The Spatiotemporal Changes and the Impacts of Climate Factors on Grassland in the Northern Songnen Plain (China)
Abstract
:1. Introduction
- (1)
- To reveal the internal conversion characteristics of the grassland;
- (2)
- To analyze the characteristics of grassland transfer-in and transfer-out;
- (3)
- To explore the probable impact of climate factors on the grassland in the northern Songnen Plain (China).
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Research Methods
2.3.1. Dynamic Analysis on the Change of Grassland
2.3.2. Analysis of the Transfer Matrix of Land-Use Types
2.3.3. Grey Correlations Analysis
3. Results
3.1. Temporal Variation of Grassland from 1990 to 2020 in the Study Area
3.2. Spatial Variation of Grassland from 1990 to 2020 in the Study Area
3.2.1. Characteristics of the Internal Conversion of Grassland
3.2.2. Characteristics of Grassland Transfer-In
3.2.3. Characteristics of Grassland Transfer-Out
3.3. The Impact of Climate Factors on Grassland in the Northern Songnen Plain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qya, B.; Zn, A.; Zeng, T.A. Influencing factors of the grassland ecological compensation policy to herdsmen’s behavioral response: An empirical study in Hexi corridor. Acta Ecol. Sin. 2021. [Google Scholar] [CrossRef]
- Fassnacht, F.; Li, L.; Fritz, A. Mapping degraded grassland on the Eastern Tibetan Plateau with multi-temporal Landsat 8 data—Where do the severely degraded areas occur? Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 115–127. [Google Scholar] [CrossRef]
- Akiyama, T.; Kawamura, K. Grassland degradation in China: Methods of monitoring, management and restoration. Grassl. Sci. 2010, 53, 1–17. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, X.; Yinglan, A.; Duan, L.; Liu, T. A Spatiotemporal Cross Comparison Framework for the Accuracies of Remotely Sensed Soil Moisture Products in a Climate-Sensitive Grassland Region. J. Hydrol. 2021, 597, 126089. [Google Scholar] [CrossRef]
- Qian, D.; Du, Y.; Li, Q.; Guo, X.; Cao, G. Alpine grassland management based on ecosystem service relationships on the southern slopes of the Qilian Mountains, China. J. Environ. Manag. 2021, 288, 112447. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Das, D.; John, R. Grassland vegetation and roads have dominant influence on decadal-scale spatial-temporal patterns of fires in a species-rich protected Terai habitat in northeastern India. Agric. For. Meteorol. 2021, 304, 108411. [Google Scholar] [CrossRef]
- Xin, L.; Li, X.; Dou, H.; Dang, D.; Liu, S. Evaluation of grassland carbon pool based on TECO-R model and climate-driving function: A case study in the Xilingol typical steppe region of Inner Mongolia, China. Ecol. Indic. 2020, 117, 106508. [Google Scholar]
- Wang, X.; Li, Y.; Gong, X.; Niu, Y.; Liu, J. Changes of soil organic carbon stocks from the 1980s to 2018 in northern China’s agro-pastoral ecotone. Catena 2020, 194, 104722. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Huang, L.; Chen, C.; Lin, X.; Hu, Z.; Li, J. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecol. Indic. 2017, 83, 303–313. [Google Scholar] [CrossRef]
- Na, R.; Du, H.; Na, L.; Shan, Y.; Huang, L. Spatiotemporal changes in the Aeolian desertification of Hulunbuir Grassland and its driving factors in China during 1980–2015. Catena 2019, 182, 104123. [Google Scholar] [CrossRef]
- Gu, J.; Pang, Q.; Ding, J.; Yin, R.; Zhang, Y. The driving factors of mercury storage in the Tibetan grassland soils underlain by permafrost. Environ. Pollut. 2020, 265 Pt B, 115079. [Google Scholar] [CrossRef]
- Sun, B.; Li, Z.; Gao, Z.; Guo, Z.; Wang, B.; Hu, X.; Bai, L. Grassland degradation and restoration monitoring and driving forces analysis based on long time-series remote sensing data in Xilin Gol League. Acta Ecol. Sin. 2017, 37, 219–228. [Google Scholar] [CrossRef]
- Xu, S. Temporal and Spatial Characteristics of the Change of Cultivated Land Resources in the Black Soil Region of Heilongjiang Province (China). Sustainability 2018, 11, 38. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Song, K.; Zhang, B.; Liu, D.; Ren, C.; Luo, L.; Yang, T.; Huang, N.; Hu, L.; Yang, H.; et al. Shrinkage and fragmentation of grasslands in the West Songnen Plain, China. Agric. Ecosyst. Environ. 2009, 129, 315–324. [Google Scholar] [CrossRef]
- Li, N.; Jie, D.; Ge, Y.; Guo, J.; Liu, H.; Liu, L.; Qiao, Z. Response of phytoliths in Phragmites communis to elevated CO2 concentration in Songnen Grassland, China. Quat. Int. 2014, 321, 97–104. [Google Scholar] [CrossRef]
- Yu, P.; Qiang, L.; Jia, H.; Wei, Z.; Wang, M.; Zhou, D. Carbon stocks and storage potential as affected by vegetation in the Songnen grassland of northeast China. Quat. Int. 2013, 306, 114–120. [Google Scholar] [CrossRef]
- Zheng, S.; Yuan, S. The Analysis of Human Factors on Grassland Productivity in Western Songnen Plain. Procedia Environ. Sci. 2011, 10, 1302–1307. [Google Scholar] [CrossRef] [Green Version]
- Andrade-Linares, D.; Zistl-Schlingmann, M.; Foesel, B.; Dannenmann, M.; Schloter, M. Short term effects of climate change and intensification of management on the abundance of microbes driving nitrogen turnover in montane grassland soils. Sci. Total Environ. 2021, 780, 146672. [Google Scholar] [CrossRef]
- Li, X.; Bai, Y.; Wen, W.; Wang, H.; Li, R.; Li, G.; Wang, H. Effects of grassland degradation and precipitation on carbon storage distributions in a semi-arid temperate grassland of Inner Mongolia, China. Acta Oecol. 2017, 85, 44–52. [Google Scholar] [CrossRef]
- Shirahama, Y.; Miyairi, Y.; He, H.; Fu, B.; Echigo, T.; Yokoyama, Y.; Ikeda, Y. Late Quaternary evolution of the Kumkol Basin at the northeastern margin of the Tibetan Plateau revealed by tectonic geomorphology and the analysis of in situ cosmogenic nuclides. Geomorphology 2019, 329, 224–247. [Google Scholar] [CrossRef]
- Oliveira, W.; Hanriot, S.; Queiroz, J.M. Analysis of pulsating phenomena in an ICE intake manifold using lumped parameter and transfer matrix methods. Appl. Acoust. 2021, 178, 108029. [Google Scholar] [CrossRef]
- Du, X.; Chen, X.; Zeng, W.; Meng, J. A climate-sensitive transition matrix growth model for uneven-aged mixed-species oak forests in North China. For. Int. J. For. Res. 2020, 2, 258–277. [Google Scholar] [CrossRef]
- Doost, M.B.; Kasmaei, H.; Beckwith, A.W. Foldy-Wouthuysen transfer matrix method for Dirac tunneling through monolayer graphene with a mass gap. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 130, 114654. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xinliang, X.U.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Rendong, L.I.; Yan, C. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Geogr. Sin. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, C.; Dai, J. Prediction of compressive strength of recycled aggregate concrete based on gray correlation analysis. Constr. Build. Mater. 2021, 273, 121750. [Google Scholar] [CrossRef]
- Wang, X.; Yang, W.; Ge, Y.; Feng, D. The influence of shrinkage-reducing agent solution properties on shrinkage of cementitious composite using grey correlation analysis. Constr. Build. Mater. 2020, 264, 120194. [Google Scholar]
- Zhao, Y.; Liu, H.; Zhang, A.; Cui, X.; Zhao, A. Spatiotemporal variations and its influencing factors of grassland net pri mary productivity in Inner Mongolia, China during the period 2000–2014. J. Arid Environ. 2019, 165, 106–118. [Google Scholar] [CrossRef]
- Schirpke, U.; Kohler, M.; Leitinger, G.; Fontana, V.; Tasser, E.; Tappeiner, U. Future impacts of changing land-use and climate on ecosystem services of mountain grassland and their resilience. Ecosyst. Serv. 2017, 26 Pt A, 79–94. [Google Scholar] [CrossRef]
- Guo, D.; Song, X.; Hu, R.; Cai, S.; Zhu, X.; Hao, Y. Grassland type-dependent spatiotemporal characteristics of productivity in Inner Mongolia and its response to climate factors. Sci. Total Environ. 2021, 775, 145644. [Google Scholar] [CrossRef]
- Johnston, C.A. Agricultural expansion: Land use shell game in the U.S. Northern Plains. Landscape Ecol. 2014, 29, 81–95. [Google Scholar] [CrossRef]
- Wimberly, M.C.; Janssen, L.L.; Hennessy, D.A.; Luri, M.; Chowdhury, N.M.; Feng, H. Cropland expansion and grassland loss in the eastern Dakotas: New insights from a farm-level survey. Land Use Policy 2017, 63, 160–173. [Google Scholar] [CrossRef]
- Wang, J.; Guo, N.; Cai, D. The effect evaluation of the program of restoring grazing to grasslands in Maqu County. Acta Ecol. Sin. 2009, 29, 1276–1284. [Google Scholar]
- Zhou, J.; Zhao, Y.; Huang, P.; Zhao, X.; Feng, W.; Li, Q.; Xue, D.; Dou, J.; Shi, W.; Wei, W.; et al. Impacts of ecological restoration projects on the ecosystem carbon storage of inland river basin in arid area, China. Ecol. Indic. 2020, 118, 106803. [Google Scholar] [CrossRef]
- Rescia, A.J.; Pons, A.; Lomba, I.; Esteban, C.; Dover, J.W. Reformulating the social-ecological system in a cultural rural mountain landscape in the Picos de Europa region (northern Spain). Landscape Urban Plann. 2008, 88, 23–33. [Google Scholar] [CrossRef]
- Aune, S.; Bryn, A.; Hovstad, K.A. Loss of semi-natural grassland in a boreal landscape: Impacts of agricultural intensification and abandonment. J. Land Use Sci. 2018, 13, 375–390. [Google Scholar] [CrossRef]
Land Types | Area Changes/km2 | The Dynamic Rate/% | ||||
---|---|---|---|---|---|---|
1990–2000 | 2000–2010 | 2010–2020 | 1990–2000 | 2000–2010 | 2010–2020 | |
H-grassland | −2565 | 27 | −1635 | −3.07 | 0.05 | −2.81 |
M-grassland | 138 | 102 | −862 | 0.25 | 0.18 | −1.47 |
L-grassland | 2 | −2 | −29 | 0.07 | −0.07 | −0.97 |
C_land | 5250 | 536 | 4441 | 0.70 | 0.07 | 0.55 |
W_land | −1667 | −66 | −1193 | −0.71 | −0.03 | −0.55 |
Con_land | −291 | −142 | −2506 | −0.40 | −0.21 | −3.70 |
W_land | 83 | 49 | 1237 | 0.17 | 0.10 | 2.41 |
U_land | −899 | −504 | 547 | −0.56 | −0.33 | 0.38 |
Period | Internal Grassland Conversion | Conversion Ratio/% | Conversion Area (km2) | Conversion Ratio of Land Conversion Area to Total Conversion Area in Every City/% | ||||
---|---|---|---|---|---|---|---|---|
Qiqihar City | Daqing City | Suihua City | West of Harbin City | Southeast of Heihe City | ||||
1990–2000 | H-grassland–M-grassland | 8.51 | 711 | 0.56 | 3.23 | 96.20 | 0.01 | 0 |
M-grassland–H-grassland | 0.09 | 2 | 50.00 | 50.00 | 0 | 0 | 0 | |
2000–2010 | H-grassland–M-grassland | 0.45 | 26 | 69.23 | 11.54 | 19.23 | 0 | 0 |
M-grassland–H-grassland | 0.28 | 16 | 25.00 | 68.75 | 6.25 | 0 | 0 | |
M-grassland–L-grassland | 0.05 | 3 | 0 | 100.00 | 0 | 0 | 0 | |
L-grassland–H-grassland | 1.00 | 3 | 0 | 100.00 | 0 | 0 | 0 | |
L-grassland–M-grassland | 1.00 | 3 | 0 | 100.00 | 0 | 0 | 0 | |
2010–2020 | H-grassland–M-grassland | 12.06 | 701 | 11.13 | 59.49 | 26.82 | 2.56 | 0.14 |
H-grassland–L-grassland | 0.26 | 15 | 26.67 | 73.33 | 0 | 0 | 0 | |
M-grassland–H-grassland | 10.15 | 594 | 7.91 | 71.72 | 19.53 | 0.84 | 0.67 | |
M-grassland–L-grassland | 0.84 | 49 | 4.08 | 57.14 | 38.78 | 0 | 0 | |
L-grassland–H-grassland | 10.37 | 28 | 3.57 | 96.43 | 0 | 0 | 0 | |
L-grassland–M-grassland | 23.33 | 63 | 1.59 | 98.41 | 0 | 0 | 0 |
Period | Transfer-In Types | Conversion Ratio and Area | Cultivated Land | Woodland | Waterland | Construction Land | Unused Land |
---|---|---|---|---|---|---|---|
1990–2000 | H-grassland | Conversion Ratio/% | 0.11 | 0.59 | 0.47 | 0 | 1.28 |
Conversion Area (km2) | 85 | 138 | 34 | 0 | 204 | ||
M-grassland | Conversion Ratio/% | 0.15 | 0.59 | 0.99 | 0 | 1.07 | |
Conversion Area (km2) | 111 | 138 | 71 | 0 | 171 | ||
L-grassland | Conversion Ratio/% | 0 | 0 | 0.10 | 0 | 0.01 | |
Conversion Area (km2) | 3 | 0 | 7 | 0 | 1 | ||
2000–2010 | H-grassland | Conversion Ratio/% | 0.24 | 0.24 | 0.09 | 0.10 | 0.71 |
Conversion Area (km2) | 194 | 53 | 6 | 5 | 107 | ||
M-grassland | Conversion Ratio/% | 0.08 | 0.05 | 0.64 | 0.02 | 1.37 | |
Conversion Area (km2) | 64 | 10 | 44 | 1 | 206 | ||
L-grassland | Conversion Ratio/% | 0 | 0 | 0 | 0 | 0.10 | |
Conversion Area (km2) | 1 | 0 | 0 | 0 | 15 | ||
2010–2020 | H-grassland | Conversion Ratio/% | 1.93 | 2.26 | 3.18 | 1.58 | 3.29 |
Conversion Area (km2) | 1566 | 492 | 215 | 81 | 480 | ||
M-grassland | Conversion Ratio/% | 1.30 | 0.51 | 1.67 | 1.33 | 4.87 | |
Conversion Area (km2) | 1056 | 112 | 113 | 68 | 710 | ||
L-grassland | Conversion Ratio/% | 0.08 | 0.03 | 0.19 | 0.16 | 0.35 | |
Conversion Area (km2) | 62 | 7 | 13 | 8 | 51 |
Period | Transfer-Out Types | Conversion Ratio and Area | Cultivated Land | Woodland | Waterland | Construction Land | Unused Land |
---|---|---|---|---|---|---|---|
1990–2000 | H-grassland | Conversion Ratio/% | 26.70 | 0.65 | 0.17 | 0.06 | 0.17 |
Conversion Area (km2) | 2230 | 54 | 14 | 5 | 14 | ||
M-grassland | Conversion Ratio/% | 16.16 | 0.36 | 0 | 0.04 | 0.29 | |
Conversion Area (km2) | 907 | 20 | 0 | 2 | 16 | ||
L-grassland | Conversion Ratio/% | 3.01 | 0 | 0 | 0 | 0 | |
Conversion Area (km2) | 9 | 0 | 0 | 0 | 0 | ||
2000–2010 | H-grassland | Conversion Ratio/% | 4.66 | 0.31 | 0.17 | 0.02 | 0.55 |
Conversion Area (km2) | 270 | 18 | 10 | 1 | 32 | ||
M-grassland | Conversion Ratio/% | 2.45 | 0.28 | 0.14 | 0.07 | 1.11 | |
Conversion Area (km2) | 141 | 16 | 8 | 4 | 64 | ||
L-grassland | Conversion Ratio/% | 1.66 | 0.33 | 0 | 0 | 2.99 | |
Conversion Area (km2) | 5 | 1 | 0 | 0 | 9 | ||
2010–2020 | H-grassland | Conversion Ratio/% | 40.02 | 9.70 | 1.98 | 1.94 | 21.60 |
Conversion Area (km2) | 2327 | 564 | 115 | 113 | 1256 | ||
M-grassland | Conversion Ratio/% | 26.76 | 2.79 | 1.81 | 1.98 | 18.64 | |
Conversion Area (km2) | 1566 | 163 | 106 | 116 | 1091 | ||
L-grassland | Conversion Ratio/% | 22.07 | 3.68 | 2.01 | 3.34 | 16.72 | |
Conversion Area (km2) | 66 | 11 | 6 | 10 | 50 |
Climate Factors | Region | 1990–2000 | 2000–2010 | 2010–2020 |
---|---|---|---|---|
Temperature | Qiqihar City | 0.84 | 0.58 | 0.90 |
Daing City | 0.38 | 0.37 | 1 | |
Suihua City | 0.71 | 0.91 | 0.53 | |
West of Harbin City | 0.62 | 0.93 | 0.93 | |
Southeast of Heihe City | 1.00 | 0.75 | 0.57 | |
Songnen Plain | 0.96 | 0.61 | 0.90 | |
Precipitation | Qiqihar City | 0.88 | 0.64 | 1.00 |
Daing City | 0.39 | 0.41 | 0.97 | |
Suihua City | 0.70 | 1.00 | 0.56 | |
West of Harbin City | 0.63 | 1 | 0.89 | |
Southeast of Heihe City | 0.95 | 0.80 | 0.58 | |
Songnen Plain | 0.98 | 0.68 | 1.00 |
Cities | Qiqihar City | Daqing City | Suihua City | West of Harbin City | Southeast of Heihe City |
---|---|---|---|---|---|
Average elevation (m) | 208.33 | 141.02 | 207.15 | 217.18 | 338.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zheng, S.; Wang, X. The Spatiotemporal Changes and the Impacts of Climate Factors on Grassland in the Northern Songnen Plain (China). Sustainability 2021, 13, 6568. https://doi.org/10.3390/su13126568
Wang L, Zheng S, Wang X. The Spatiotemporal Changes and the Impacts of Climate Factors on Grassland in the Northern Songnen Plain (China). Sustainability. 2021; 13(12):6568. https://doi.org/10.3390/su13126568
Chicago/Turabian StyleWang, Liping, Shufeng Zheng, and Xiang Wang. 2021. "The Spatiotemporal Changes and the Impacts of Climate Factors on Grassland in the Northern Songnen Plain (China)" Sustainability 13, no. 12: 6568. https://doi.org/10.3390/su13126568
APA StyleWang, L., Zheng, S., & Wang, X. (2021). The Spatiotemporal Changes and the Impacts of Climate Factors on Grassland in the Northern Songnen Plain (China). Sustainability, 13(12), 6568. https://doi.org/10.3390/su13126568