Differences in the Aroma Profile of Chamomile (Matricaria chamomilla L.) after Different Drying Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Site Description and Growth Conditions
2.2. Flower Heads Collection
2.3. Drying Methods
2.4. Essential Oil Production and GC-MS Analysis
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mostafa, N.M.; Singab, A.N. Prospective of Herbal Medicine in Egypt. Med. Chem. 2018, 8, 116–117. [Google Scholar] [CrossRef]
- Muller, J.; Heindl, A. Drying of medicinal plants. In Medicinal and Aromatic Plants; Bogers, R.J., Craker, L.E., Lange, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 237–252. [Google Scholar]
- Samani, B.H.; Lorigooini, Z.; Zareiforoush, H.; Jafari, S. Effect of ultrasound and infrared drying methods on quantitative and qualitative characteristics of Satureja bachtiarica essential oil. J. Essent. Oil-Bear. Plants 2017, 20, 1196–1208. [Google Scholar] [CrossRef]
- Hamrouni-Sellami, I.; Wannes, W.A.; Bettaieb, I.; Berrima, S.; Chahed, T.; Marzouk, B. Qualitative and quantitative changes in the essential oil of Laurus nobilis L. leaves as affected by different drying methods. Food Chem. 2011, 126, 691–697. [Google Scholar] [CrossRef]
- Ozdemir, N.; Ozgen, Y.; Kiralan, M.; Bayrak, A.; Arslan, N.; Ramadan, M.F. Effect of different drying methods on the essential oil yield, composition and antioxidant activity of Origanum vulgare L. and Origanum onites L. J. Food Meas. Charact. 2017, 12, 820. [Google Scholar] [CrossRef]
- Venskutonis, P. Affect of drying on the volatile constituents of thyme (Thymus vulgaris L.) and sage (Salvia officinalis L.). Food Chem. 1997, 59, 219–227. [Google Scholar] [CrossRef]
- Harbourne, N.; Jacquier, J.C.; O’Riordan, D. Optimization of the extraction and processing conditions of chamomile (Matricaria chamomilla L.) for incorporation into a beverage. Food Chem. 2009, 115, 15–19. [Google Scholar] [CrossRef]
- Omidbaigi, R.; Sefidkon, F.; Kazemi, F. Influence of drying methods on the essential oil content and composition of Roman chamomile. Flavour Frag. 2004, 19, 196–198. [Google Scholar] [CrossRef]
- Borsato, A.V.; Doni-Filho, L.; Ahrens, D.C. Drying of chamomile [Chamomilla recutita (L.) Raeuchert] under five air temperatures. Rev. Bras. Plantas. Med. 2005, 7, 77–85. [Google Scholar]
- Sefidkon, F.; Abbasi, K.; Khaniki, G.B. Influence of drying and extraction methods on yield and chemical composition of the essential oil of Satureja hortensis. Food Chem. 2006, 99, 19–23. [Google Scholar] [CrossRef]
- Ennajar, M.; Bouajila, J.; Lebrihi, A.; Mathieu, F.; Savagnac, A.; Abderraba, M.; Raiesf, A.; Romdhane, M. The influence of organ, season and drying method on chemical composition and antioxidant and antimicrobial activities of Juniperus phoenicea L. essential oils. J. Sci. Food Agric. 2010, 90, 462–470. [Google Scholar] [CrossRef]
- Figiel, A.; Szumny, A.; Gutiérrez-Ortíz, A.; Carbonell-Barrachina, A.A. Composition of oregano essential oil (Origanum vulgare) as affected by drying method. J. Food Eng. 2010, 98, 240–247. [Google Scholar] [CrossRef]
- Szumny, A.; Figiel, A.; Gutiérrez-Ortíz, A.; Carbonell-Barrachina, A.A. Composition of rosemary essential oil (Rosmarinus officinalis) as affected by drying method. J. Food Eng. 2010, 97, 253–260. [Google Scholar] [CrossRef]
- Banout, J.; Havlik, J.; Kulik, M.; Kloucek, P.; Lojka, B.; Valterova, I. Effect of solar drying on the composition of essential oil of sacha culantro (Eryngium foetidum L.) grown in the peruvian amazon. J. Food Process Eng. 2010, 33, 83–103. [Google Scholar] [CrossRef]
- Calýn-Sanchez, A.; Szumny, A.; Figiel, A.; Jaloszynski, K.; Adamski, M.; Carbonell Barrachina, A.A. Effects of vacuum level and microwave power on rosemary volatile composition during vacuum-microwave drying. J. Food Eng. 2011, 103, 219–227. [Google Scholar] [CrossRef]
- Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Zhou, Y. Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short- and medium-wave infrared. Radiation. LWT Food Sci. Technol. 2015, 64, 759–766. [Google Scholar] [CrossRef]
- Khangholil, S.; Rezaeinodehi, A. Effect of drying temperature on essential oil content and composition of sweet wormwood (Artemisia annua) growing wild in Iran. Pak. J. Biol. Sci. 2008, 11, 934–937. [Google Scholar] [CrossRef]
- Baydar, H.; Erba, S. Effects of harvest time and drying on essential oil properties in lavandin (lavandula × intermedia emeric ex loisel.). Acta Hortic. 2009, 826, 377–382. [Google Scholar] [CrossRef]
- Shalaby, A.S.; Hendawy, S.F.; Khalil, M.Y. Evaluation of some chamomile cultivars introduced and adapted in Egypt. J. Essent. Oil-Bear. Plants 2010, 13, 655–669. [Google Scholar] [CrossRef]
- Presibella, M.M.; Villas-Bôas, L.D.B.; Belletti, K.M.D.S.; Santos, C.A.D.M.; Weffort-Santos, A.M. Comparison of chemical constituents of Chamomilla recutita (L.) Rauschert essential oil and its anti-chemotactic activity. Braz. Arch. Biol. Technol. 2006, 49, 717–724. [Google Scholar] [CrossRef]
- Salamon, L.; Abou-Zeid, E.N. The qualitative-quantitative characteristics of chamomile essential oil in Egypt. In Proceedings of the 1st International Symposium on Chamomile Research, Development and Production, Presov, Slovakia, 7–10 June 2006. [Google Scholar]
- Srivastava, J.K.; Shankar, E.; Gupta, S. Chamomile: A herbal medicine of the past with bright future. Mol. Med. Rep. 2010, 3, 895–901. [Google Scholar] [CrossRef]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res. 2006, 20, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Guenther, G. The Essential Oils VIII; Nastr and Company Inc.: Toronto, ON, Canada; New York, NY, USA; London, UK, 1961. [Google Scholar]
- Hendawy, S.F.; Omer, E.A.; El-Gohary, A.E.; El-Gendy, A.G.; Hussein, M.S.; Salaheldin, S.; Soliman, W.S. Effect of Soil and Irrigation Water Salinity in the Productivity and Essential Oil Constituents of Chamomile (Chamomilla recutita L.). J. Essent. Oil-Bear. Plants 2019, 22, 962–971. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oils Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured: Carol Stream, IL, USA, 2001. [Google Scholar]
- König, W.A.; Julain, D.; Hochmuth, D.H. Terpenoids and Related Constituents of Essential Oils; University of Hamburg available from MassFinder 3.5; Hochmuth Scientific Software: Hamburg, Germany, 2006. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods Applied to Experiments in Agriculture and Biology, 5th ed.; Iowa State University Press: Ames, IA, USA, 1956. [Google Scholar]
- Rocha, R.P.; Melo, E.C.; Radünz, L.L. Influence of drying process on the quality of medicinal plants: A review. J. Med. Plants Res. 2011, 5, 7076–7084. [Google Scholar] [CrossRef]
- Oztekin, S.; Martinov, M. Medicinal and Aromatic Crops: Harvesting, Drying, and Processing; Haworth Press, Inc.: Binghamton, NY, USA, 2007. [Google Scholar]
- European Pharmacopoeia. Directorate for the Quality of Medicines; European Treaty Series no. 50; Council of Europe: Strasbourg, France, 2004. [Google Scholar]
- Mulinacci, N.; Romani, A.; Pinelli, P.; Vincieri, F.F.; Prucher, D. Characterization of Matricaria recutita L. flower extracts by HPLC-MS and HPLC-DAD analysis. Chromatographia 2000, 51, 301–307. [Google Scholar] [CrossRef]
- Kubeczka, K.H. Essential Oil Analysis; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Medić-Šarić, M.; Stanić, G.; Maleš, Z.; Šarić, S. Application of numerical methods to thin-layer chromatographic investigation of the main components of chamomile (Chamomilla recutita (L.) Rauschert) essential oil. J. Chromatogr. A 1997, 776, 355–360. [Google Scholar] [CrossRef]
- Blumenthal, M.; Goldberg, A.; Brinckmann, J. Herbal Medicine: Expanded Commission E Monographs; Integrative Medicine Communications: Boston, MA, USA, 2000. [Google Scholar]
- Mashkani, M.R.D.; Larijanib, K.; Mehrafarinc, A.; Badic, H.N. Changes in the essential oil content and composition of Thymus daenensis Celak. under different drying methods. Ind. Crops Prod. 2018, 112, 389–395. [Google Scholar] [CrossRef]
- Rahimmaleka, M.; Golib, S.A.H. Evaluation of six drying treatments with respect to essential oil yield, composition and color characteristics of Thymys daenensis subsp. daenensis. Celak leaves. Ind. Crops Prod. 2013, 42, 613–619. [Google Scholar] [CrossRef]
- Martinazzo, A.P.; Melo, E.C.; Barbosa, L.C.A.; Soares, N.F.F.; Rocha, R.R.; Radünz, L.L.; Berbert, P.A. Quality parameters of Cymbopogon citratus leaves during ambient storage. Appl. Eng. Agric. 2009, 25, 543–547. [Google Scholar] [CrossRef]
- Mirhosseini, F.; Rahimmalek, M.; Pirbalouti, A.G.; Taghipoor, M. Effect of different drying treatments on essential oil yield, composition and color characteristics of Kelussia odoratissima Mozaff. J. Essent. Oil Res. 2015, 27, 204–211. [Google Scholar] [CrossRef]
pH | 7.8 |
---|---|
Conductivity (EC) | 880 µS/cm |
Total hardness as (CaCO3) | 283 mg/kg |
Calcium (Ca) | 64 mg/kg |
Magnesium (Mg) | 30 mg/kg |
Bicarbonate (HCO3−) | 266 mg/kg |
Total alkalinity as(CaCO3) | 218 mg/kg |
Bicarbonate alkalinity as (CaCO3) | 218 mg/kg |
Carbonate alkalinity as (CaCO3) | 0.0 mg/kg |
Hydroxide alkalinity as (CaCO3) | 0.0 mg/kg |
Sodium (Na+) | 64 mg/kg |
Potassium (K+) | 8.4 mg/kg |
Chloride (Cl−) | 82 mg/kg |
Sulfate (SO4−) | 90 mg/kg |
Total dissolved solids (TDS) | 540 mg/kg |
Ammonium (NH4−) | 0.60 mg/kg |
Nitrate (NO3−) | 79.4 mg/kg |
Nitrite (NO2) | 1.26 mg/kg |
Phosphate (PO4) | 2.38 mg/kg |
pH | 7.7 |
---|---|
Conductivity (EC) | 2.88 dS/mL 1843 ppm |
Carbonate (CO3−) | -- |
Bicarbonate (HCO3−) | 3.87 meq/L |
Chloride (Cl−) | 13.05 meq/L |
Sulfate (SO4−) | 6.24 meq/L |
Calcium (Ca+2) | 1.41 meq/L |
Magnesium (Mg+2) | 1.19 meq/L |
Sodium (Na+) | 20.43 meq/L |
Potassium (K+) | 0.13 meq/L |
Sodium Carbonate | -- |
Adsorbed Sodium | 17.93% |
Treatments | Essential Oil % | ||
---|---|---|---|
1st Cut | 2nd Cut | 3rd Cut | |
Direct sun | 0.39 ± 0.019 b | 0.35 ± 0.016 b | 0.31 ± 0.012 ab |
Shade | 0.37 ± 0.055 b | 0.34 ± 0.008 b | 0.29 ± 0.009 b |
Solar energy | 0.50 ± 0.016 a | 0.43 ± 0.029 a | 0.34 ± 0.024 a |
Oven | 0.33 ± 0.024 b | 0.32 ± 0.023 bc | 0.29 ± 0.021 b |
Microwave | 0.33 ± 0.016 b | 0.28 ± 0.006 c | 0.24 ± 0.015 c |
F value | 22.03 | 31.57 | 20.79 |
Probability | <0.0001 | <0.0001 | <0.0001 |
RT | Compound Name | Molecular Formula | FW | Shade | Sun | Oven | Solar | Microwave | |
---|---|---|---|---|---|---|---|---|---|
1 | 5.11 | Yomogi alcohol | C10H18O | -- | 0.23 | -- | -- | 0.31 | -- |
2 | 5.66 | o-Cymene | C10H14 | -- | -- | -- | -- | 0.09 | -- |
3 | 6.03 | à-Pinene | C10H16 | 0.16 | -- | -- | -- | -- | -- |
4 | 6.29 | β-Ocimene | C10H16 | 1.21 | -- | -- | -- | -- | -- |
5 | 6.62 | Artemisia ketone | C10H16O | 1.28 | 0.41 | 0.50 | -- | 0.53 | -- |
6 | 9.65 | Borneol | C10H18O | -- | 0.31 | 0.37 | -- | 0.21 | -- |
7 | 18.85 | β-Farnesene | C15H24 | 2.36 | 2.06 | 3.08 | 7.30 | 2.80 | 4.90 |
8 | 19.19 | Caryophyllene oxide | C15H24O | -- | -- | -- | -- | 0.11 | -- |
9 | 19.47 | Germacrene D | C15H24 | 0.64 | 0.22 | 0.22 | 1.20 | 0.36 | 0.67 |
10 | 19.95 | Bicyclogermacrene | C15H24 | 0.84 | 0.18 | -- | 0.56 | 0.23 | 0.33 |
11 | 22.02 | Caryophyllene oxide | C15H24O | 0.25 | -- | -- | 0.19 | 2.40 | -- |
12 | 22.32 | (-)-Spathulenol | C15H24O | 0.26 | 1.81 | 2.92 | 1.09 | 0.13 | 1.82 |
13 | 24.17 | tau.-Cadinol | C15H26O | 0.22 | 0.90 | 1.32 | 0.60 | 1.33 | 0.71 |
14 | 24.64 | α-Bisabolol oxide B | C15H26O2 | 15.32 | 12.43 | 15.36 | 8.23 | 12.74 | 11.09 |
15 | 24.79 | cis-α-Santalol | C15H24O | 0.31 | 2.00 | 2.28 | 1.13 | 2.23 | 0.80 |
16 | 25.38 | α-Bisabolone oxide A | C15H24O2 | 8.66 | 9.28 | 14.58 | 5.37 | 10.27 | 7.01 |
17 | 25.44 | α-Bisabolol | C15H26O | 4.10 | -- | -- | -- | -- | -- |
18 | 26.57 | Chamazulene | C14H16 | 5.17 | 1.88 | 2.37 | 2.25 | 3.09 | 2.55 |
19 | 27.25 | α-Bisabolol oxide A | C15H26O2 | 44.80 | 50.46 | 32.95 | 47.00 | 41.17 | 48.34 |
20 | 27.78 | α-Costol | C15H24O | -- | 0.15 | -- | -- | 0.07 | -- |
21 | 30.60 | (Z)-Tonghaosu | C13H12O2 | 9.95 | 10.02 | 16.39 | 18.73 | 14.51 | 14.89 |
22 | 32.25 | (E)-Tibetin spiroether | C14H14O2 | 0.36 | 0.55 | 1.00 | 1.06 | 1.21 | 0.98 |
23 | 36.77 | Linoleic acid | C18H32O2 | -- | 1.01 | 1.14 | 0.31 | 0.80 | 0.37 |
24 | 40.51 | Heptacosane | C27H56 | 0.09 | 0.50 | 0.54 | 0.11 | 0.40 | -- |
Monoterpene hydrocarbons | 1.37 | -- | -- | -- | 0.09 | -- | |||
Oxygenated monoterpenes | 1.28 | 0.95 | 0.87 | -- | 1.06 | -- | |||
Sesquiterpene hydrocarbons | 9.32 | 5.74 | 7.52 | 12.02 | 8.21 | 9.16 | |||
Oxygenated sesquiterpene | 84.01 | 87.71 | 86.61 | 83.11 | 85.65 | 85.30 | |||
Total detected compounds | 95.98 | 94.40 | 95.00 | 95.13 | 95.00 | 94.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, A.M.; Seddik, M.A.; Gahory, A.-A.; Salaheldin, S.; Soliman, W.S. Differences in the Aroma Profile of Chamomile (Matricaria chamomilla L.) after Different Drying Conditions. Sustainability 2021, 13, 5083. https://doi.org/10.3390/su13095083
Abbas AM, Seddik MA, Gahory A-A, Salaheldin S, Soliman WS. Differences in the Aroma Profile of Chamomile (Matricaria chamomilla L.) after Different Drying Conditions. Sustainability. 2021; 13(9):5083. https://doi.org/10.3390/su13095083
Chicago/Turabian StyleAbbas, Ahmed Mahmoud, Mohamed Abdelmoneim Seddik, Abd-Allah Gahory, Sabri Salaheldin, and Wagdi Saber Soliman. 2021. "Differences in the Aroma Profile of Chamomile (Matricaria chamomilla L.) after Different Drying Conditions" Sustainability 13, no. 9: 5083. https://doi.org/10.3390/su13095083
APA StyleAbbas, A. M., Seddik, M. A., Gahory, A.-A., Salaheldin, S., & Soliman, W. S. (2021). Differences in the Aroma Profile of Chamomile (Matricaria chamomilla L.) after Different Drying Conditions. Sustainability, 13(9), 5083. https://doi.org/10.3390/su13095083