A Tool for the Assessment of Forest Biomass as a Source of Rural Sustainable Energy in Natural Areas in Honduras
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Image Processing
2.3. Evaluation of Ecological Integrity
2.3.1. Patch Area (AREA)
2.3.2. Fractal Dimension Index (FRAC)
2.3.3. Proximity Index (PROX)
2.4. Statistical Analysis
3. Results
Evaluation of Ecological Integrity
4. Discussion
5. Conclusions
- Percentage of Forest cover falls under the “Poor” category (40% loss); therefore, the indicator is outside the acceptable variation, meaning human intervention will be necessary to maintain the natural ranges at an acceptable level.
- The Patch Area is 2.0 hectares, and, like the previous indicator, it is in a “Poor” category, which requires immediate actions to restore the ecosystem.
- The Fractal Dimension Index obtained a simple average of 1.06, a result that falls under the category of “Very good”, in other words, even though the forest is fragmented, it resembles the complex forms of the ecosystem in its pristine state; however, human intervention is required to keep the ranges at an acceptable level.
- The Proximity Index obtained a result of 100 m; therefore, it is classified as “Poor”, meaning human intervention is required to restore its ecosystem.
- In general, the Evaluation of Ecological Integrity of the pine–oak ecosystem is affected by anthropogenic activities with an acceptable range of variation with a simple average of 1.75, which is far lower than the goal of five (5), indicating immediate intervention is required to maintain its ecosystem. Therefore, if the actions of Sustainable Forest Management are not carried out in an appropriate and timely manner, the conservation objective “Forest” will be vulnerable to severe degradation. Therefore, implementing this methodology is recommended, as well as using criteria and indicator frameworks (C&I) as a platform to include community needs and objectives in management decisions which offer a holistic approach to sustainability of local environmental contexts.
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. Energy Transition: Towards the Achievement of SDG 7 and Net-Zero Emissions; United Nations: New York, NY, USA, 2021. [Google Scholar]
- Beig, A.R.; Muyeen, S.M. Conventional Energy. In Handbook of Energy Economics and Policy; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Chen, Y., Goldfarb, L., Gomis, M.I., Matthews, J.B.R., Berger, S., et al., Eds.; Cambridge University Press: Geneva, Switzerland, 2021. [Google Scholar]
- Frosch, R.; Gallopoulos, N. Strategies for manufacturing. Sci. Am. 1989, 261, 144–153. [Google Scholar] [CrossRef]
- Ness, D. Sustainable urban infrastructure in China: Towards a Factor 10 improvement in resource productivity through integrated infrastructure systems. Int. J. Sustain. Dev. World Ecol. 2008, 15, 288–301. [Google Scholar] [CrossRef]
- Markard, J.; Raven, R.; Truffer, B. Sustainability transitions: An emerging field of research and its prospects. Res. Policy 2012, 41, 955–967. [Google Scholar] [CrossRef]
- Wang, S.; Dai, G.; Yang, H.; Luo, Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog. Energy Combust. Sci. 2017, 62, 33–86. [Google Scholar] [CrossRef]
- Dhyani, V.; Bhaskar, T. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Picchio, R.; Latterini, F.; Venanzi, R.; Stefanoni, W.; Suardi, A.; Tocci, D.; Pari, L. Pellet production from woody and non-woody feedstocks: A review on biomass quality evaluation. Energies 2020, 13, 2937. [Google Scholar] [CrossRef]
- Bell, J.; Paula, L.; Dodd, T.; Németh, S.; Nanou, C.; Mega, V.; Campos, P. EU ambition to build the world’s leading bioeconomy-Uncertain times demand innovative and sustainable solutions. New Biotechnol. 2018, 40, 25–30. [Google Scholar] [CrossRef]
- Lainez, M.; González, J.M.; Aguilar, A.; Vela, C. Spanish strategy on bioeconomy: Towards a knowledge based sustainable innovation. New Biotechnol. 2018, 40, 87–95. [Google Scholar] [CrossRef]
- De Jesus Eufrade-Junior, H.; Leonello, E.C.; Spadim, E.R.; Rodrigues, S.A.; de Azevedo, G.B.; Guerra, S.P.S. Stump and coarse root biomass from eucalypt forest plantations in a commercial-scale operation for bioenergy. Biomass Bioenergy 2020, 142, 105784. [Google Scholar] [CrossRef]
- FAO. El Estado De Los Bosques Del Mundo 2020. Los Bosques, La Biodiversidad Y Las Personas; FAO and UNEP: Roma, Italy, 2020.
- Juffe-Bignoli, D.; Burgess, N.; Bingham, H.; Belle, E.M.S.; de Lima, M.G.; Deguignet, M.; Bertzky, B.; Milam, A.N.; Martinez-Lopez, J.; Lewis, E.; et al. Protected Planet Report 2014; UNEP-WCMC: Cambridge, UK, 2014. [Google Scholar]
- OLADE. Lecciones Aprendidas Y Recomendaciones Para El Desarrollo De Proyectos De Estufas Eficientes En Centroamérica; OLADE: San Carlos, Ecuador, 2010. [Google Scholar]
- Rodriguez Blanco, J.M. Estufas Mejoradas De Leña En Centroamérica: Detonando Los Mercados; Users Network (BUN-CA): San José, Costa Rica, 2013. [Google Scholar]
- Mattson, K.M.; Angermeier, P.L. Integrating Human Impacts and Ecological Integrity into a Risk-Based Protocol for Conservation Planning. Environ. Manag. 2007, 39, 125–138. [Google Scholar] [CrossRef]
- Nello, T.; Raes, L.; Wong, A.; Chacón, O.; Sanchún, A. Análisis Económico De Las Acciones Para La Restauración De Paisajes Productivos En Honduras; UICN: San Jose, Costa Rica, 2019.
- Solano, A.L.; Martínez, D.; Sánchez, G.; Corral, L. Tendencias ecológicas y socioeconómicas de los Bosques de Pino-Encino en Centroamérica: Aportes para mejorar su manejo. Rev. Yu’Am 2017, 2, 38–47. [Google Scholar]
- Wilson, L.D.; Townsend, J.H. Biogeography and conservation of the herpetofauna of the Upland Pine-Oak Forests of Honduras. Biota Neotropica 2007, 7, 131–142. [Google Scholar] [CrossRef]
- Reza, M.I.H.; Abdullah, S.A. Regional Index of Ecological Integrity: A need for sustainable management of natural resources. Ecol. Indic. 2011, 11, 220–229. [Google Scholar] [CrossRef]
- Köhl, M.; Lasco, R.; Cifuentes, M.; Jonsson, Ö.; Korhonen, K.T.; Mundhenk, P.; de Jesus Navar, J.; Stinson, G. Changes in forest production, biomass and carbon: Results from the 2015 Un Fao Global Forest Resource Assessment. For. Ecol. Manag. 2015, 352, 21–34. [Google Scholar] [CrossRef]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote sensing technologies for enhancing forest inventories: A review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef]
- Mitchell, A.L.; Rosenqvist, A.; Mora, B. Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+. Carbon Balance Manag. 2017, 12, 9. [Google Scholar] [CrossRef]
- Odppes, G.F.; Bulle, C.; Ugaya, C.M.L. Wood forest resource consumption impact assessment based on a scarcity index accounting for wood functionality and substitutability (WoodSI). Int. J. Life Cycle Assess. 2021, 26, 1045–1061. [Google Scholar] [CrossRef]
- Bahadır-Çağrı, B. A sustainable forest management criteria and indicators assessment using fuzzy analytic hierarchy process. Environ. Monit. Assess. 2021, 193, 425. [Google Scholar] [CrossRef]
- Brown, E.D.; Williams, B.K. Ecological integrity assessment as a metric of biodiversity: Are we measuring what we say we are? Biodivers. Conserv. 2016, 25, 1011–1035. [Google Scholar] [CrossRef]
- Herrera, B.; Corrales, R. Manual para la Evaluación y Monitoreo de la Integridad Ecológica en Areas Protegidas de Centro América; National University of Costa Rica: Heredia, Costa Rica, 2004. [Google Scholar]
- Parrish, J.D.; Braun, D.P.; Unnasch, R.S. Are we conserving what we say we are? Measuring Ecological Integrity within Protected Areas. BioScience 2003, 53, 851–860. [Google Scholar] [CrossRef]
- Rempel, R.S.; Naylor, B.J.; Elkie, P.C.; Baker, J.; Churcher, J.; Gluck, M.J. An indicator system to assess ecological integrity of managed forests. Ecol. Indic. 2016, 60, 860–869. [Google Scholar] [CrossRef] [Green Version]
- Burke, D.J.; Knisely, C.; Watson, M.L.; Carrino-Kyker, S.R.; Mauk, R.L. The effects of agricultural history on forest ecological integrity as determined by a rapid forest assessment method. For. Ecol. Manag. 2016, 378, 1–13. [Google Scholar] [CrossRef]
- Gareau, B.J. Ecological Values amid Local Interests: Natural Resource Conservation, Social Differentiation, and Human Survival in Honduras. Rural. Sociol. 2007, 72, 244–268. [Google Scholar] [CrossRef]
- Capmourteres, V.; Anand, M. Assessing ecological integrity: A multi-scale structural and functional approach using Structural Equation Modeling. Ecol. Indic. 2016, 71, 258–269. [Google Scholar] [CrossRef]
- Lillo, P.; Ferrer-Martí, L.; Juanpera, M. Strengthening the sustainability of rural electrification projects: Renewable energy, management models and energy transitions in Peru, Ecuador and Bolivia. Energy Res. Soc. Sci. 2021, 80, 102222. [Google Scholar] [CrossRef]
- Carter, S.K.; Fleishman, E.; Leinwand, I.I.F.; Flather, C.H.; Carr, N.B.; Fogarty, F.A.; Leu, M.; Noon, B.R.; Wohlfeil, M.E.; Wood, D.J.A. Quantifying Ecological Integrity of Terrestrial Systems to Inform Management of Multiple-Use Public Lands in the United States. Environ. Manag. 2019, 64, 1–19. [Google Scholar] [CrossRef]
- Syahputra, R.; Soesanti, I. Renewable energy systems based on micro-hydro and solar photovoltaic for rural areas: A case study in Yogyakarta, Indonesia. Energy Rep. 2021, 7, 472–490. [Google Scholar] [CrossRef]
- Romero-Castro, N.; Piñeiro-Chousa, J.; Pérez-Pico, A. Dealing with heterogeneity and complexity in the analysis of the willingness to invest in community renewable energy in rural areas. Technol. Forecast. Soc. Change 2021, 173, 121165. [Google Scholar] [CrossRef]
- Schmidt, J.I.; Byrd, A.; Curl, J.; Brinkman, T.J.; Heeringa, K. Stoking the flame: Subsistence and wood energy in rural Alaska, United States. Energy Res. Soc. Sci. 2021, 71, 101819. [Google Scholar] [CrossRef]
- Adam, M.; Kneeshaw, D. Local level criteria and indicator frameworks: A tool used to assess aboriginal forest ecosystem values. For. Ecol. Manag. 2008, 225, 2024–2037. [Google Scholar] [CrossRef]
- Banaś, J.; Utnik-Banaś, K. Using Timber as a Renewable Resource for Energy Production in Sustainable Forest Management. Energies 2022, 15, 2264. [Google Scholar] [CrossRef]
- Muller, C.H. The Central American Species of Quercus; US Government Printing Office: Washington, DC, USA, 1942.
- Corrales, R.; Bouroncle, C.; Zamora, J. An overview of forest biomes and ecoregions of Central America. In Climate Change Impacts on Tropical Forests in Central America; Routledge: London, UK, 2015; pp. 17–38. [Google Scholar] [CrossRef]
- Programa Regional REDD/CCAD-GIZ. Mapa Forestal y de Cobertura de la Tierra; Programa Regional REDD/CCAD-GIZ: La Libertad, El Salvador, 2014. [Google Scholar]
- Instituto Nacional de Estadísticas de Honduras. Boletín De Cobertura Forestal 2016–2020; Instituto Nacional de Estadísticas de Honduras: Tegucigalpa, Honduras, 2021. [Google Scholar]
- The World Bank. Honduras Economic Growth; The World Bank: Washington, DC, USA, 2021.
- Rüdiger, T.; Tim, S.; Horst, D.; Marcelle, S. QGIS Training Manual; Cape Peninsula University of Technology: Cape City, South Africa, 2021. [Google Scholar]
- Landsat 8. Landsat 8 (L8) Data Users Handbook; U.S. Geological Survey; Department of the Interior: Reston, VA, USA, 2021.
- Sanhouse-Garcia, A.J.; Bustos-Terrones, Y.; Rangel-Peraza, J.G.; Quevedo-Castro, A.; Pacheco, C. Multi-temporal analysis for land use and land cover changes in an agricultural region using open source tools. Remote Sens. Appl. Soc. Environ. 2016, 8, 278–290. [Google Scholar] [CrossRef]
- Satellite Imaging Corporation. RapidEye Satellite Sensors; Satellite Imaging Corporation: Houston, TX, USA, 2019. [Google Scholar]
- ICF. Mapa de Cobertura Forestal y Uso del Suelo; ICF: Tegucigalpa, Honduras, 2014. [Google Scholar]
- Himani, R.; Omais, S. Analysis of Supervised Classification Algorithms. Int. J. Sci. Technol. Res. 2015, 4, 440–443. [Google Scholar]
- Congedo, L. Semi-Automatic Classification Plugin; Institute for Environmental Protection and Research (ISPRA): Rome, Italy, 2016. [Google Scholar]
- De Juan, S.; Hewitt, J.; Subida, M.D.; Thrush, S. Translating Ecological Integrity terms into operational language to inform societies. J. Environ. Manag. 2018, 228, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Qin, H.; Guan, Y. Assessing the impacts of four alternative management strategies on forest timber and carbon values in northeast China. Scand. J. For. Res. 2019, 34, 289–299. [Google Scholar] [CrossRef]
- Slattery, Z.; Fenner, R. Spatial Analysis of the Drivers, Characteristics, and Effects of Forest Fragmentation. Sustainability 2021, 13, 3246. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, Z. Fully Portraying Patch Area Scaling with Resolution: An Analytics and Descriptive Statistics-Combined Approach. Land 2021, 10, 262. [Google Scholar] [CrossRef]
- Tulloch, A.I.T.; Barnes, M.; Ringma, J.; Fuller, R.; Watson, J. Understanding the importance of small patches ofhabitat for conservation. J. Appl. Ecol. 2016, 53, 418–429. [Google Scholar] [CrossRef]
- Mandelbrot, B. The Fractal Geomehy of Nuture; Freeman: San Francisco, CA, USA, 1983; p. 486. [Google Scholar]
- Olsen, E.R.; Ramsey, R.D.; Winn, D.S. A Modified Fractal Dimension as a Measure of Landscape Diversity. Photogramm. Eng. Remote Sens. 1993, 59, 1517–1520. [Google Scholar]
- Tripathi, S.K.; Kushwaha, C.P.; Roy, A.; Basu, S.K. Measuring ecosystem patterns and processes. Curr. Sci. 2015, 109, 1418–1426. [Google Scholar] [CrossRef]
- Gustafson, E.J.; Parker, G.R. Using an index of habitat patch proximity for landscape design. Landsc. Urban Plan. 1994, 29, 117–130. [Google Scholar] [CrossRef]
- Winfree, R.; Dushoff, J.; Crone, E.E.; Schultz, C.B.; Budny, R.V.; Williams, N.M.; Kremen, C. Testing Simple Indices of Habitat Proximity. Amercian Nat. 2005, 165, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Cadenasso, M.L.; Pickett, S.T.A.; Grove, J.M. Dimensions of ecosystem complexity: Heterogeneity, Connectivity and History. Ecol. Complex. 2006, 3, 1–12. [Google Scholar] [CrossRef]
- Caputo, J. Sustainable Forest Biomass: Promoting Renwable Energy and Forest Stewardship; Environmental and Energy Study Institute: Washington, DC, USA, 2019. [Google Scholar]
- Csorba, P.; Szabó, S. The Application of Landscape Indices in Landscape EcologyInstitute of Geosciences. In Perspectives on Nature Conservation: Patterns, Pressures and Prospects; Tiefenbacher, J., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Mas, J.-F.; Pérez-Vega, A.; Clarke, K.C. Assessing simulated land use/cover maps using similarity and fragmentation indices. Ecol. Complex. 2012, 11, 38–45. [Google Scholar] [CrossRef]
- Benedek, J.; Sebestyén, T.-T.; Bartók, B. Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development. Renew. Sustain. Energy Rev. 2018, 90, 516–535. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS Spatial Pattern Analysis Program for Quantifying Landscape Structure; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1994.
- McGarigal, K. Fragstats Help; University of Massachusetts: Amherst, MA, USA, 2015. [Google Scholar]
- Théau, J.; Trottier, S.; Graillon, P. Optimization of an ecological integrity monitoring program for protected areas: Case study for a network of national parks. PLoS ONE 2018, 13, e0202902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Qualification | Value | Description |
---|---|---|
Excellent | 5 | The ecosystem is intact or in its natural state. |
Very good | 4 | Desired state however, it requires some human intervention to maintain the natural ranges of variation. |
Good | 3 | The ecosystem requires intervention to maintain it. |
Fair | 2 | Anthropogenic activities have a considerable impact on the ecosystem’s natural conditions, and it is vulnerable to severe degradation. |
Poor | 1 | The ecosystem is severely affected by anthropogenic activities. |
Value | Category |
---|---|
≥4.0 | Excellent |
3.0–3.99 | Very good |
2.0–2.99 | Good |
1.0–1.99 | Fair |
<1.0 | Poor |
Conservation Target | Category | Key Ecological Attribute | Indicator |
---|---|---|---|
Ecological Systems Forests | Size | Forest cover |
|
Condition | Size of the habitat |
| |
Context | Fragmentation Connectivity |
| |
|
Forest Cover Loss | AREA (Ha) | Forest Cover Loss in Hectares | Loss in % | |
---|---|---|---|---|
2014 | 2020 | |||
Forest | 3752 | 2601.82 | 1833 | 40 |
Non forest | 800 | 1950.18 | ||
Landscape Metric | Simple averages | |||
| 2.0 ha | |||
| 1.06 | |||
| 100 mt |
Key Ecological Attribute | Category | Result of Indicator from Table 4 | Allowable Range of Variability | Current Qualification according to Table 1 | |||||
---|---|---|---|---|---|---|---|---|---|
Poor | Fair | Good | Very Good | Excellent | |||||
Forest cover | Size | % Forest cover loss Indicator 1: 40% | 25% | 11–24.9% | 5–10.9% | 4.9–0% | 0% | Result 1 | Goal 5.0 |
Size of the habitat | Size | Patch Area (AREA)—ha Indicator 2: 2.0 ha | ≤10 | 10–49.9 | 50–99.9 | 100–149.9 | ≥150 | 1 | 5.0 |
Fragmentation | Condition | Fragmentation Index (FRAG) Indicator 3: 1.06 | 1.75-2.0 | 1.49.9–1.75 | 1.24.9–1.50 | 1.25–1.00 | <1.0 | 4 | 5.0 |
Connectivity of the ecosystem | Connectivity | Proximity Index (PROX)—m Indicator 4: 100 m | ≥100 | 75–99.9 | 50–74.9 | 0–49.9 | ≥0 | 1 | 5.0 |
Simple Average 1.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bardales, M.; Bukowski, C.; Molina-Moreno, V.; Gálvez-Sánchez, F.J.; Ramos-Ridao, Á.F. A Tool for the Assessment of Forest Biomass as a Source of Rural Sustainable Energy in Natural Areas in Honduras. Sustainability 2022, 14, 11114. https://doi.org/10.3390/su141811114
Bardales M, Bukowski C, Molina-Moreno V, Gálvez-Sánchez FJ, Ramos-Ridao ÁF. A Tool for the Assessment of Forest Biomass as a Source of Rural Sustainable Energy in Natural Areas in Honduras. Sustainability. 2022; 14(18):11114. https://doi.org/10.3390/su141811114
Chicago/Turabian StyleBardales, Menelio, Catherine Bukowski, Valentín Molina-Moreno, Francisco Jesús Gálvez-Sánchez, and Ángel Fermín Ramos-Ridao. 2022. "A Tool for the Assessment of Forest Biomass as a Source of Rural Sustainable Energy in Natural Areas in Honduras" Sustainability 14, no. 18: 11114. https://doi.org/10.3390/su141811114