Enhanced CO Gas Sensing with DFT Optimized PbS Loading on ZnO and CrZnO Nanocomposites
Abstract
:Highlights
- A DFT theoretical approach was performed prior to experimental work.
- Nanofilm gas sensors were fabricated using synthesized nanocomposites and calcined at 400 °C.
- ZnO, CrZnO, PbS-loaded ZnO, and CrZnO were synthesized using a sol–gel method.
- Theoretical DFT band gap data supports the obtained experimental values.
- Sensitivity and response-recovery times of fabricated gas sensors were analyzed for use with CO gas.
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. DFT Computational Methods
2.3. Synthesis of Pure ZnO and CrZnO Nanoparticles
2.4. Synthesis of PbS Nanoparticles
2.5. Synthesis of PbS-Loaded Pure ZnO and CrZnO Nanocomposite
2.6. Materials Characterization
2.7. Gas Sensor Fabrication
2.8. Gas Sensor Setup
2.9. Gas Sensing Procedure
3. Results and Discussion
3.1. DFT Calculation Results
3.1.1. Global Molecular Reactivity of the Surface
3.1.2. Adsorption Property of CO on the Surface
3.2. XRD
3.3. SEM
3.4. UV–Vis
3.5. BET
3.6. Gas Sensor Sensitivity
3.7. Response-Recovery Time
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harale, N.S.; Kamble, A.S.; Tarwal, N.L.; Mulla, I.S.; Rao, V.K.; Kim, J.H.; Patil, P.S. Hydrothermally grown ZnO nanorods arrays for selective NO2 gas sensing: Effect of anion generating agents. Ceram Int. 2016, 42, 12807–12814. [Google Scholar] [CrossRef]
- Chandrasekaran, S. Health, Safety, and Environmental Management in Offshore and Petroleum Engineering; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Chaulya, S.K.; Prasad, G.M. Gas Sensors for Underground Mines and Hazardous Areas. Sens. Monit. Technol. Mines Hazard. Areas 2016, 161–212. [Google Scholar] [CrossRef]
- Pineda-Reyes, A.M.; Herrera-Rivera, M.R.; Rojas-Chávez, H.; Cruz-Martínez, H.; Medina, D.I.; Rivera, M.R.H.; Rojas-Chávez, H.; Cruz-Martínez, H.; Medina, P.; Viterbo, J.; et al. Recent Advances in ZnO-Based Carbon Monoxide Sensors: Role of Doping. Sensors 2021, 21, 4425. [Google Scholar] [CrossRef] [PubMed]
- Transportation Research Board and National Research Council. The Ongoing Challenge of Managing Carbon Monoxide Pollution in Fairbanks, Alaska: Interim Report; The National Academies Press: Washington, DC, USA, 2002. [Google Scholar] [CrossRef]
- Kalay, N. What are the cardiac effects of carbon monoxide poisoning in the acute and chronic periods? Am. J. Emerg. Med. 2016, 34, 1303. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- National Institute for Occupational Safety and Health. NIOSH Pocket Guide to Chemical Hazards—Welding Fumes, DHHS (NIOSH) Publication; National Institute for Occupational Safety and Health: Washington, DC, USA, 2007; p. 334. [Google Scholar]
- Yamazoe, N.; Shimanoe, K. Overview of gas sensor technology. In Science and Technology of Chemiresistor Gas Sensors; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2007; pp. 1–31. [Google Scholar]
- Isik, E.; Tasyurek, L.B.; Isik, I.; Kilinc, N. Synthesis and analysis of TiO2 nanotubes by electrochemical anodization and machine learning method for hydrogen sensors. Microelectron Eng. 2022, 262, 111834. [Google Scholar] [CrossRef]
- Li, Y.; Abedalwafa, M.A.; Tang, L.; Li, D.; Wang, L. Electrospun nanofibers for sensors. In Electrospinning: Nanofabrication and Applications; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Kang, Y.; Yu, F.; Zhang, L.; Wang, W.; Chen, L.; Li, Y. Review of ZnO-based nanomaterials in gas sensors. Solid State Ion 2021, 360, 115544. [Google Scholar] [CrossRef]
- Sarkar, A.; Maity, S.; Chakraborty, P.; Chakraborty, S.K. Synthesize of ZnO Nano Structure for Toxic Gas Sensing Application. Procedia Comput. Sci. 2016, 92, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Bhati, V.S.; Hojamberdiev, M.; Kumar, M. Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Rep. 2020, 6, 46–62. [Google Scholar] [CrossRef]
- Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 2010, 10, 2088–2106. [Google Scholar] [CrossRef] [Green Version]
- Ha, N.H.; Thinh, D.D.; Huong, N.T.; Phuong, N.H.; Thach, P.D.; Hong, H.S. Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide. Appl. Surf. Sci. 2018, 434, 1048–1054. [Google Scholar] [CrossRef]
- Nakarungsee, P.; Srirattanapibul, S.; Issro, C.; Tang, I.M.; Thongmee, S. High performance Cr doped ZnO by UV for NH3 gas sensor. Sens. Actuators A Phys. 2020, 314, 112230. [Google Scholar] [CrossRef]
- Kösemen, A.; Kösemen, Z.A.; Öztürk, S.; Kılınç, N.; San, S.E.; Tunç, A.V. Electrochemical Growth of Pd Doped ZnO Nanorods. J. Electrochem. Soc. 2015, 162, D142–D146. [Google Scholar] [CrossRef]
- Changqi, X.; Zhicheng, Z.; Hailong, W.; Qiang, Y. A novel way to synthesize lead sulfide QDs via γ-ray irradiation. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2003, 104, 5–8. [Google Scholar] [CrossRef]
- De Iacovo, A.; Venettacci, C.; Colace, L.; Scopa, L.; Foglia, S. PbS Colloidal Quantum Dot Photodetectors operating in the near infrared. Sci. Rep. 2016, 6, 37913. [Google Scholar] [CrossRef] [Green Version]
- De Iacovo, A.; Venettacci, C.; Bruno, S.A.; Colace, L. Lead sulphide colloidal quantum dots for sensing applications. In Proceedings of the PHOTOPTICS 2019—Proceedings of the 7th International Conference on Photonics, Optics and Laser Technology, Prague, Czech Republic, 25–27 February 2019; pp. 235–240. [Google Scholar] [CrossRef]
- Liu, H.; Li, M.; Voznyy, O.; Hu, L.; Fu, Q.; Zhou, D.; Xia, Z.; Sargent, E.H.; Tang, J. Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 2014, 26, 2718–2724. [Google Scholar] [CrossRef]
- Mosahebfard, A.; Roshan, H.; Sheikhi, M.H. Enhancement of Methane Gas Sensing Characteristics of Lead Sulfide Colloidal Nanocrystals by Silver Nanoparticles Decoration. IEEE Sens. J. 2017, 17, 3375–3380. [Google Scholar] [CrossRef]
- Compagnone, D.; Di Francia, G.; Di Natale, C.; Neri, G.; Seeber, R.; Tajani, A. Chemical sensors and biosensors in Italy: A review of the 2015 literature. Sensors 2017, 17, 868. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, A.; Lee, J.H.; Majhi, S.M.; Weber, M.; Bechelany, M.; Kim, H.W.; Kim, S.S. Resistive gas sensors based on metal-oxide nanowires. J. Appl. Phys. 2019, 126, 241102. [Google Scholar] [CrossRef] [Green Version]
- Van Mourik, T.; Bühl, M.; Gaigeot, M.P. Density functional theory across chemistry, physics and biology. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20120488. [Google Scholar] [CrossRef] [Green Version]
- Baseden, K.A.; Tye, J.W. Introduction to density functional theory: Calculations by hand on the helium atom. J. Chem. Educ. 2014, 91, 2116–2123. [Google Scholar] [CrossRef]
- Kurth, S.; Marques, M.A.L.; Gross, E.K.U. Density-Functional Theory. Encycl. Condens. Matter Phys. 2005, 395–402. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision B.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView Version 6.0.16; Semichem Inc.: Shawnee Mission, KS, USA, 2019. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becke, A. A New Mixing of Hartree-Fock and Local Density Functional Theories. J. Chem. Phys. 1993, 98, 1372. [Google Scholar] [CrossRef]
- Wadt, W.; Hay, P. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298. [Google Scholar] [CrossRef]
- Hay, P.; Wadt, W. Ab initio Effective core potentials for molecular calculations—Potentials for the transition-metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283. [Google Scholar] [CrossRef]
- Hay, P.; Wadt, W. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
- Hajjaji, F.E.L.; Salim, R.; Taleb, M.; Benhiba, F.; Rezki, N.; Chauhan, D.S.; Quraishi, M.A. Pyridinium-based ionic liquids as novel eco-friendly corrosion inhibitors for mild steel in molar hydrochloric acid: Experimental & computational approach. Surf. Interfaces 2021, 22, 100881. [Google Scholar] [CrossRef]
- Syaahiran, A.; Lim, C.M.; Kooh, M.R.R.; Mahadi, A.H.; Chau, Y.F.C.; Thotagamuge, R. A Theoretical Insight of Cr Dopant in Tungsten Oxide for Gas Sensor Application. Mater. Today Commun. 2021, 28, 102508. [Google Scholar] [CrossRef]
- Yang, T.; Jin, W.; Liu, Y.; Li, H.; Yang, S.; Chen, W. Surface reactions of CH3OH, NH3 and CO on ZnO nanorod arrays film: DFT investigation for gas sensing selectivity mechanism. Appl. Surf. Sci. 2018, 457, 975–980. [Google Scholar] [CrossRef]
- Habib, I.Y.; Tajuddin, A.A.; Noor, H.A.; Lim, C.M.; Mahadi, A.H.; Kumara, N.T.R.N. Enhanced Carbon monoxide-sensing properties of Chromium-doped ZnO nanostructures. Sci. Rep. 2019, 9, 9207. [Google Scholar] [CrossRef] [Green Version]
- Tauc, T.; Kubelka, P.; Munk, F.; Information, S.; Tauc, T. How To Correctly Determine the Band Gap Energy of Modi fi ed Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Li, R.; Meng, F.; Zhang, J.; Zuo, K.; Han, E. Approaches to enhancing gas sensing properties: A review. Sensors 2019, 19, 1495. [Google Scholar] [CrossRef] [Green Version]
- Ganbavle, V.V.; Inamdar, S.I.; Agawane, G.L.; Kim, J.H.; Rajpure, K.Y. Synthesis of fast response, highly sensitive and selective Ni:ZNO based NO2 sensor. Chem. Eng. J. 2016, 286, 36–47. [Google Scholar] [CrossRef]
- Tayade, N.; Mane, S.M.; Tirpude, M.P.; Shin, J.C. Perspective of Zn3O3 ring cluster via density functional theory. Mater. Today Commun. 2021, 27, 102343. [Google Scholar] [CrossRef]
- Kumar, N.V.S.; Rao, L.S. Theoretical insights into interaction energy, IR intensity and Raman activity enhancements of H2O adsorbed on Mg containing Zn3O3 nanoclusters: A computational study. Comput. Theor. Chem. 2022, 1212, 113708. [Google Scholar] [CrossRef]
- Cheng, X.; Li, F.; Zhao, Y. A DFT investigation on ZnO clusters and nanostructures. J. Mol. Struct. Theochem 2009, 894, 121–127. [Google Scholar] [CrossRef]
- Perera, D.; Rasaiah, J. Exchange Functionals and Basis Sets for Density Functional Theory Studies of Water Splitting on Selected ZnO Nanocluster Catalysts. ACS Omega 2022, 7, 12556–12669. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, B. Study on the Mixed ZnO Clusters and Ring-Like ZnO Ions. J. Clust. Sci. 2018, 29, 897–908. [Google Scholar] [CrossRef]
- AlSunaidi, A. Small Nanoclusters of ZnO and ZnS: A Density-Functional Study. AIP Conf. Proc. 2007, 929, 43–47. [Google Scholar] [CrossRef]
- Pearson, R. Chemical hardness and density functional theory. J. Chem. Sci. 2005, 117, 369–377. [Google Scholar] [CrossRef]
- Pearson, R. The electronic chemical potential and chemical hardness. J. Mol. Struct.-Theochem 1992, 255, 261–270. [Google Scholar] [CrossRef]
- Chattaraj, P.; Giri, S. Electrophilicity index within a conceptual DFT framework. Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 2009, 105, 13–39. [Google Scholar] [CrossRef]
- Shokri, A.; Salami, N. Gas sensor based on MoS2 monolayer. Sens. Actuators B Chem. 2016, 236, 378–385. [Google Scholar] [CrossRef]
- Syaahiran, M.; Mahadi, A.; Chee, M.; Lim, M.; Raziq, R.; Kooh, M.R.R.; Chou, C.; Chiang, H.P.; Thotagamuge, R. Theoretical Study of CO Adsorption Interactions with Cr-Doped Tungsten Oxide/Graphene Composites for Gas Sensor Application. ACS Omega 2022, 7, 528. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, B.; Endo, T.; Kaneko, S.; Murali, K.R.; John, R. Properties of sol gel synthesized ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 2018, 29, 9474–9485. [Google Scholar] [CrossRef]
- Zhang, Q.P.; Xu, X.N.; Liu, Y.T.; Xu, M.; Deng, S.H.; Chen, Y.; Yuan, H.; Yu, F.; Huang, Y.; Zhao, K.; et al. A feasible strategy to balance the crystallinity and specific surface area of metal oxide nanocrystals. Sci. Rep. 2017, 7, 46424. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-J.; Yang, T.-L.; Weng, Y.-C. Synthesis and characterization of Cr-doped ZnO nanorod-array photocatalysts with improved activity. J. Solid State Chem. 2014, 214, 101–107. [Google Scholar] [CrossRef]
- Hasnidawani, J.N.; Azlina, H.N.; Norita, H.; Bonnia, N.N.; Ratim, S.; Ali, E.S. Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chem. 2016, 19, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Musat, V.; Rego, A.M.; Monteiro, R.; Fortunato, E. Microstructure and gas-sensing properties of sol-gel ZnO thin films. Thin Solid Films 2008, 516, 1512–1515. [Google Scholar] [CrossRef]
- Zhang, Y. ZnO Nanostructures: Fabrication and Applications; Royal Society of Chemistry: London, UK, 2017; Volume 43. [Google Scholar]
- Kolodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide-from synthesis to application: A review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [Green Version]
- Perillo, P.M.; Atia, M.N.; Rodríguez, D.F. Studies on the growth control of ZnO nanostructures synthesized by the chemical method. Rev. Mater. 2018, 23. [Google Scholar] [CrossRef] [Green Version]
- Bai, R.; Chaudhary, S.; Pandya, D.K. Temperature dependent charge transport mechanisms in highly crystalline p-PbS cubic nanocrystals grown by chemical bath deposition. Mater. Sci. Semicond. Process. 2018, 75, 301–310. [Google Scholar] [CrossRef]
- Navaneethan, M.; Archana, J.; Nisha, K.D.; Ponnusamy, S.; Arivanandhan, M.; Hayakawa, Y.; Muthamizhchelvan, C. Organic ligand assisted low temperature synthesis of lead sulfide nanocubes and its optical properties. Mater. Lett. 2012, 71, 44–47. [Google Scholar] [CrossRef]
- Emadi, H.; Salavati-Niasari, M. Hydrothermal synthesis and characterization of lead sulfide nanocubes through simple hydrothermal method in the presence of [bis(salicylate)lead(II)] as a new precursor. Superlattices Microstruct. 2013, 54, 118–127. [Google Scholar] [CrossRef]
- Davis, K.; Yarbrough, R.; Froeschle, M.; White, J.; Rathnayake, H. Band gap engineered zinc oxide nanostructures via a sol-gel synthesis of solvent driven shape-controlled crystal growth †. RSC Adv. 2019, 9, 14638–14648. [Google Scholar] [CrossRef]
- Gopi, C.V.V.M.; Venkata-Haritha, M.; Lee, Y.-S.; Kim, H.-J. ZnO nanorods decorated with metal sulfides as stable and efficient counter-electrode materials for high-efficiency quantum dot-sensitized solar cells. J. Mater. Chem. A Mater. 2016, 4, 8161–8171. [Google Scholar] [CrossRef]
- Mano, G.; Harinee, S.; Sridhar, S.; Ashok, M.; Viswanathan, A.; Zno, Z. Microwave assisted synthesis of Zno-pbS heterojuction for degradation of organic pollutants under visible light. Sci. Rep. 2020, 10, 2224. [Google Scholar] [CrossRef] [Green Version]
- Thirumoorthi, M.; Dhavud, S.S.; Ganesh, V.; al Abdulaal, T.H.; Yahia, I.S.; Deivatamil, D. High responsivity n-ZnO/p-CuO heterojunction thin film synthesised by low-cost SILAR method for photodiode applications. Opt. Mater. 2022, 128, 112410. [Google Scholar] [CrossRef]
- Ahmad, R.; Majhi, S.M.; Zhang, X.; Swager, T.M.; Salama, K.N. Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Adv. Colloid Interface Sci. 2019, 270, 1–27. [Google Scholar] [CrossRef]
- Xu, X.L.; Chen, Y.; Ma, S.Y.; Li, W.Q.; Mao, Y.Z. Excellent acetone sensor of La-doped ZnO nanofibers with unique bead-like structures. Sens. Actuators B Chem. 2015, 213, 222–233. [Google Scholar] [CrossRef]
Structure | EHOMO | ELUMO | Eg | ETotal | η | μ | ω |
---|---|---|---|---|---|---|---|
Zn3O3 | −6.858 | −3.105 | 3.753 | −1.15 × 104 | 3.75 | −4.98 | 3.31 |
CrZn2O3 | −4.930 | −3.194 | 1.736 | −1.21 × 104 | 1.74 | −4.06 | 4.75 |
PbS | −6.754 | −2.683 | 4.071 | −3.71 × 102 | 4.07 | −4.72 | 2.73 |
PbS/Zn3O3 | −6.868 | −3.328 | 3.540 | −1.19 × 104 | 3.54 | −5.10 | 3.67 |
PbS/CrZn2O3 | −4.930 | −3.413 | 1.518 | −1.24 × 104 | 1.52 | −4.17 | 5.73 |
Structure | EHOMO | ELUMO | Eg | ETotal | Eads | dCO |
---|---|---|---|---|---|---|
CO–PbS/Zn3O3 | −6.839 | −3.277 | 3.561 | −1.50 × 104 | −0.112 | −5.10 |
CO–PbS/CrZn2O3 | −4.680 | −3.635 | 1.045 | −1.55 × 104 | −0.655 | −4.17 |
Material | Calculated DRS Band Gap (eV) | DFT Simulation Band Gap (eV) |
---|---|---|
ZnO | 4.813 | 3.753 |
0.5 wt% CrZnO | 5.068 | 1.736 |
PbS | 4.836 | 4.071 |
1.5 wt% PbS-ZnO | 4.795 | 3.540 |
1.5 wt% PbS-CrZnO | 3.337 | 1.518 |
Material | BET Surface Area (m²/g) | Pore Size (nm) |
---|---|---|
ZnO | 13.9 | 24.9 |
0.5 wt% CrZnO | 11.7 | 22.2 |
PbS | 16.5 | 30.7 |
1.5 wt% PbS-ZnO | 16.4 | 12.9 |
1.5 wt% PbS-CrZnO | 18.2 | 30.0 |
Material | Sensitivity (%) at Various CO Concentration | ||
---|---|---|---|
100 ppmv | 200 ppmv | 300 ppmv | |
ZnO | 58.8 | 109.0 | 127.2 |
0.5 wt% CrZnO | 33.0 | 78.3 | 122.1 |
PbS | 54.1 | 91.4 | 90.9 |
1.5 wt% PbS-ZnO | 26.5 | 131 | 122 |
1.5 wt% PbS-CrZnO | 78.5 | 139.4 | 195.2 |
CO Concentration | ||||||
---|---|---|---|---|---|---|
100 ppmv | 200 ppmv | 300 ppmv | ||||
Material | Response | Recovery | Response | Recovery | Response | Recovery |
ZnO | 141.1 | 214.4 | 129.3 | 246.7 | 153.1 | 254.6 |
0.5 wt% CrZnO | 155.4 | 241.7 | 146.3 | 268.8 | 115.6 | 217.0 |
PbS | 141.5 | 276.1 | 135.6 | 275.3 | 141.1 | 284.5 |
1.5 wt% PbS-ZnO | 131.8 | 223.7 | 132.9 | 227.5 | 119.6 | 223.8 |
1.5 wt% PbS-CrZnO | 123.6 | 231.3 | 120.5 | 232.2 | 117.0 | 237.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brahim, N.S.; Thotagamuge, R.; Kooh, M.R.R.; Lim, C.M.; Syaahiran, M.A.; Usman, A.; Shahri, N.N.M.; Chou Chau, Y.-F.; Chou Chao, C.-T.; Chiang, H.-P.; et al. Enhanced CO Gas Sensing with DFT Optimized PbS Loading on ZnO and CrZnO Nanocomposites. Sustainability 2022, 14, 13978. https://doi.org/10.3390/su142113978
Brahim NS, Thotagamuge R, Kooh MRR, Lim CM, Syaahiran MA, Usman A, Shahri NNM, Chou Chau Y-F, Chou Chao C-T, Chiang H-P, et al. Enhanced CO Gas Sensing with DFT Optimized PbS Loading on ZnO and CrZnO Nanocomposites. Sustainability. 2022; 14(21):13978. https://doi.org/10.3390/su142113978
Chicago/Turabian StyleBrahim, Nur Sadrina, Roshan Thotagamuge, Muhammad Raziq Rahimi Kooh, Chee Ming Lim, Mohammad Ammar Syaahiran, Anwar Usman, Nurulizzatul Ningsheh M. Shahri, Yuan-Fong Chou Chau, Chung-Ting Chou Chao, Hai-Pang Chiang, and et al. 2022. "Enhanced CO Gas Sensing with DFT Optimized PbS Loading on ZnO and CrZnO Nanocomposites" Sustainability 14, no. 21: 13978. https://doi.org/10.3390/su142113978
APA StyleBrahim, N. S., Thotagamuge, R., Kooh, M. R. R., Lim, C. M., Syaahiran, M. A., Usman, A., Shahri, N. N. M., Chou Chau, Y.-F., Chou Chao, C.-T., Chiang, H.-P., & Mahadi, A. H. (2022). Enhanced CO Gas Sensing with DFT Optimized PbS Loading on ZnO and CrZnO Nanocomposites. Sustainability, 14(21), 13978. https://doi.org/10.3390/su142113978