A General-Equilibrium Model of Labor-Saving Technology Adoption: Theory and Evidences from Robotic Milking Systems in Idaho
Abstract
:1. Introduction
2. Literature Review
2.1. Factors Affecting Adoption of Labor-Saving Technology
2.1.1. Labor-Market Factors
2.1.2. Economic and Social Factors
2.1.3. Natural and Environment Factors
2.2. The Impact of Labor-Saving Technology
2.2.1. The Effect on General Production Efficiency
2.2.2. The Effect on the Labor Market
2.2.3. The Effect on Agriculture
2.2.4. The Effect on other Industries
2.2.5. The Effect on Social Development
3. Materials, Methods, and Results
3.1. Baseline Model
3.2. Heterogeneity
4. Discussion
- Clearing of the output market:.
- Clearing of the labor market:.
- Clearing of the machinery market:.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- De Koning, C. Automatic milking–common practice on dairy farms. In Proceedings of the First North American Conference on Precision Dairy Management, Toronto, ON, Canada, 2–5 March 2010. [Google Scholar]
- de Jong, W.; Finnema, A.; Reinemann, D.J. Survey of management practices of farms using automatic milking systems in North America. In Proceedings of the 2003 ASAE Annual Meeting. American Society of Agricultural and Biological Engineers, Las Vegas, NV, USA, 27–30 July 2003; p. 1. [Google Scholar]
- Hansen, B.G. Robotic milking-farmer experiences and adoption rate in Jæren, Norway. J. Rural Stud. 2015, 41, 109–117. [Google Scholar] [CrossRef]
- Acemoglu, D. When does labor scarcity encourage innovation? J. Political Econ. 2010, 118, 1037–1078. [Google Scholar] [CrossRef] [Green Version]
- Lawal, J.; Famuyiwa, B.; Taiwo, O. Factors influencing the use of labour saving technologies on cocoa farms in Nigeria. In Proceedings of the International Symposium on Cocoa Research (ISCR), Lima, Peru, 13–17 November 2017; International Cocoa Organization (ICCO): Abidjan, Côte d’Ivoire, 2018. [Google Scholar]
- Xiao, Z.; Hua, H.; Cao, J. A Review of the Application of Artificial Intelligence in Energy Internet. Electr. Power Constr. 2019, 40, 63–70. [Google Scholar]
- Tejeda, H.A.; Chahine, M.; Du, X.; Lu, L.; Westerhold, A. Investigating factors affecting adoption of automated milking systems (ams) in Idaho. West. Econ. Forum 2020, 18, 24–39. [Google Scholar]
- Sunding, D.; Zilberman, D. The agricultural innovation process: Research and technology adoption in a changing agricultural sector. Handb. Agric. Econ. 2001, 1, 207–261. [Google Scholar]
- Gallardo, R.K.; Sauer, J. Adoption of labor-saving technologies in agriculture. Annu. Rev. Resour. Econ. 2018, 10, 185–206. [Google Scholar] [CrossRef] [Green Version]
- Stratigea, A. ICTs for rural development: Potential applications and barriers involved. Netcom. Réseaux Commun. Territ. 2011, 25, 179–204. [Google Scholar] [CrossRef]
- Fanelli, R.M. Barriers to adopting new technologies within rural small and medium enterprises (SMEs). Soc. Sci. 2021, 10, 430. [Google Scholar] [CrossRef]
- Jayasuriya, S.K.; Shand, R.T. Technical change and labor absorption in Asian agriculture: Some emerging trends. World Dev. 1986, 14, 415–428. [Google Scholar] [CrossRef]
- Gardner, B.L.; Rausser, G.C.; Pingali, P.L.; Evenson, R. Handbook of Agricultural Economics: Agriculture and Its External Linkages; Elsevier: Amsterdam, The Netherlands, 2001; Volume 18. [Google Scholar]
- Charlton, D.; Taylor, J.E.; Vougioukas, S.; Rutledge, Z. Can Wages Rise Quickly Enough to Keep Workers in the Fields? Choices 2019, 34, 1–7. [Google Scholar]
- Murali, P.; Balakrishnan, R. Labour scarcity and selective mechanisation of sugarcane agriculture in Tamil Nadu, India. Sugar Tech. 2012, 14, 223–228. [Google Scholar] [CrossRef]
- Taghinezhad, J.; Alimardani, R.; Jafary, A. Design and Evaluation of Three Metering Devices for Planting of Sugarcane Billets. Available online: https://dergipark.org.tr/tr/download/article-file/1551552 (accessed on 12 April 2022).
- Alexander, K.S.; Parry, L.; Thammavong, P.; Sacklokham, S.; Pasouvang, S.; Connell, J.G.; Jovanovic, T.; Moglia, M.; Larson, S.; Case, P. Rice farming systems in Southern Lao PDR: Interpreting farmers’ agricultural production decisions using Q methodology. Agric. Syst. 2018, 160, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Fengbo, C.; Pandey, S.; Shijun, D. Changing rice cropping patterns: Evidence from the Yangtze River Valley, China. Outlook Agric. 2013, 42, 109–115. [Google Scholar] [CrossRef]
- Mueller, V.; Masias, I.; Vallury, S. Labor-saving technologies and structural transformation in northern Ghana. Agric. Econ. 2019, 5, 581–594. [Google Scholar]
- Berman, E.; Bound, J.; Griliches, Z. Changes in the demand for skilled labor within US manufacturing: Evidence from the annual survey of manufactures. Q. J. Econ. 1994, 109, 367–397. [Google Scholar] [CrossRef]
- Fung, M.K. Are labor-saving technologies lowering employment in the banking industry? J. Bank. Financ. 2006, 1, 179–198. [Google Scholar] [CrossRef]
- Fung, M.K. To what extent are labor-saving technologies improving efficiency in the use of human resources? Evidence from the banking industry. Prod. Oper. Manag. 2008, 17, 75–92. [Google Scholar] [CrossRef]
- Coad, A.; Rao, R. The firm-level employment effects of innovations in high-tech US manufacturing industries. J. Evol. Econ. 2011, 21, 255–283. [Google Scholar] [CrossRef]
- Binswanger, H.P.; Rosenzweig, M.R. Behavioural and material determinants of production relations in agriculture. J. Dev. Stud. 1986, 22, 503–539. [Google Scholar] [CrossRef]
- Habakkuk, H.J. American and British Technology in the Nineteenth Century: The Search for Labour Saving Inventions; Cambridge University Press: Cambridge, UK, 1962. [Google Scholar]
- Prabakar, C.; Devi, K.S.; Selvam, S. Labour Scarcity–Its Immensity and Impact on Agriculture. Agric. Econ. Res. Rev. 2011, 24, 373–380. [Google Scholar]
- Agasty, M.P.; Patra, R.N. Migration, Wages and Agriculture: Empirical Evidence and Policy Implication’. IOSR J. Humanit. Soc. Sci. 2013, 14, 9–20. [Google Scholar]
- Taylor, P.; McLoughlin, C.; Brooke, E.; Di Biase, T.; Steinberg, M.; Warburton, J.; Ng, S.H.; Shardlow, S.M. Managing older workers during a period of tight labour supply. Ageing Soc. 2013, 33, 16. [Google Scholar] [CrossRef]
- Shyamalie, H.; Karunarathne, B.; Pilapitiya, H.; Lakshani, P.; Chathuranga, T.; Nadeeshani, K. An Analysis of the impacts of Labour Scarcity on Land Productivity in Sri Lankan Tea Plantations. Trop. Agric. Res. 2020, 31, 54–64. [Google Scholar] [CrossRef]
- David, C.C.; Otsuka, K. The modern seed-fertiliser technology and adoption of labour-saving technologies: The philippine case. Aust. J. Agric. Econ. 1990, 34, 132–146. [Google Scholar] [CrossRef] [Green Version]
- Naylor, R. Labour-saving technologies in the Javanese rice economy: Recent developments and a look into the 1990s. Bull. Indones. Econ. Stud. 1992, 28, 71–91. [Google Scholar] [CrossRef]
- Marquetti, A. Do rising real wages increase the rate of labor-saving technical change? Some econometric evidence. Metroeconomica 2004, 55, 432–441. [Google Scholar] [CrossRef]
- Zuleta, H.; Alberico, S. Labor supply, biased technological change and economic growth. Rev. ESPE Ensayos Sobre Política Económica 2007, 25, 260–286. [Google Scholar] [CrossRef]
- Lommerud, K.E.; Straume, O.R. Employment protection versus flexicurity: On technology adoption in unionised firms. Scand. J. Econ. 2012, 114, 177–199. [Google Scholar] [CrossRef] [Green Version]
- De Souza, J.P.A. Real wages and labor-saving technical change: Evidence from a panel of manufacturing industries in mature and labor-surplus economies. Int. Rev. Appl. Econ. 2017, 31, 151–172. [Google Scholar] [CrossRef] [Green Version]
- Bentley, J.W. What farmers don’t know can’t help them: The strengths and weaknesses of indigenous technical knowledge in Honduras. Agric. Hum. Values 1989, 6, 25–31. [Google Scholar] [CrossRef]
- Tripp, R. Agricultural technology policies for rural development. Dev. Policy Rev. 2001, 19, 479–489. [Google Scholar] [CrossRef]
- Uematsu, H.; Mishra, A.K. Can Education Be a Barrier to Technology Adoption? Available online: https://core.ac.uk/download/pdf/6550709.pdf (accessed on 12 April 2022).
- Caswell, M.F. Irrigation technology adoption decisions: Empirical evidence. In The Economics and Management of Water and Drainage in Agriculture; Springer: Berlin/Heidelberg, Germany, 1991; pp. 295–312. [Google Scholar]
- Zhang, S.; Sun, Z.; Ma, W.; Valentinov, V. The effect of cooperative membership on agricultural technology adoption in Sichuan, China. China Econ. Rev. 2020, 62, 101334. [Google Scholar] [CrossRef]
- Luna, J.K. ‘Pesticides are our children now’: Cultural change and the technological treadmill in the Burkina Faso cotton sector. Agric. Hum. Values 2020, 37, 449–462. [Google Scholar] [CrossRef]
- Bhargava, A.K. The impact of India’s Rural Employment Guarantee on Demand for Agricultural Technology. Available online: http://cega.berkeley.edu/assets/cega_events/61/4A_Business_and_Employment.pdf (accessed on 12 April 2022).
- Beuchelt, T.D.; Badstue, L. Gender, nutrition-and climate-smart food production: Opportunities and trade-offs. Food Secur. 2013, 5, 709–721. [Google Scholar] [CrossRef] [Green Version]
- Joshi, P.K.; Khan, M.T.; Kishore, A. Heterogeneity in male and female farmers’ preference for a profit-enhancing and labor-saving technology: The case of Direct-Seeded Rice (DSR) in India. Can. J. Agric. Econ. Can. D’agroeconomie 2019, 67, 303–320. [Google Scholar] [CrossRef]
- Mondal, S.; Kumar, S.; Haris, A.A.; Dwivedi, S.; Bhatt, B.; Mishra, J. Effect of different rice establishment methods on soil physical properties in drought-prone, rainfed lowlands of Bihar, India. Soil Res. 2016, 54, 997–1006. [Google Scholar] [CrossRef]
- Kakumanu, K.; Reddy, K.G.; Palanisami, K.; Nagothu, S. Machine Transplantation: Labour and Water Saving Technology in Paddy Cultivation. Available online: https://9pdf.net/document/zwvw86dl-machine-transplantation-labour-water-saving-technology-paddy-cultivation.html (accessed on 12 April 2022).
- Katahira, M.; Shindo, H.; Ueda, K.; Suzuki, M.; Kobayashi, Y. Labor saving technology for planting Chinese yams using a seed tuber planter (Part 2). J. Jpn. Soc. Agric. Mach. 2012, 74, 220–225. [Google Scholar]
- Yamasaki, A. Recent progress of strawberry year-round production technology in Japan. Jpn. Agric. Res. Q. JARQ 2013, 47, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Rodenburg, J.; Saito, K.; Irakiza, R.; Makokha, D.W.; Onyuka, E.A.; Senthilkumar, K. Labor-saving weed technologies for lowland rice farmers in sub-Saharan Africa. Weed Technol. 2015, 29, 751–757. [Google Scholar] [CrossRef] [Green Version]
- Calvin, L.; Martin, P. The US Produce Industry and Labor: Facing the Future in a Global Economy. Available online: https://www.ers.usda.gov/webdocs/publications/44764/err-106.pdf?v=0 (accessed on 12 April 2022).
- Edan, Y.; Han, S.; Kondo, N. Automation in agriculture. In Springer Handbook of Automation; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1095–1128. [Google Scholar]
- Van Biesebroeck, J. Productivity dynamics with technology choice: An application to automobile assembly. Rev. Econ. Stud. 2003, 70, 167–198. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Robots and jobs: Evidence from US labor markets. J. Political Econ. 2020, 128, 2188–2244. [Google Scholar] [CrossRef] [Green Version]
- Morin, M. The Labor Market Consequences of Technology Adoption: Concrete Evidence from the Great Depression. Ph.D. Thesis, Columbia University, New York, NY, USA, 2016. [Google Scholar]
- Gregory, M.; Zissimos, B.; Greenhalgh, C. Jobs for the skilled: How technology, trade and domestic demand changed the structure of UK employment, 1979–1990. Oxf. Econ. Pap. 2001, 53, 20–46. [Google Scholar] [CrossRef]
- Morss, E.R. Labor Saving Technologies and the Demise of the Working Class. 2018. Available online: https://www.morssglobalfinance.com/labor_saving_technologies_and_the_demise_of_the_working_class/ (accessed on 21 June 2022).
- Alisjahbana, A.S.; Setiawan, M.; Effendi, N.; Santoso, T.; Hadibrata, B. The adoption of digital technology and labor demand in the Indonesian banking sector. Int. J. Soc. Econ. 2020, 47, 1109–1122. [Google Scholar] [CrossRef]
- Thi Ut Trant, K.K. The impact of green revolution on rice production in Vietnam. Dev. Econ. 2006, 44, 167–189. [Google Scholar] [CrossRef]
- Kaur, M.; Mahal, A.K.; Sekhon, M. Adoption of Labour-saving Technologies in Paddy Transplantation—Micro-level Evidences from Punjab. Agric. Econ. Res. Rev. 2011, 24, 568. [Google Scholar]
- Kako, T. Decomposition analysis of derived demand for factor inputs: The case of rice production in Japan. Am. J. Agric. Econ. 1978, 60, 628–635. [Google Scholar] [CrossRef]
- Van Reenen, J. Employment and technological innovation: Evidence from UK manufacturing firms. J. Labor Econ. 1997, 15, 255–284. [Google Scholar] [CrossRef]
- Evangelista, R.; Savona, M. Innovation, employment and skills in services. Firm and sectoral evidence. Struct. Chang. Econ. Dyn. 2003, 14, 449–474. [Google Scholar] [CrossRef]
- de Schweinitz, K., Jr. Technology, Ideology, and the State in Economic Development. J. Econ. Issues 1974, 8, 841–858. [Google Scholar] [CrossRef]
- Kline, R.R. Resisting development, reinventing modernity: Rural electrification in the United States before World War II. Environ. Values 2002, 11, 327–344. [Google Scholar] [CrossRef]
- Kramer, K.; McMillan, G. The effect of labor-saving technology on longitudinal fertility changes. Curr. Anthropol. 2006, 47, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Gibson, M.; Mace, R. The impact of labor-saving technology on first birth intervals in rural Ethiopia. Hum. Biol. 2002, 74, 111–128. [Google Scholar] [CrossRef] [PubMed]
- Barkley, A.P. The determinants of the migration of labor out of agriculture in the United States, 1940–1985. Am. J. Agric. Econ. 1990, 72, 567–573. [Google Scholar] [CrossRef]
- Hellegers, P.; Zeng, D.; Zilberman, D. Technology adoption and the impact on average productivity. Econ. Innov. New Technol. 2011, 20, 659–680. [Google Scholar] [CrossRef]
- Spence, A.M. Entry, Capacity, Investment and Oligopolistic Pricing. Bell J. Econ. 1977, 8, 534–544. [Google Scholar] [CrossRef]
- Du, X.; Lu, L.; Reardon, T.; Zilberman, D. Economics of agricultural supply chain design: A portfolio selection approach. Am. J. Agric. Econ. 2016, 98, 1377–1388. [Google Scholar] [CrossRef]
- Caswell, M.; Zilberman, D. The choices of irrigation technologies in California. Am. J. Agric. Econ. 1985, 67, 224–234. [Google Scholar] [CrossRef]
- Steeneveld, W.; Tauer, L.; Hogeveen, H.; Lansink, A.O. Comparing technical efficiency of farms with an automatic milking system and a conventional milking system. J. Dairy Sci. 2012, 95, 7391–7398. [Google Scholar] [CrossRef]
- Salfer, J.A.; Minegishi, K.; Lazarus, W.; Berning, E.; Endres, M.I. Finances and returns for robotic dairies. J. Dairy Sci. 2017, 100, 7739–7749. [Google Scholar] [CrossRef]
- Moyes, K.; Ma, L.; McCoy, T.; Peters, R. A survey regarding the interest and concern associated with transitioning from conventional to automated (robotic) milking systems for managers of small-to medium-sized dairy farms. Prof. Anim. Sci. 2014, 30, 418–422. [Google Scholar] [CrossRef]
- Lu, L.; Reardon, T.; Zilberman, D. Supply chain design and adoption of indivisible technology. Am. J. Agric. Econ. 2016, 98, 1419–1431. [Google Scholar] [CrossRef]
- Diederen, P.; van Meijl, H.; Wolters, A.; Bijak, K. Innovation adoption in Agriculture: Innovators, Early Adoptors and Laggards. Cah. D’economie Et Sociol. Rural. 2003, 67, 30–50. [Google Scholar] [CrossRef]
- Daberkow, S.G.; McBride, W.D. Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US. Precis. Agric. 2003, 4, 163–177. [Google Scholar] [CrossRef]
- Aderajew, T.; Du, X.; Pennings, J.; Trujillo-Barrera, A. Farm-Level Risk-Balancing Behavior and the Role of Latent Heterogeneity. J. Agric. Resour. Econ. 2020. Forthcoming. [Google Scholar]
- Baptista, R. Geographical clusters and innovation diffusion. Technol. Forecast. Soc. Chang. 2001, 66, 31–46. [Google Scholar] [CrossRef]
- Hatzenbuehler, P.L.; Du, X.; Painter, K. Price transmission with sparse market information: The case of United States chickpeas. Agribusiness 2021, 37, 665–682. [Google Scholar] [CrossRef]
- Lu, L.; Tian, G.; Hatzenbuehler, P. How agricultural economists are using big data: A review. China Agric. Econ. Rev. 2022, in press. [CrossRef]
Context | Subject | Author(s) | Conclusion/Impact |
---|---|---|---|
Agricultural | Labor Market | S.K.Jayasuriya & R.T.Shand (1986) [12] | Contributes to increased productivity, but lead to net reductions of agricultural labor use |
Gardner & Rausser (2001) [13] | Decrease in demand for farm labor | ||
Charlton (2019) [14] | Put downward pressure on wages in agricultural production | ||
Production | Murali & Balakrishnan (2012) [15]; Taghinezhad et al. (2014) [16]; Alexander et al. (2018) [17]; Feng et al. (2013) [18]; Charlton (2019) [14] | Reduce production costs and improve production efficiency | |
Economic Structure | Mueller et al. (2019) [19] | Played a fundamental role historically in the structural transformation of agrarian economies; diversify their farming activities and save time | |
Manufactory | Labor Market | Berman et al. (1994) [20] | Drives the shift in labor demand away from unskilled and toward skilled labor in U. S. manufacturing over the 1980s. |
Banking | Labor Market | Fung (2006) [21] | Labor-saving technologies are associated with higher firm-level employment |
Fung (2008) [22] | Increase the efficiency of human resources | ||
High-tech industries | Labor Market | Coad & Rao (2011) [23] | Optimizing the labor demand-supply structure |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Tejeda, H.; Yang, Z.; Lu, L. A General-Equilibrium Model of Labor-Saving Technology Adoption: Theory and Evidences from Robotic Milking Systems in Idaho. Sustainability 2022, 14, 7683. https://doi.org/10.3390/su14137683
Du X, Tejeda H, Yang Z, Lu L. A General-Equilibrium Model of Labor-Saving Technology Adoption: Theory and Evidences from Robotic Milking Systems in Idaho. Sustainability. 2022; 14(13):7683. https://doi.org/10.3390/su14137683
Chicago/Turabian StyleDu, Xiaoxue, Hernan Tejeda, Zhengliang Yang, and Liang Lu. 2022. "A General-Equilibrium Model of Labor-Saving Technology Adoption: Theory and Evidences from Robotic Milking Systems in Idaho" Sustainability 14, no. 13: 7683. https://doi.org/10.3390/su14137683
APA StyleDu, X., Tejeda, H., Yang, Z., & Lu, L. (2022). A General-Equilibrium Model of Labor-Saving Technology Adoption: Theory and Evidences from Robotic Milking Systems in Idaho. Sustainability, 14(13), 7683. https://doi.org/10.3390/su14137683