Urban Intelligence for Carbon Neutral Cities: Creating Synergy among Data, Analytics, and Climate Actions
Abstract
:1. Introduction
2. Carbon Neutral Cities
2.1. A Global Climate Consensus
2.2. Carbon Neutrality in Cities
- Net-zero GHG emissions from fuel use in buildings, transportation, and industry (Scope 1);
- Net-zero GHG emissions from the use of grid-supplied energy (Scope 2);
- Net-zero GHG emissions from waste treatment (Scope 1 and 3);
- Net-zero GHG emissions from all other sectors if a city accounts for additional sectoral emissions within its GHG accounting boundary.
2.3. Smart City Development
3. Pathway towards to CNC
4. Urban Intelligence for Carbon Neutral Cities
4.1. Composition of Urban Intelligence
4.1.1. Data
4.1.2. Analytics
4.1.3. Actions
4.2. Roles of Urban Intelligence in Carbon Neutrality
4.2.1. Breaking Data Silos and Information Asymmetry
4.2.2. Integrating Systems with Advanced Analytics
4.2.3. Implementing Actions with Social-Technical Consideration
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarkodie, S.A.; Owusu, P.A.; Leirvik, T. Global effect of urban sprawl, industrialization, trade and economic development on carbon dioxide emissions. Environ. Res. Lett. 2020, 15, 034049. [Google Scholar] [CrossRef]
- Wiedmann, T.; Chen, G.; Owen, A.; Lenzen, M.; Doust, M.; Barrett, J.; Steele, K. Three-scope carbon emission inventories of global cities. J. Ind. Ecol. 2020, 25, 735–750. [Google Scholar] [CrossRef]
- European Commission. Proposed Mission: 100 Climate-Neutral Cities by 2030—By and for the Citizens (Report of the Mission Board for Climate-Neutral and Smart Cities); European Commission: Brussels, Belgium, 2020. [Google Scholar]
- United Nations Cliamte Change. A Beginner’s Guide to Climate Neutrality. 2021. Available online: https://unfccc.int/blog/a-beginner-s-guide-to-climate-neutrality (accessed on 1 April 2022).
- Laine, J.; Heinonen, J.; Junnila, S. Pathways to carbon-neutral cities prior to a national policy. Sustainability 2020, 12, 2445. [Google Scholar] [CrossRef] [Green Version]
- Huovila, A.; Siikavirta, H.; Rozado, C.A.; Rökman, J.; Tuominen, P.; Paiho, S.; Hedman, Å.; Ylén, P. Carbon-neutral cities: Critical review of theory and practice. J. Clean. Prod. 2022, 341, 130912. [Google Scholar] [CrossRef]
- Seto, K.C.; Churkina, G.; Hsu, A.; Keller, M.; Newman, P.W.; Qin, B.; Ramaswami, A. From low- to net-zero carbon cities: The next global agenda. Annu. Rev. Environ. Resour. 2021, 46, 377–415. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.; Jiang, K.; Kaghembega, W.S.-H. The gaps and pathways to carbon neutrality for different type cities in China. Energy 2021, 244, 122596. [Google Scholar] [CrossRef]
- Hsu, A.; Tan, J.; Ng, Y.M.; Toh, W.; Vanda, R.; Goyal, N. Performance determinants show European cities are delivering on climate mitigation. Nat. Clim. Change 2020, 10, 1015–1022. [Google Scholar] [CrossRef]
- Qi, J. Urban intelligence: Smart cities & the future of inclusive growth. Harv. Int. Rev. 2019, 40, 18–19. [Google Scholar]
- Lai, Y.; Yeung, W.; Celi, L.A. Urban intelligence for pandemic response: Viewpoint. JMIR Public Health Surveill. 2020, 6, e18873. [Google Scholar] [CrossRef]
- Lai, Y. Urban Intelligence for Planetary Health. Earth 2021, 2, 972–979. [Google Scholar] [CrossRef]
- Bibri, S.E. Data-Driven Smart Sustainable Cities: A Conceptual Framework for Urban Intelligence Functions and Related Processes, Systems, and Sciences; Springer: Cham, Switzerland, 2020; pp. 143–173. [Google Scholar]
- Bibri, S.E. Smart Sustainable Cities of the Future: The Untapped Potential of Big Data Analytics and Context-Aware Computing for Advancing Sustainability; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- United Nations. United Nations Framework Convention on Climate Change; United Nations: New York, NY, USA, 1992. [Google Scholar]
- United Nations. Kyoto Protocol to the United Nations Framework Convention on Climate Change; United Nations: New York, NY, USA, 1998. [Google Scholar]
- The United States Congress. Global Change Research Act of 1990. 1990. Available online: https://www.congress.gov/bill/101st-congress/senate-bill/169 (accessed on 1 April 2022).
- United Kingdom Department of Trade and Industry. Our Energy Future—Creating a Low Carbon Economy; United Kingdom Department of Trade and Industry: London, UK, 2003. [Google Scholar]
- United Nations. The Paris Agreement; United Nations: New York, NY, USA, 2015.
- European Commission. The European Green Deal Sets out How to Make Europe the First Climate-Neutral Continent by 2050, Boosting the Economy, Improving People’s Health and Quality of Life, Caring for Nature, and Leaving No One Behind; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Department of Resource Conservation and Environmental Protection. Action Plan for Carbon DioxideI Peaking before 2030; Department of Resource Conservation and Environmental Protection: Beijing, China, 2021. [Google Scholar]
- The United States Department of State; The United States Executive Office of the President. The Long-Term Strategy of the United States: Pathways to Net-Zero Greenhouse Gas Emissions by 2050; The United States Department of State: Washington, DC, USA, 2021.
- Shimbun, S. ‘This Cabinet Will Work for the People’: Highlights of PM Suga’s First Policy Speech. Japan Forward 2020. Available online: https://japan-forward.com/this-cabinet-will-work-for-the-people-highlights-of-pm-sugas-first-policy-speech/ (accessed on 12 April 2022).
- The Government of Japan. Carbon Neutrality. 2020. Available online: https://www.japan.go.jp/key_policies_of_the_suga_cabinet/carbon_neutrality.html (accessed on 20 April 2022).
- Japan Ministry of Economy Trade and Industry. Overview of Japan’s Green Growth Strategy through Achieving Carbon Neu-Trality in 2050; Japan Ministry of Economy Trade and Industry: Tokyo, Japan, 2021. [Google Scholar]
- Sassen, S. The Global City: New York, London, Tokyo; Princeton University Press: Princeton, NJ, USA, 1991. [Google Scholar]
- Sancino, A.; Stafford, M.; Braga, A.; Budd, L. What can city leaders do for climate change? Insights from the C40 Cities Climate Leadership Group net-work. Reg. Stud. 2021, 1–10. [Google Scholar] [CrossRef]
- C40. 2022. Available online: https://www.c40.org (accessed on 11 April 2022).
- CNCA. Carbon Neutral Cities Alliance. 2022. Available online: https://carbonneutralcities.org/ (accessed on 11 April 2022).
- Elgendy, K. Carbon Neutral Cities: Can we Fight Climate Change without Them? 2021. Available online: https://racetozero.unfccc.int/carbon-neutral-cities-can-we-fight-climate-change-without-them/ (accessed on 27 March 2022).
- United Nations Cliamte Change. Carbon Neutral Cities Alliance. 19 November 2015. Available online: https://unfccc.int/news/carbon-neutral-cities-alliance (accessed on 27 March 2022).
- World Resources Institute. Global Protocol for Community-Scale Greenhouse Gas Emission Inventories: Executive Summary; World Resources Institute: Washington, DC, USA, 2014. [Google Scholar]
- Kongboon, R.; Gheewala, S.H.; Sampattagul, S. Greenhouse gas emissions inventory data acquisition and analytics for low carbon cities. J. Clean. Prod. 2022, 343, 130711. [Google Scholar] [CrossRef]
- C40 Cities Climate Action Planning. Defining Carbon Neutrality for Cities & Managing Residual Emissions. 2019. Available online: https://c40-production-images.s3.amazonaws.com/researches/images/76_Carbon_neutrality_guidance_for_cities_20190422.original.pdf?1555946416 (accessed on 27 March 2022).
- C40 Cities Climate Leadership Group; NYC Major’s Office of Sustainability. Defining Carbon Neutrality for Cities and Managing Residual Emissions: Cities Perspective and Guidance; C40 Cities Climate Leadership Group: New York, NY, USA, 2019; p. 11. [Google Scholar]
- Plastrik, P.; Cleveland, J. GAME CHANGERS: Bold Actions by Cities to Accelerate Progress Toward Carbon Neutrality; Shank, M., Partin, J., Eds.; Carbon Neutral Cities Alliance: Washington, DC, USA, 2018. [Google Scholar]
- China Association of Building Energy Efficiency. China Building Energy Consumption Research Report; China Association of Building Energy Efficiency: Beijing, China, 2020. [Google Scholar]
- ABB. White Paper on Electrification Carbon Neutrality—Electrification and Digitization Empower Low-Carbon Society; ABB: Västerås, Sweden, 2021. [Google Scholar]
- Harrison, C.; Eckman, B.; Hamilton, R.; Hartswick, P.; Kalagnanam, J.; Paraszczak, J.; Williams, P. Foundations for smarter cities. IBM J. Res. Dev. 2010, 54, 350–365. [Google Scholar] [CrossRef]
- Griffiths, S.; Sovacool, B.K. Rethinking the future low-carbon city: Carbon neutrality, green design, and sustainability tensions in the making of Masdar City. Energy Res. Soc. Sci. 2020, 62, 101368. [Google Scholar] [CrossRef]
- The White House Office of the Press Secretary. Memorandum—Transparency and Open Government; The White House Office of the Press Secretary: Washington, DC, USA, 2009.
- Number10.gov.uk. One-Stop Shop for Government Data Launched. 2010. Available online: http://webarchive.nationalarchives.gov.uk/20100202201223/http://www.number10.gov.uk/Page22218 (accessed on 10 April 2022).
- Treasury Board of Canada Secretariat. Minister Day Launches Open Data Portal. 2011. Available online: https://web.archive.org/web/20110706181845/http://www.tbs-sct.gc.ca/media/nr-cp/2011/0317a-eng.asp (accessed on 15 April 2022).
- Data.gov.sg. Data.gov.sg: About Us. 2011. Available online: https://data.gov.sg/about (accessed on 1 April 2022).
- Kandt, J.; Batty, M. Smart cities, big data and urban policy: Towards urban analytics for the long run. Cities 2020, 109, 102992. [Google Scholar] [CrossRef]
- Thornbush, M.; Golubchikov, O. Smart energy cities: The evolution of the city-energy-sustainability nexus. Environ. Dev. 2021, 39, 100626. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe. Sustainable Smart Cities. 2015. Available online: https://unece.org/housing/sustainable-smart-cities (accessed on 10 April 2022).
- Wu, X.; Tian, Z.; Guo, J. A review of the theoretical research and practical progress of carbon neutrality. Sustain. Oper. Comput. 2021, 3, 54–66. [Google Scholar] [CrossRef]
- Fankhauser, S.; Smith, S.M.; Allen, M.; Axelsson, K.; Hale, T.; Hepburn, C.; Kendall, J.M.; Khosla, R.; Lezaun, J.; Mitchell-Larson, E.; et al. The meaning of net zero and how to get it right. Nat. Clim. Change 2022, 12, 15–21. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; Chang, S.X.; et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- Ravetza, J.; Neuvonenb, A.; Mäntysaloc, R. The new normative: Synergistic scenario planning for carbon-neutral cities and regions. Reg. Stud. 2021, 55, 150–163. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Carbon Capture, Utilization & Storage. 2022. Available online: https://www.energy.gov/carbon-capture-utilization-storage (accessed on 10 April 2022).
- Keenan, T.F.; Williams, C.A. The Terrestrial Carbon Sink. Annu. Rev. Environ. Resour. 2018, 43, 219–243. [Google Scholar] [CrossRef]
- Wei, J.; Zhao, K.; Zhang, L.; Yang, R.; Wang, M. Exploring development and evolutionary trends in carbon offset research: A bibliometric perspective. Environ. Sci. Pollut. Res. 2021, 28, 18850–18869. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, B.W.; Sie, L.; Gössling, S.; Dwyer, L. Effects of climate change policies on aviation carbon offsetting: A three-year panel study. J. Sustain. Tour. 2019, 28, 337–360. [Google Scholar] [CrossRef]
- ScienceDirect. Synergistic Effect: An Overview. 2022. Available online: https://www.sciencedirect.com/topics/engineering/synergistic-effect (accessed on 2 April 2022).
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P.-S. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 1–34. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Che, S. Synergistic Effect of Carbon Trading Scheme on Carbon Dioxide and Atmospheric Pollutants. Sustainability 2021, 13, 5403. [Google Scholar] [CrossRef]
- Zhang, S.; An, K.; Li, J.; Weng, Y.; Zhang, S.; Wang, S.; Cai, W.; Wang, C.; Gong, P. Incorporating health co-benefits into technology pathways to achieve China’s 2060 carbon neutrality goal: A modelling study. Lancet Planet Health 2021, 5, e808–e817. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J. Urban and transport planning pathways to carbon neutral, liveable and healthy cities; A review of the current evidence. Environ. Int. 2020, 140, 105661. [Google Scholar] [CrossRef]
- Nam, K.M.; Waugh, C.J.; Paltsev, S.; Reilly, J.M.; Karplus, V.J. Synergy between Pollution and Carbon Emissions Control: Comparing China and the U.S. in Tsinghua-MIT China Energy & Climate Project; The MIT Joint Program on the Science and Policy of Global Change: Cambridge, MA, USA, 2013. [Google Scholar]
- Alimujiang, A.; Jiang, P. Synergy and co-benefits of reducing CO2 and air pollutant emissions by promoting electric vehicles—A case of Shanghai. Energy Sustain. Dev. 2020, 55, 181–189. [Google Scholar] [CrossRef]
- Harmsen, M.J.H.M.; van Dorst, P.; van Vuuren, D.P.; Berg, M.V.D.; Van Dingenen, R.; Klimont, Z. Co-benefits of black carbon mitigation for climate and air quality. Clim. Change 2020, 163, 1519–1538. [Google Scholar] [CrossRef]
- Gao, J.; Ma, S.; Li, L.; Zuo, J.; Du, H. Does travel closer to TOD have lower CO2 emissions? Evidence from ride-hailing in Chengdu, China. J. Environ. Manag. 2022, 308, 114636. [Google Scholar] [CrossRef]
- Tattini, J.; Gargiulo, M.; Karlsson, K. Reaching carbon neutral transport sector in Denmark—Evidence from the incorporation of modal shift into the TIMES energy system modeling framework. Energy Policy 2018, 113, 571–583. [Google Scholar] [CrossRef]
- Almuhtadya, A.; Alfaourib, M. Synergy of intelligent design and operation for sustainable residential heating systems, case study: Jordanian residential sector. Sustain. Cities Soc. 2020, 55, 102034. [Google Scholar] [CrossRef]
- Pozzi, M.; Spirito, G.; Fattori, F.; Dénarié, A.; Famiglietti, J.; Motta, M. Synergies between buildings retrofit and district heating. The role of DH in a decarbonized scenario for the city of Milano. Energy Rep. 2021, 7, 449–457. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, S.; Guo, F.; Mastrucci, A.; Zhang, S.; Yang, Z.; Yan, D. Assessing the potential of decarbonizing China’s building construction by 2060 and synergy with industry sector. J. Clean. Prod. 2022, 359, 132086. [Google Scholar] [CrossRef]
- Jenkins, D. The value of retrofitting carbon-saving measures into fuel poor social housing. Energy Policy 2010, 38, 832–839. [Google Scholar] [CrossRef]
- Lee, R.P.; Seidl, L.G.; Huang, Q.-L.; Meyer, B. An analysis of waste gasification and its contribution to China’s transition towards carbon neutrality and zero waste cities. J. Fuel Chem. Technol. 2021, 49, 1057–1076. [Google Scholar] [CrossRef]
- Fernández-Braña, A.; Feijoo, G.; Dias-Ferreira, C. Turning waste management into a carbon neutral activity: Practical demonstration in a medium-sized European city. Sci. Total Environ. 2020, 728, 138843. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Orejuela-Escobar, L.M.; Landázuri, A.C.; Goodell, B. Second generation biorefining in Ecuador: Circular bioeconomy, zero waste technology, environment and sustainable development: The nexus. J. Bioresour. Bioprod. 2021, 6, 83–107. [Google Scholar] [CrossRef]
- Ge, S.; Shi, Y.; Xia, C.; Huang, Z.; Manzo, M.; Cai, L.; Ma, H.; Zhang, S.; Jiang, J.; Sonne, C.; et al. Progress in pyrolysis conversion of waste into value-added liquid pyro-oil, with focus on heating source and machine learning analysis. Energy Convers. Manag. 2021, 245, 114638. [Google Scholar] [CrossRef]
- Bachmann, M.; Kätelhön, A.; Winter, B.; Meys, R.; Müller, L.J.; Bardow, A. Renewable carbon feedstock for polymers: Environmental benefits from synergistic use of biomass and CO2. Faraday Discuss 2021, 230, 227–246. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, D.; Barrett, J.; Wiedenhofer, D.; Macura, B.; Callaghan, M.W.; Creutzig, F. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 2020, 15, 093001. [Google Scholar] [CrossRef]
- Koide, R.; Lettenmeier, M.; Akenji, L.; Toivio, V.; Amellina, A.; Khodke, A.; Watabe, A.; Kojima, S. Lifestyle carbon footprints and changes in lifestyles to limit global warming to 1.5 °C, and ways forward for related research. Sustain. Sci. 2021, 16, 2087–2099. [Google Scholar] [CrossRef]
- Vita, G.; Ivanova, D.; Dumitru, A.; García-Mira, R.; Carrus, G.; Stadler, K.; Krause, K.; Wood, R.; Hertwich, E. Happier with less? Members of European environmental grassroots initiatives reconcile lower carbon footprints with higher life satisfaction and income increases. Energy Res. Soc. Sci. 2020, 60, 101329. [Google Scholar] [CrossRef] [Green Version]
- Shigetomi, Y.; Kanemoto, K.; Yamamoto, Y.; Kondo, Y. Quantifying the carbon footprint reduction potential of lifestyle choices in Japan. Environ. Res. Lett. 2021, 16, 064022. [Google Scholar] [CrossRef]
- Li, P.; Wang, Z.-H. Environmental co-benefits of urban greening for mitigating heat and carbon emissions. J. Environ. Manag. 2021, 293, 112963. [Google Scholar] [CrossRef]
- Roman, L.A.; Conway, T.M.; Eisenman, T.S.; Koeser, A.K.; Ordóñez Barona, C.; Locke, D.H.; Jenerette, G.D.; Östberg, J.; Vogt, J. Beyond ‘trees are good’: Disservices, management costs, and tradeoffs in urban forestry. Ambio 2021, 50, 615–630. [Google Scholar] [CrossRef]
- Liu, Y.; Stouffs, R.; Tablada, A.; Wong, N.H.; Zhang, J. Comparing micro-scale weather data to building energy consumption in Singapore. Energy Build. 2017, 152, 776–791. [Google Scholar] [CrossRef]
- Gurney, K.R.; Romero-Lankao, P.; Seto, K.C.; Hutyra, L.R.; Duren, R.; Kennedy, C.; Grimm, N.B.; Ehleringer, J.R.; Marcotullio, P.; Hughes, S.; et al. Climate change: Track urban emissions on a human scale. Nature 2015, 525, 179–181. [Google Scholar] [CrossRef] [Green Version]
- European Commission. A European Green Deal: Striving to be the First Climate-Neutral Continent. 2020. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 2 April 2022).
- U.S. Department of Energy. DOE Announces $34.5 Million for Data Science and Computation Tools to Advance Climate Solutions. 2021. Available online: https://www.energy.gov/articles/doe-announces-345-million-data-science-and-computation-tools-advance-climate-solutions (accessed on 2 April 2022).
- Banerjee, A.; Bandyopadhyay, T.; Acharya, P. Data Analytics: Hyped Up Aspirations or True Potential? Vikalpa 2013, 38, 1–11. [Google Scholar] [CrossRef]
- Shi-Nash, A.; Hardoon, D.R. Data analytics and predictive analytics in the era of big data. In Internet of Things and Data Analytics Handbook; Geng, H., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 329–345. [Google Scholar] [CrossRef]
- Huo, T.; Ma, Y.; Cai, W.; Liu, B.; Mu, L. Will the urbanization process influence the peak of carbon emissions in the building sector? A dynamic scenario simulation. Energy Build. 2020, 232, 110590. [Google Scholar] [CrossRef]
- Hugewealth Finance. “Modern City Vital Signs Evaluation System” Released, Panoramic City Operation. 2021. Available online: https://www.hugewealthfinance.com/2021/modern-city-vital-signs-evaluation-system-released-panoramic-city-operation (accessed on 11 April 2022).
- Stobbelaar, D.J.; van der Knaap, W.; Spijker, J. Transformation towards Green Cities: Key Conditions to Accelerate Change. Sustainability 2022, 14, 6410. [Google Scholar] [CrossRef]
- Kropp, C.; Ley, A.; Ottenburger, S.S.; Ufer, U. Making intelligent cities in Europe climate-neutral. TATuP-Z. Tech. Theor. Prax. 2021, 30, 11–16. [Google Scholar] [CrossRef]
- Bibri, S.E. Data-driven smart sustainable cities of the future: Urban computing and intelligence for strategic, short-term, and joined-up planning. Comput. Urban Sci. 2021, 1, 8. [Google Scholar] [CrossRef]
- Hurlimann, A.; Moosavi, S.; Browne, G.R. Urban planning policy must do more to integrate climate change adaptation and mitigation actions. Land Use Policy 2021, 101, 105188. [Google Scholar] [CrossRef]
- Guertler, P.; Rosenow, J. Buildings and the 5th Carbon Budget; ACE: London, UK, 2016. [Google Scholar]
- Lai, Y.; Kontokosta, C. Topic modeling to discover the thematic structure and spatial-temporal patterns of building renovation and adaptive reuse in cities. Comput. Environ. Urban Syst. 2019, 78, 101383. [Google Scholar] [CrossRef]
- Lai, Y.; Papadopoulos, S.; Fuerst, F.; Pivo, G.; Sagi, J.; Kontokosta, C.E. Building retrofit hurdle rates and risk aversion in energy efficiency investments. Appl. Energy 2022, 306, 118048. [Google Scholar] [CrossRef]
- Greyparrot. Greyparrot: Scalable Automated Waste Analysis. 2022. Available online: https://www.greyparrot.ai/ (accessed on 2 April 2022).
- Brown, M.A.; Dwivedi, P.; Mani, S.; Matisoff, D.; Mohan, J.E.; Mullen, J.; Oxman, M.; Rodgers, M.; Simmons, R.; Beasley, B.; et al. A framework for localizing global climate solutions and their carbon reduction potential. Proc. Natl. Acad. Sci. USA 2021, 118, e2100008118. [Google Scholar] [CrossRef]
- Komninos, N. Net Zero Energy Districts: Connected Intelligence for Carbon-Neutral Cities. Land 2022, 11, 210. [Google Scholar] [CrossRef]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- TWAICE. TWAICE: Predictive Battery Analytics. 2022. Available online: https://twaice.com/ (accessed on 2 April 2022).
- Chen, C.; Zhao, Z.; Xiao, J.; Tiong, R. A Conceptual Framework for Estimating Building Embodied Carbon Based on Digital Twin Technology and Life Cycle Assessment. Sustainability 2021, 13, 13875. [Google Scholar] [CrossRef]
Carbon Neutral Approaches | Synergy Identified in Previous Studies |
---|---|
Emission Control | Air quality improvement with carbon emission reduction [61,62,63]. |
Transportation Planning | Reduced traffic volume with less emission and more non-vehicular travel, such as walking and biking, with associated health benefits [60,64,65]. |
Building Retrofitting | Improved energy efficiency with lower emission and financial cost and improved living quality with better indoor air quality, comfort, and safety [66,67,68,69]. |
Waste Management | Reduce carbon emissions and pollution caused by waste incineration and reuse waste as alternative resources (e.g., biomass energy) to create a circular economy [36,70,71,72,73,74,75]. |
Lifestyle Change | Encourage greener consumption and healthier lifestyle choices for carbon footprint reduction and promote public awareness for local climate actions [76,77,78,79]. |
Natural Conservation | Improvement of urban resilience, climate mitigation, ecological capacity, and carbon sink through urban forestry and greening improvement [80,81]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y. Urban Intelligence for Carbon Neutral Cities: Creating Synergy among Data, Analytics, and Climate Actions. Sustainability 2022, 14, 7286. https://doi.org/10.3390/su14127286
Lai Y. Urban Intelligence for Carbon Neutral Cities: Creating Synergy among Data, Analytics, and Climate Actions. Sustainability. 2022; 14(12):7286. https://doi.org/10.3390/su14127286
Chicago/Turabian StyleLai, Yuan. 2022. "Urban Intelligence for Carbon Neutral Cities: Creating Synergy among Data, Analytics, and Climate Actions" Sustainability 14, no. 12: 7286. https://doi.org/10.3390/su14127286