The Long-Run Impacts of Temperature and Rainfall on Agricultural Growth in Sub-Saharan Africa
Abstract
1. Background
2. Data and Empirical Methodology
Empirical Framework and Estimators
3. Empirical Analysis
3.1. Summary Statistics, Unit Root Tests, and Lag Selections
3.2. Standard Mean Group Estimators and Cross-Sectional Dependence
3.3. Common Correlated Mean Group Estimators (CCEMG) and Cross-Sectionally Augmented ARDL (CS-ARDL), Estimators
3.4. Cross-Sectionally Augmented Distributed Lag (CS-DL) Estimators and Cross-Sectional Augmented Error Correction Model (CS-ECM) Estimators
3.5. Augmented Mean Group (AMG) Estimators
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barrios, S.; Bertinelli, L.; Strobl, E. Trendsin Rainfall and Economic Growth in Africa: A Neglected Cause of the African Growth Tragedy. Rev. Econ. Stat. 2010, 92, 350–366. [Google Scholar] [CrossRef]
- Mesterházy, Á.; Oláh, J.; Popp, J. Losses in the Grain Supply Chain: Causes and Solutions. Sustainability 2020, 12, 2342. [Google Scholar] [CrossRef]
- Abildtrup, J.; Audsley, E.; Fekete-Farkas, M.; Giupponi, C.; Gylling, M.; Rosato, P.; Rounsevell, M. Socio-economic scenario development for the assessment of climate change impacts on agricultural land use:A pairwise comparison approach. Environ. Sci. Policy 2006, 9, 101–115. [Google Scholar] [CrossRef]
- Cline, R.W. Climate Change and Agriculture: Impacts Estimates by Country; Centre for Global Development and Peterson Institute for International Economics: Washington, DC, USA, 2007. [Google Scholar]
- Dinar, A.; Hassan, R.; Mendelsohn, R.; Benhin, J. Climate Change and Agriculture in Africa: Impact Assessment and Adaptation Strategies; Routledge: London, UK, 2012. [Google Scholar]
- Kurukulasuriya, P.; Mendelsohn, R. How Will Climate Change Shift Agro-Ecological Zones And Impact African Agriculture; The World Bank: Washington, DC, USA, 2008; p. 31. [Google Scholar]
- Kurukulasuriya, P.; Mendelsohn, R. A Ricardian analysis of the impact of climate change on African cropland. Afr. J. Agric. Resour. Econ. 2008, 2, 1–23. [Google Scholar]
- Seo, S.N.; Mendelsohn, R.; Dinar, A.; Hassan, R.; Kurukulasuriya, P. A Ricardian Analysis of the Distribution of Climate Change Impacts on Agriculture across Agro-Ecological Zones in Africa. Environ. Resour. Econ. 2009. [Google Scholar] [CrossRef]
- Abidoye, B.O.; Odusola, A.F. Climate Change and Economic Growth in Africa: An Econometric Analysis. J. Afr. Econ. 2015, 24, 277–301. [Google Scholar] [CrossRef]
- Cline, W.R. Global warming and agriculture. Financ. Dev. 2008, 45, 23. [Google Scholar]
- Dell, M.; Jones, B.F.; Olken, B.A. Temperature Shocks and Economic Growth: Evidence from the Last Half Century. Am. Econ. J. Macroecon. 2012, 4, 66–95. [Google Scholar] [CrossRef]
- Deschênes, O.; Greenstone, M. TheEconomic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather. Am. Econ. Rev. 2007, 97, 354–385. [Google Scholar] [CrossRef]
- Lanzafame, M. Temperature, rain fall and economic growth in Africa. Empir. Econ. 2014, 46, 1–18. [Google Scholar] [CrossRef]
- Gbetibouo, G.A.; Hassan, R.M. Measuring the economic impact of climate change on major South African field crops: A Ricardian approach. Glob. Planet. Chang. 2005, 47, 143–152. [Google Scholar] [CrossRef]
- Kurukulasuriya, P.; Mendelsohn, R. Crop Selection: Adapting to Climate Change in Africa (Centre for Environmental Economics and Policy in Africa [CEEPA] Discussion Paper No. 26); University of Pretoria: Pretoria, South Africa, 2006. [Google Scholar]
- Deressa, T.T. Measuring the Economic Impact of Climate Change on Ethiopian Agriculture: Ricardian Approach; TheWorldBank: Washington, DC, USA, 2007. [Google Scholar]
- Ngondjeb, Y.D. Agriculture and Climate Change in Cameroon: An Assessment of Impacts and Adaptation Options. Afr. J. Sci. Technol. Innov. Dev. 2013, 5, 85–94. [Google Scholar] [CrossRef]
- Watson, R.T.; Zinyowera, M.C.; Moss, R.H.; Dokken, D.J. The Regional Impacts of Climate Change; IPCC: Geneva, Switzerland, 1998. [Google Scholar]
- Matsuura, K.; Willmott, C. Terrestrial Air Temperature and Precipitation: 1900–2006 Gridded Monthly Time Series, Version 1.01; University of Delaware: Newark, DE, USA, 2007; Available online: http://climate.geog.udel.edu/~climate (accessed on 6 October 2020).
- Pesaran, M.H. Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica 2006, 74, 967–1012. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Smith, R. Estimating long-run relationships from dynamic heterogeneous panels. J. Econom. 1995, 68, 79–113. [Google Scholar] [CrossRef]
- Chudik, A.; Pesaran, M.H. Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. J. Econom. 2015, 188, 393–420. [Google Scholar] [CrossRef]
- Chudik, A.; Mohaddes, K.; Pesaran, M.H.; Raissi, M. Long-Run Effects in Large Heterogeneous Panel Data Models with Cross-Sectionally Correlated Errors. In Essays in Honor of Man Ullah; Emerald Group Publishing Limited: Bingley, UK, 2016; Volume 36, pp. 85–135. [Google Scholar]
- Eberhardt, M.; Teal, F. Productivity Analysis in Global Manufacturing Production; University of Oxford: Oxford, UK, 2010. [Google Scholar]
- Pesaran, M.H.; Shin, Y.; Smith, R.P. Pooled Mean Group Estimation of Dynamic Heterogeneous Panels. J. Am. Stat. Assoc. 1999, 94, 621–634. [Google Scholar] [CrossRef]
- Eberhardt, M.; Teal, F. No Mangoes in the Tundra:Spatial Heterogeneity in Agricultural Productivity Analysis. Oxf. Bull. Econ. Stat. 2013, 75, 914–939. [Google Scholar] [CrossRef]
- Eberhardt, M.; Teal, F.; Eberhardt, M. Department of Economics Discussion Paper Series Productivity Analysis in Global Manufacturing Production; Working Paper; University of Oxford: Oxford, UK, 2010; pp. 1–32. [Google Scholar]
- Pesaran, H.M. General diagnostic tests for cross-sectional dependence in panels. In University of Cambridge, Cambridge Working Papers in Economics; Faculty of Economics: Cambridge, UK, 2004; p. 435. [Google Scholar]
- Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series with a UnitRoot. J. Am. Stat. Assoc. 1979, 74, 427–431. [Google Scholar]
- Loayza, N.V.; Ranciere, R. Financial development, financial fragility, and growth. J. Money Credit Bank. 2006, 38, 1051–1076. [Google Scholar] [CrossRef]
- Hamilton, L.C. How robust is robust regression? Stata Technical Bulletin 2:21–26. Repr. Stata Tech. Bull. Repr. 1991, 1, 69–175. [Google Scholar]
Statistics Summary | |||||
---|---|---|---|---|---|
Variable | Observations | Mean | Std. Dev | Min | Max |
Year | 1888 | - | - | 1961 | 2019 |
Country | 1888 | 1990 | 17.0339 | 1 | 32 |
Agriculture per worker (log) | 1888 | −1.109 | 0.479 | −2.49 | 0.7521 |
Temperature (°C) | 1888 | 24.594 | 2.893 | 18.75 | 29.583 |
Precipitation (100 s mm/year) | 1888 | 11.971 | 5.876 | 1.588 | 32.258 |
Variables | Agriculture per Worker (log) | Temperature | Precipitation | |||
---|---|---|---|---|---|---|
Country | Z-stat | p-Value | Z-stat | p-Value | Z-stat | p-Value |
Angola | 1.623 | 0.947 | −5.389 | 0.000 | −2.583 | 0.005 |
Benin | 0.796 | 0.213 | −2.125 | 0.017 | − 3.654 | 0.001 |
Botswana | −1.361 | 0.087 | −2.728 | 0.003 | −2.597 | 0.004 |
Burkina Faso | −0.585 | 0.279 | −2.922 | 0.002 | −1.817 | 0.035 |
Burundi | −1.483 | 0.069 | 0.2897 | 0.614 | −1.740 | 0.041 |
Cameroon | −0.290 | 0.386 | −4.013 | 0.000 | −2.259 | 0.012 |
Central African Republic | 0.017 | 0.507 | −3.121 | 0.001 | −1.477 | 0.070 |
Chad | −0.143 | 0.443 | −6.034 | 0.000 | −2.268 | 0.012 |
Congo, Dem. Rep. | 1.035 | 0.850 | −4.027 | 0.000 | −2.934 | 0.002 |
Equatorial Guinea | −0.523 | 0.300 | −3.333 | 0.000 | −2.423 | 0.008 |
Ethiopia | 0.895 | 0.814 | −3.678 | 0.000 | −1.936 | 0.026 |
Gabon | −0.858 | 0.195 | −2.194 | 0.014 | −3.499 | 0.002 |
Gambia | −2.545 | 0.005 | −4.305 | 0.000 | −3.011 | 0.001 |
Ghana | 0.980 | 0.836 | −4.131 | 0.000 | −2.706 | 0.003 |
Guinea | 0.367 | 0.643 | −1.672 | 0.047 | −1.038 | 0.149 |
Kenya | −0.846 | 0.198 | −4.235 | 0.000 | −4.355 | 0.000 |
Liberia | −1.306 | 0.095 | −3.771 | 0.001 | −1.670 | 0.047 |
Madagascar | −0.666 | 0.252 | −3.202 | 0.001 | −1.101 | 0.135 |
Malawi | −0.332 | 0.369 | −3.996 | 0.000 | −2.363 | 0.009 |
Mali | −2.239 | 0.013 | −3.165 | 0.001 | −1.580 | 0.057 |
Mauritania | −1.465 | 0.071 | −4.458 | 0.000 | −2.014 | 0.022 |
Mozambique | −0.128 | 0.449 | −3.134 | 0.001 | −3.572 | 0.001 |
Niger | −0.144 | 0.442 | −3.788 | 0.000 | −2.047 | 0.020 |
Nigeria | 0.247 | 0.597 | −3.107 | 0.000 | −2.666 | 0.038 |
Rwanda | −1.834 | 0.033 | −0.401 | 0.344 | −2.226 | 0.013 |
Senegal | −2.278 | 0.011 | −3.387 | 0.000 | −2.068 | 0.019 |
Sierra Leone | −1.168 | 0.121 | −2.487 | 0.006 | −2.105 | 0.017 |
Sudan | 0.028 | 0.511 | −3.290 | 0.000 | −0.769 | 0.220 |
Tanzania | −0.667 | 0.252 | −3.773 | 0.000 | −2.379 | 0.009 |
Togo | −0.789 | 0.214 | −2.875 | 0.002 | −4.021 | 0.000 |
Uganda | −0.236 | 0.406 | −2.647 | 0.004 | −3.256 | 0.001 |
Zimbabwe | −1.751 | 0.039 | −2.922 | 0.002 | −2.163 | 0.015 |
Dependent Variable: Agriculture Growth per Worker ∆ lnY | |||
---|---|---|---|
PMG | MG | DFE | |
Error Correction Term | −1.097 *** | −1.126 *** | −1.261 *** |
(0.0416) | (0.0405) | (0.0221) | |
∆ Temperature | −0.0220 * | −0.0261 ** | −0.0355 |
(0.0087) | (0.0082) | (0.0054) | |
∆ Precipitation | 0.0128 * | 0.0095 ** | 0.0056 *** |
(0.0044) | (0.0038) | (0.0014) | |
Intercept | 0.0873 *** | −0.201 | 0.0193 |
(0.0054) | (0.1206) | (0.1001) | |
Long-Run Coefficients | |||
Temperature | −0.0038 | −0.00589 | −0.00168 |
(0.0022) | (0.0041) | (0.0031) | |
Precipitation | 0.0146 * | 0.0068 ** | 0.0024 * |
(0.0006) | (0.0025) | (0.0012) | |
CD test statistics | 149.07 | 149.07 | 149.07 |
CD (p values) | 0.00 | 0.00 | 0.00 |
N | 1824 | 1824 | 1824 |
Dependent Variable: Agricultural Growth per Worker ∆ lnY | ||||
---|---|---|---|---|
CCEMG | CCEMG | CS-ARDL | CS-ARDL | |
∆ lnY(t-1) | −0.185 *** | −0.181 *** | −0.183 *** | −0.151 ** |
(0.0449) | (0.0458) | (0.0481) | (0.0461) | |
Temperature | −0.0169 * | −0.0235 * | −0.0182 | −0.0282 * |
(0.0103) | (0.0104) | (0.0134) | (0.0140) | |
Precipitation | 0.0044 ** | 0.0042* | 0.0153 * | 0.0152 ** |
(0.0018) | (0.0018) | (0.0056) | (0.0056) | |
Trend | 0.0001 | 0.0000 | ||
(0.0002) | (0.0004) | |||
Intercept | −0.0096 | −0.0582 | 0.0440 | 0.0653 |
(0.1796) | (0.1944) | (0.6391) | (0.2092) | |
Long-Run Coefficients | ||||
∆ lnY(t-1) | −1.848 *** | −1.1808 *** | −1.183 *** | −1.1770 *** |
(0.0449) | (0.0458) | (0.0461) | (0.0419) | |
Temperature | −0.0143 * | −0.0199 ** | −0.0157 | −0.0214 * |
(0.0077) | (0.0088) | (0.0097) | (0.0101) | |
Precipitation | 0.0038 *** | 0.0036 *** | 0.0117 ** | 0.0117 ** |
(0.0015) | (0.0016) | (0.0040) | (0.0044) | |
CD test statistics | −1.787 | −1.939 | −1.8073 | −1.9044 |
CD (p values) | 0.074 | 0.052 | 0.0275 | 0.0274 |
N | 1824 | 1824 | 1696 | 1696 |
Dependent Variable: Agriculture Growth per Worker(log) ∆ lnY | ||||
---|---|---|---|---|
CS-DL | CS-DL | CS-ECM | CS-ECM | |
Error Correction Term | −1.145 *** | −1.119 *** | ||
(0.0424) | (0.0442) | |||
∆Temperature | −0.0050 | −0.0035 | −0.0187 | −0.0160 |
(0.0185) | (0.0167) | (0.0165) | (0.0167) | |
∆Precipitation | 0.0175 * | 0.0171 * | 0.0104 * | 0.0110 * |
(0.0077) | (0.0074) | (0.0042) | (0.0041) | |
∆ Temperature (t-1) | 0.0173 | 0.0157 | ||
(0.0230) | (0.0216) | |||
∆ Precipitation (t-1) | −0.0001 | −0.0002 | ||
(0.0027) | (0.0029) | |||
Trend | 0.0007 | 0.0002 | ||
(0.0006) | (0.0004) | |||
Intercept | 0.510 | 0.0336 | 0.351 | 0.165 |
(0.517) | (0.2812) | (0.4732) | (0.2239) | |
Long-Run Coefficients | ||||
Temperature | −0.0420 * | −0.0474 * | −0.0227 * | −0.0268 * |
(0.0207) | (0.0225) | (0.0112) | (0.0124) | |
Precipitation | −0.0032 | −0.0021 | 0.0006 | 0.0018 |
(0.0065) | (0.0048) | (0.0041) | (0.0042) | |
CD test statistics | −1.318 | −1.598 | −1.547 | −1.542 |
CD (p values) | 0.187 | 0.110 | 0.122 | 0.123 |
N | 1696 | 1696 | 1696 | 1696 |
Dependent Variable: Agricultural Growth per Worker(log) ∆ lnY | ||||
---|---|---|---|---|
AMG | AMG | AMG(Adj) | AMG(Adj) | |
∆ lnY(t-1) | −0.2059 *** | −0.1954 *** | −0.1991 *** | −0.1882 *** |
(0.0467) | (0.0476) | (0.0466) | (0.0475) | |
Temperature | −0.0198 * | −0.0211 ** | −0.0278 *** | −0.0507 *** |
(0.0082) | (0.0060) | (0.0078) | (0.0049) | |
Precipitation | 0.0050 ** (0.0017) | 0.0051 ** (0.0016) | 0.0038 (0.0018) | 0.0053 (0.0018) |
Common Dynamic Process | 0.642 *** (0.116) | 0.542 *** (0.1145) | ||
Trend | −0.0001 | −0.0006 ** | ||
(0.0002) | (0.0002) | |||
Intercept | 0.4732 * | 0.5153 ** | 0.7451 *** | 1.2462 *** |
(0.2063) | (0.1723) | (0.1902) | (0.1251) | |
Long-Run Coefficients | ||||
∆ lnY(t-1) | −1.2059 *** | −1.1954 *** | −1.1991 *** | −1.1882 *** |
(0.0467) | (0.0476) | (0.0467) | (0.0475) | |
Temperature | −0.0164 *** | −0.0176 *** | −0.0232 *** | −0.0427 *** |
(0.0068) | (0.0051) | (0.0065) | (0.0043) | |
Precipitation | 0.0042 *** | 0.0043 *** | 0.0032 ** | 0.0046 ** |
(0.0014) | (0.0014) | (0.0015) | (0.0016) | |
CD test statistics | −0.859 | −1.062 | 1.928 | 2.215 |
CD (p values) | 0.39 | 0.288 | 0.054 | 0.027 |
N | 1824 | 1824 | 1824 | 1824 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talib, M.N.A.; Ahmed, M.; Naseer, M.M.; Slusarczyk, B.; Popp, J. The Long-Run Impacts of Temperature and Rainfall on Agricultural Growth in Sub-Saharan Africa. Sustainability 2021, 13, 595. https://doi.org/10.3390/su13020595
Talib MNA, Ahmed M, Naseer MM, Slusarczyk B, Popp J. The Long-Run Impacts of Temperature and Rainfall on Agricultural Growth in Sub-Saharan Africa. Sustainability. 2021; 13(2):595. https://doi.org/10.3390/su13020595
Chicago/Turabian StyleTalib, Mirza Nouman Ali, Masood Ahmed, Mirza Muhammad Naseer, Beata Slusarczyk, and József Popp. 2021. "The Long-Run Impacts of Temperature and Rainfall on Agricultural Growth in Sub-Saharan Africa" Sustainability 13, no. 2: 595. https://doi.org/10.3390/su13020595
APA StyleTalib, M. N. A., Ahmed, M., Naseer, M. M., Slusarczyk, B., & Popp, J. (2021). The Long-Run Impacts of Temperature and Rainfall on Agricultural Growth in Sub-Saharan Africa. Sustainability, 13(2), 595. https://doi.org/10.3390/su13020595