Belgium. J. Clean. Prod. 2020, 277, 124082. [Google Scholar] [CrossRef]
- Ma, W.; Opp, C.; Yang, D. Past, Present, and Future of Virtual Water and Water Footprint. Water 2020, 12, 3068. [Google Scholar] [CrossRef]
- Sweileh, W.M. Bibliometric analysis of scientific publications on “sustainable development goals” with emphasis on “good health and well-being” goal (2015–2019). Glob. Health 2020, 16, 68. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xingchen, L.; Hu, X.; Hu, X. The landscape of academic articles in environmental footprint family research: A bibliometric analysis during 1996–2018. Ecol. Indic. 2020, 118, 106733. [Google Scholar] [CrossRef]
- Adetoro, A.A.; Ngidi, M.; Nyam, Y.S.; Orimoloye, I.R. Temporal evaluation of global trends in water footprint, water sustainability and water productivity research. Sci. Afr. 2021, 12, e00732. [Google Scholar] [CrossRef]
- Payumo, J.; He, G.; Manjunatha, A.C.; Higgins, D.; Calvert, S. Mapping Collaborations and Partnerships in SDG Research. Front. Res. Metr. Anal. 2021, 5, 612442. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, Y.; Zhou, R.; Hu, X.; Li, X. A comparative bibliometric analysis of Chinese and foreign articles in environmental footprint family (EFF) research. Environ. Sci. Pollut. Res. 2021, 28, 26280–26293. [Google Scholar] [CrossRef]
- Wu, L.; Huang, K.; Ridoutt, B.G.; Yu, Y.; Chen, Y. A planetary boundary-based environmental footprint family: From impacts to boundaries. Sci. Total Environ. 2021, 785, 147383. [Google Scholar] [CrossRef]
- Roy, A.; Pramanick, K. Analysing progress of sustainable development goal 6 in India: Past, present, and future. J. Environ. Manag. 2019, 232, 1049–1065. [Google Scholar] [CrossRef]
- Bunsen, J.; Berger, M.; Finkbeiner, M. Planetary boundaries for water—A review. Ecol. Indic. 2021, 121, 107022. [Google Scholar] [CrossRef]
- Gleeson, T.; Wang-Erlandsson, L.; Porkka, M.; Zipper, S.C.; Jaramillo, F.; Gerten, D.; Fetzer, I.; Cornell, S.E.; Piemontese, L.; Gordon, L.J.; et al. Illuminating water cycle modifications and Earth system resilience in the Anthropocene. Water Resour. Res. 2020, 56, e2019WR024957. [Google Scholar] [CrossRef] [Green Version]
- Gleeson, T.; Wang-Erlandsson, L.; Zipper, S.C.; Porkka, M.; Jaramillo, F.; Gerten, D.; Fetzer, I.; Cornell, S.E.; Piemontese, L.; Gordon, L.J.; et al. The water planetary boundary: Interrogation and revision. One Earth 2020, 2, 223–234. [Google Scholar] [CrossRef]
- Li, M.; Wiedmann, T.; Liu, J.; Wang, Y.; Hu, Y.; Zhang, Z.; Hadjikakou, M. Exploring consumption-based planetary boundary indicators: An absolute water footprinting assessment of Chinese provinces and cities. Water Res. 2020, 184, 116163. [Google Scholar] [CrossRef] [PubMed]
- Zipper, S.C.; Jaramillo, F.; Wang- Erlandsson, L.; Cornell, S.E.; Gleeson, T.; Porkka, M.; Häyhä, T.; Crépin, A.-S.; Fetzer, I.; Gerten, D.; et al. Integrating the water planetary boundary with water management from local to global scales. Earth’s Future 2020, 8, e2019EF001377. [Google Scholar] [CrossRef] [Green Version]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Ooms, J. pdftools: Text Extraction, Rendering and Converting of PDF Documents. 2020. R Package Version 2.3.1. Available online: https://CRAN.R-project.org/package=pdftools (accessed on 20 June 2021).
- Jacobi, C.; van Atteveldt, W.; Welbers, K. Quantitative analysis of large amounts of journalistic texts using topic modelling. Digit. J. 2016, 4, 89–106. [Google Scholar] [CrossRef]
- Silge, J.; Robinson, D. Text Mining with R: A Tidy Approach, 1st ed.; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017; ISBN 978-14-9-198165-8. [Google Scholar]
- Nikita, M. ldatuning: Tuning of the Latent Dirichlet Allocation Models Parameters. 2020 R Package Version 1.0.2. Available online: https://CRAN.R-project.org/package=ldatuning (accessed on 20 May 2021).
- Deveaud, R.; Sanjuan, E.; Bellot, P. Accurate and effective latent concept modeling for ad hoc information retrieval. Doc. Numérique 2014, 17, 61–84. [Google Scholar] [CrossRef] [Green Version]
- Grün, B.; Hornik, K. Topicmodels: An R Package for Fitting Topic Models. J. Stat. Softw. 2011, 40, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Alcamo, J. Water quality and its interlinkages with the Sustainable Development Goals. Curr. Opin. Environ. Sustain. 2018, 36, 126–140. [Google Scholar] [CrossRef]
- Fader, M.; Cranmer, C.; Lawford, R.; Cox, J.E. Toward an Understanding of Synergies and Trade-Offs Between Water, Energy, and Food SDG Targets. Front. Environ. Sci. 2018, 6, 112. [Google Scholar] [CrossRef]
- Flo¨rke, M.; Bärlund, I.; van Vliet, M.T.H.; Bouwman, A.F.; Wada, Y. Analysing trade-offs between SDGs related to water quality using salinity as a marker. Curr. Opin. Environ. Sustain. 2018, 36, 96–104. [Google Scholar] [CrossRef]
- Requejo-Castro, D.; Giné-Garriga, R.; Pérez-Foguet, A. Data-driven Bayesian network modelling to explore the relationships between SDG 6 and the 2030 Agenda. Sci. Total Environ. 2019, 710, 136014. [Google Scholar] [CrossRef]
- Velis, M.; Conti, K.I.; Biermann, F. Groundwater and human development: Synergies and trade-offs within the context of the sustainable development goals. Sustain. Sci. 2017, 12, 1007–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amrose, S.; Burt, Z.; Ray, I. Safe Drinking Water for Low-Income Regions. Annu. Rev. Environ. Resour. 2015, 40, 203–231. [Google Scholar] [CrossRef] [Green Version]
- Howard, G.; Carlow, R.; Macdonald, A.; Bartram, J. Climate Change and Water and Sanitation: Likely Impacts and Emerging Trends for Action. Annu. Rev. Environ. Resour. 2016, 41, 253–276. [Google Scholar] [CrossRef] [Green Version]
- Herrera, V. Reconciling global aspirations and local realities: Challenges facing the Sustainable Development Goals for water and sanitation. World Dev. 2019, 118, 106–117. [Google Scholar] [CrossRef]
- Hyun, C.; Burt, Z.; Crider, Y.; Nelson, K.L.; Prasad, C.S.S.; Rayasam, S.D.G.; Tarpeh, W.; Ray, I. Sanitation for Low-Income Regions: A Cross-Disciplinary Review. Annu. Rev. Environ. Resour. 2019, 44, 287–318. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.I.; Hecht, C.E.; Cradock, A.; Edwards, M.A.; Ritchie, L.D. Drinking Water in the United States: Implications of Water Safety, Access, and Consumption. Annu. Rev. Nutr. 2020, 40, 345–373. [Google Scholar] [CrossRef]
- Falkenmark, M. Water resilience and human life support—global outlook for the next half century. Int. J. Water Resour. Dev. 2020, 36, 377–396. [Google Scholar] [CrossRef] [Green Version]
- Falkenmark, M.; Wang-Erlandsson, L. A water-function-based framework for understanding and governing water resilience in the Anthropocene. One Earth 2021, 4, 213–225. [Google Scholar] [CrossRef]
- Narayan, A.S.; Marks, S.J.; Meierhofer, R.; Strande, L.; Tilley, E.; Zurbrügg, C.; Lüthi, C. Advancements in and Integration of Water, Sanitation, and Solid Waste for Low- and Middle-Income Countries. Annu. Rev. Environ. Resour. 2021, 46, 193–219. [Google Scholar] [CrossRef]
- Willcock, S.; Parker, A.; Wilson, C.; Brewer, T.; Bundhoo, D.; Cooper, S.; Lynch, K.; Mekala, S.; Mishra, P.P.; Rey, D.; et al. Nature provides valuable sanitation services. One Earth 2021, 4, 192–201. [Google Scholar] [CrossRef]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sust Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef] [Green Version]
- UN-Water. The United Nations World Water Development Report 2021: Valuing Water; ISBN 978-92-3-100434-6. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000375724) (accessed on 25 March 2021).
- Arun, R.; Suresh, V.; Veni Madhavan, C.E.; Murthy, N. On finding the natural number of topics with latent dirichlet allocation: Some observations. In Advances in Knowledge Discovery and Data Mining; Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 391–402. [Google Scholar] [CrossRef]
- Cao, J.; Xia, T.; Li, J.; Zhang, Y.; Tang, S. A density-based method for adaptive lda model selection. Neurocomputing 2009, 72, 1775–1781. [Google Scholar] [CrossRef]
- Griffiths, T.L.; Steyvers, M. Finding scientific topics. Proc. Natl. Acad. Sci. USA 2004, 101 (Suppl. 1), 5228–5235. [Google Scholar] [CrossRef] [Green Version]
Author(s) | Overview Period | Focus | Database | Documents |
---|---|---|---|---|
Hassan et al. [2] | 2000–2010 | sustainable development | Scopus | NA |
Zhang et al. [8] | 2006–2015 | water footprint, virtual water, | WoS | 636 |
Zhu & Hua [3] | 1987–2015 | sustainable development | WoS | 59,926 (special selection-626) |
Körfgen et al. [4] | 2013–2017 | sustainable development goals | IRDS | 28,229 (and 3581 projects) |
Mubako [9] | 2000–2018 | blue, green, grey water | WoS | 192 |
Olawumi & Chan [5] | 1991–2016 | sustainability; sustainable development; | WoS | 2094 |
Martinez et al. [10] | 1992–2018 | environmental footprint; life-cycle assessment; | WoS | 1472 |
Zhu et al. [11] | 2003–2018 | water footprint; china; virtual water; | WoS, CNKI | 1564 |
Armitage et al. [12] | 2015–2018 | sustainable development goals 1, 2, 3, 7, 13, 14 | WoS, | 500 |
Ho et al. [13] | 1926–2019 | sustainable development goal 6; Belgium; | Scopus | 5703 |
Ma et al. [14] | 1993–2020 | water footprint; virtual water; | WoS | 1592 |
Meschede [7] | 2015–2019 | sustainable development goals | Scopus, WoS, | 4593 |
Sweileh [15] | 2015–2019 | sustainable development goal 3 | Scopus | 18,696 |
Xie et al. [16] | 1996–2018 | environmental footprint; | WoS | 6680 |
Adetoro et al. [17] | 1987–2019 | water footprint, water sustainability, water productivity (WFSP) | Scopus, WoS, | 2059 |
Payumo et al. [18] | 1999–2018 | millennium development goals, sustainable development goals, | MAG | 16,447 |
Wang et al. [19] | 1996–2019 | environmental footprint family | WoS | 7114 |
Wu et al. [20] | 1986–2019 | environmental footprint family (carbon, nitrogen, phosphorus, ozone, PM10, PM2.5, chemical, water, land and biodiversity footprint) | WoS | 4352 |
Ranking | Abstracts | Author’s Keywords | Keywords Plus | Titles |
---|---|---|---|---|
1 | data (219) | groundwater (14) | drinking-water (19) | quality (30) |
2 | quality (213) | water quality (14) | climate-change (18) | drinking (24) |
3 | drinking (189) | wash (12) | quality (16) | rural (24) |
4 | access (162) | drinking water (11) | health (15) | urban (23) |
5 | health (154) | water supply (9) | challenges (13) | monitoring (21) |
6 | monitoring (151) | Malawi (8) | groundwater (12) | achieving (17) |
7 | targets (141) | water governance (8) | contamination (10) | supply (17) |
8 | countries (140) | climate change (7) | impact (10) | challenges (16) |
9 | services (135) | developing countries (7) | model (10) | health (16) |
10 | global (123) | Africa (6) | systems (10) | Africa (15) |
Ranking | Abstracts | Author’s Keywords | Keywords Plus | Titles |
---|---|---|---|---|
1 | data (214, 2020) | sanitation (20, 2020) | drinking-water (19, 2019) | development (89, 2020) |
2 | quality (205, 2020) | sustainability (19, 2019) | climate-change (18, 2020) | quality (29, 2020) |
3 | improved (56, 2018) | sustainable (18, 2019) | quality (16, 2020) | urban (22, 2019) |
4 | cooperation (37, 2018) | sustainable development (16, 2018) | health (15, 2019) | achieving (17, 2019) |
5 | interactions (35, 2018) | groundwater (14, 2020) | challenges (13, 2020) | services (10, 2018) |
6 | basic (31, 2018) | wash (12, 2019) | groundwater (12, 2020) | south (8, 2018) |
7 | projects (30, 2018) | development goals (7, 2018) | impact (10, 2019) | risk (7, 2018) |
8 | sludge (25, 2021) | water scarcity (6, 2018) | consumption (8, 2018) | data (6, 2018) |
9 | coli (19, 2021) | rural (5, 2017) | children (6, 2018) | improved (6, 2018) |
10 | nexus (18, 2021) | water and sanitation (5, 2018) | nexus (6, 2018) | sludge (5, 2021) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roy, A.; Basu, A.; Su, Y.; Li, Y.; Dong, X. Understanding Recent Trends in Global Sustainable Development Goal 6 Research: Scientometric, Text Mining and an Improved Framework for Future Research. Sustainability 2022, 14, 2208. https://doi.org/10.3390/su14042208
Roy A, Basu A, Su Y, Li Y, Dong X. Understanding Recent Trends in Global Sustainable Development Goal 6 Research: Scientometric, Text Mining and an Improved Framework for Future Research. Sustainability. 2022; 14(4):2208. https://doi.org/10.3390/su14042208
Chicago/Turabian StyleRoy, Ajishnu, Aman Basu, Yanyu Su, Yan Li, and Xuhui Dong. 2022. "Understanding Recent Trends in Global Sustainable Development Goal 6 Research: Scientometric, Text Mining and an Improved Framework for Future Research" Sustainability 14, no. 4: 2208. https://doi.org/10.3390/su14042208