Analyzing Determining Factors of Young Graduates’ Decision to Stay in Lagged Regions
Abstract
1. Introduction
2. Literature Reviews
3. Analysis
3.1. Methodology
3.2. Result
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Variables | Name | Definition |
---|---|---|
Dependent | LUNIV | University within the non-SMA (=1) |
LJOB | Job within the non-SMA (=1) | |
Individual background | GEND | Male (=1) |
FEDUk | Father received a middle-school education (reference) k = H if father received a high-school education (=1) k = U if father received a university education (=1) k = G if father received a graduate-school education (=1) | |
FINC | Father’s income when an individual entered university | |
KAT | Korean scholastic aptitude test level, high score (=1) | |
MJRm | m = 1 if humanities (=1) m = 2 if social science (=1) m = 3 if engineering (=1) m = 4 if natural science (=1) m = 5 if medicine (=1) m = 6 if art and physical education (=1) m = 7 if education (reference) | |
GRADE | College grade | |
GRDLATE | Graduation more than one year late (=1) | |
EXPRGW | Job experience of regular work condition (=1) | |
EXPSL | Job experience in Seoul (capital city of Korea) (=1) | |
Regional components | WAGE | Present monthly wage of the present job compared to reservation wage |
RGW | Regular worker (=1) | |
LCOST | The level of living cost of destination region compared to origin region | |
HIND | Heavy industry or resource-oriented industry of the present job (=1) | |
RTMA | When his/her domicile is a metropolitan area remote from the capital city, over 300 km (e.g. Gwangju, Ulsan and Pusan) | |
RINC | Regional income of destination region compared to origin region | |
POP | Population of destination region compared to origin region | |
RDU | Education R&D investment per research manpower | |
SOU | State-owned university existing within domicile region (with twenty thousand students) | |
DR | Consistency between domicile and job location (=1) | |
UR | Consistency between university and job location (=1) |
GEND | MJR1 | MJR2 | MJR3 | MJR4 | MJR5 | MJR6 | GRADE | GRDLATE | EXPRGW | |
---|---|---|---|---|---|---|---|---|---|---|
GEND | 1.000 | |||||||||
MJR1 | −0.067 | 1.000 | ||||||||
MJR2 | −0.025 | −0.182 | 1.000 | |||||||
MJR3 | 0.351 | −0.173 | −0.371 | 1.000 | ||||||
MJR4 | −0.034 | −0.107 | −0.229 | −0.218 | 1.000 | |||||
MJR5 | −0.148 | −0.094 | −0.202 | −0.192 | −0.119 | 1.000 | ||||
MJR6 | −0.079 | −0.089 | −0.191 | −0.182 | −0.112 | −0.099 | 1.000 | |||
GRADE | −0.205 | −0.018 | 0.070 | −0.109 | −0.066 | 0.026 | 0.043 | 1.000 | ||
GRDLATE | 0.064 | 0.064 | −0.040 | 0.074 | 0.023 | −0.033 | −0.060 | −0.187 | 1.000 | |
EXPRGW | −0.041 | 0.016 | −0.005 | −0.031 | 0.016 | 0.020 | 0.025 | −0.039 | −0.027 | 1.000 |
EXPSL | −0.061 | 0.022 | −0.010 | −0.038 | −0.007 | 0.022 | 0.046 | −0.028 | 0.008 | 0.426 |
RGW | −0.069 | 0.030 | −0.027 | −0.028 | 0.034 | 0.045 | 0.015 | −0.031 | −0.058 | 0.241 |
ln(WAGE) | 0.261 | −0.039 | −0.045 | 0.177 | −0.043 | 0.028 | −0.112 | −0.080 | 0.120 | −0.082 |
ln(LCOST) | 0.008 | −0.011 | −0.036 | 0.039 | −0.018 | 0.056 | 0.002 | 0.020 | 0.025 | 0.009 |
HIND | 0.124 | −0.016 | −0.024 | 0.169 | −0.024 | −0.068 | −0.050 | −0.023 | 0.004 | −0.049 |
ln(RINC) | 0.021 | −0.011 | −0.011 | 0.022 | −0.001 | 0.013 | 0.016 | 0.025 | 0.011 | −0.009 |
ln(POP) | 0.014 | −0.016 | −0.041 | 0.051 | −0.016 | 0.054 | −0.005 | 0.015 | 0.029 | 0.005 |
DR | −0.101 | 0.005 | 0.055 | −0.103 | 0.013 | −0.009 | 0.022 | 0.044 | −0.164 | 0.044 |
UR | −0.038 | 0.011 | 0.085 | −0.082 | −0.001 | −0.038 | −0.005 | 0.014 | −0.019 | −0.001 |
EXPSL | RGW | ln(WAGE) | ln(LCOST) | HIND | ln(RINC) | ln(POP) | DR | UR | - | |
EXPSL | 1.000 | - | ||||||||
RGW | 0.135 | 1.000 | - | |||||||
ln(WAGE) | −0.020 | −0.075 | 1.000 | - | ||||||
ln(LCOST) | 0.058 | 0.044 | 0.024 | 1.000 | - | |||||
HIND | −0.031 | −0.155 | 0.121 | −0.061 | 1.000 | - | ||||
ln(RINC) | 0.057 | 0.035 | 0.029 | 0.539+ | −0.016 | 1.000 | - | |||
ln(POP) | 0.052 | 0.035 | 0.030 | 0.983+ | −0.055 | 0.451+ | 1.000 | - | ||
DR | −0.071 | 0.023 | −0.187 | −0.371 | −0.016 | −0.253 | −0.363 | 1.000 | - | |
UR | −0.047 | −0.054 | −0.070 | −0.268 | −0.009 | −0.216 | −0.250 | 0.340 | 1.000 | - |
References
- Kaplan, D.; Venezky, R.L. Literacy and Voting Behavior: A Bivariate Probit Model with Sample Selection. Soc. Sci. Res. 1994, 23, 350–367. [Google Scholar] [CrossRef]
- Kazakis, P.; Faggian, A. Mobility Education and Labor Market Outcomes for U.S. Graduates: Is Selectivity Important? Ann. Reg. Sci. 2017, 59, 731–758. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, J.; Xu, W. From School to University to Work: Migration of Highly Educated Youth in China. Ann. Reg. Sci. 2017, 59, 651–676. [Google Scholar] [CrossRef]
- Woo, Y.; Kim, E.; Lim, J. The Impact of the Education and R&D Investment on Regional Economic Growth. Sustainability 2017, 9, 676. [Google Scholar]
- Haapanen, M.; Tervo, H. Migration of the Highly Educated: Evidence from Residence Spells of University Graduates. J. Reg. Sci. 2012, 52, 587–605. [Google Scholar] [CrossRef]
- Krabel, S.; Flöther, C. There Today, Gone Tomorrow? Regional Labour Mobility of German University Graduates. Reg. Stud. 2014, 48, 1609–1627. [Google Scholar] [CrossRef]
- Clark, W.; Coulter, R. Who Wants to Move? The Role of Neighborhood Change. Environ. Plan. A 2015, 47, 2683–2709. [Google Scholar] [CrossRef]
- Florida, R. The Economic Geography of Talent. Ann. Assoc. Am. Geogr. 2002, 92, 743–755. [Google Scholar] [CrossRef]
- Hu, R. Migrant Knowledge Workers: An Empirical Study of Global Sydney as a Knowledge City. Expert Syst. Appl. 2014, 41, 5605–5613. [Google Scholar] [CrossRef]
- Kotavaara, N.; Kotavaara, O.; Rusanen, J.; Muilu, T. University Graduate Migration in Finland. Geoforum 2018, 96, 97–107. [Google Scholar] [CrossRef]
- Démurger, S.; Xu, H. Return migrants: The rise of new entrepreneurs in rural China. World Dev. 2011, 39, 1847–1861. [Google Scholar] [CrossRef]
- Robertson, S. Friendship Networks and Encounters in Student-migrants’ Negotiations of Translocal Subjectivity. Urban Stud. 2018, 55, 538–553. [Google Scholar] [CrossRef]
- Wozniak, A. Are College Graduates More Responsive to Distant Labor Market Opportunities? J. Hum. Resour. 2010, 45, 944–970. [Google Scholar]
- Guijarro, F. Economic Recovery and Effectiveness of Active Labour Market Initiatives for the Unemployed in Spain: A Gender Perspective of the Valencian Region. Sustainability 2018, 10, 3623. [Google Scholar] [CrossRef]
- Neal, Z.; Neal, J. The Public School as Public Good: Direct and Indirect pathways to Community Satisfaction. J. Urban Aff. 2016, 34, 469–485. [Google Scholar] [CrossRef]
- Haussen, T.; Uebelmesser, S. No Place like Home? Graduate Migration in Germany. Growth Chance 2018, 49, 442–472. [Google Scholar] [CrossRef]
- Jaeger, A.; Kopper, J. Third Mission Potential in Higher Education: Measuring the Regional Focus on Different Types of HEIs. Rev. Reg. Res. 2014, 34, 95–118. [Google Scholar] [CrossRef]
- Mellander, C.; Florida, R.; Stolarick, K. Here to Stay—The Effects of Community Satisfaction on the Decision to Stay. Spat. Econ. Anal. 2011, 6, 5–24. [Google Scholar] [CrossRef]
- Busch, O.; Weigert, B. Where Have All the Graduates Gone? Internal Cross-state Migration of Graduates in Germany 1987–2004. Ann. Reg. Sci. 2010, 44, 559–572. [Google Scholar] [CrossRef]
- Clemente, J.; Larramona, G.; Olmos, L. Interregional Migration and Thresholds: Evidence from Spain. Spat. Econ. Anal. 2016, 11, 276–293. [Google Scholar] [CrossRef]
- Crescenzi, R.; Holman, N.; Orru’, E. Why Do They Return? Beyond the Economic Drivers of Graduate Return Migration. Ann. Reg. Sci. 2017, 59, 603–627. [Google Scholar] [CrossRef]
- Findlay, A.M.; Stewart, E. Skilled Labor Migration from Developing Countries: Annotated Bibliography; ILO: Geneva, Switzerland, 2002; p. 39. [Google Scholar]
- Michielin, F.; Mulder, C.; Zorlu, A. Distance to parents and geographical mobility. Popul. Space Place 2008, 14, 327–345. [Google Scholar] [CrossRef]
- Bijker, R.A.; Haartsen, T. More than Counter-Urbanisation: Migration to Popular and Less-popular Rural Areas in the Netherlands. Popul. Space Place 2012, 18, 643–657. [Google Scholar] [CrossRef]
- Lundholm, E. Returning home? Migration to birthplace among migrants after age 55. Popul. Space Place 2012, 18, 74–84. [Google Scholar] [CrossRef]
- Winship, C.; Mare, R. Models for Sample Selection Bias. Annu. Rev. Sociol. 1992, 18, 327–350. [Google Scholar] [CrossRef]
- Wakasugi, R.; Koyata, F. R&D, Firm Size and Innovation Outputs: Are Japanese Firms Efficient in Product Development? J. Prod. Innov. Manag. 2003, 14, 383–392. [Google Scholar]
Variables | Mean | S.D. | Min | Max |
---|---|---|---|---|
GEND | 0.583 | 0.493 | - | - |
FEDUh | 0.435 | 0.496 | - | - |
FEDUu | 0.216 | 0.412 | - | - |
FEDUg | 0.062 | 0.241 | - | - |
ln(FINC) | 1.302 | 0.491 | 0.000 | 2.303 |
KAT | 0.159 | 0.366 | - | - |
ln(RINC) + | 0.302 | 0.742 | −2.190 | 3.512 |
ln(POP) + | 0.246 | 0.626 | −1.913 | 2.954 |
ln(RDU) | 12.834 | 1.859 | 7.659 | 15.993 |
SOU | 0.722 | 0.448 | - | - |
RTMA | 0.237 | 0.425 | - | - |
MJR1 | 0.078 | 0.268 | - | - |
MJR2 | 0.280 | 0.449 | - | - |
MJR3 | 0.259 | 0.438 | - | - |
MJR4 | 0.118 | 0.322 | - | - |
MJR5 | 0.096 | 0.295 | - | - |
MJR6 | 0.087 | 0.282 | - | - |
GRADE | 3.738 | 0.412 | 1.000 | 4.500 |
GRDLATE | 0.114 | 0.317 | - | - |
EXPRGW | 0.042 | 0.202 | - | - |
EXPSL | 0.017 | 0.130 | - | - |
RGW | 0.303 | 0.460 | - | - |
ln(WAGE) | 5.374 | 0.593 | 0.000 | 7.419 |
ln(LCOST) | 0.275 | 0.875 | −2.384 | 3.512 |
HIND | 0.052 | 0.222 | - | - |
ln(RINC) ++ | 0.144 | 0.614 | −2.415 | 2.331 |
ln(POP) ++ | 0.219 | 0.735 | −2.286 | 2.919 |
DR | 0.474 | 0.499 | - | - |
UR | 0.486 | 0.500 | - | - |
Study in the Lagged Regions | Stay for Job in the Lagged Regions | ||||||
---|---|---|---|---|---|---|---|
Variables | Coefficient | Standard Error | Variables | Coefficient | Standard Error | ||
Intercept | 94.755 | *** | 12.289 | Intercept | 1.233 | ** | 0.505 |
GEND | 0.545 | *** | 0.113 | GEND | −0.018 | 0.077 | |
FEDUh | −0.350 | *** | 0.098 | MJR1 | −0.254 | 0.166 | |
FEDUu | −0.605 | *** | 0.118 | MJR2 | −0.026 | 0.133 | |
FEDUg | −0.636 | *** | 0.190 | MJR3 | −0.255 | * | 0.136 |
ln(FINC) | −0.134 | 0.086 | MJR4 | −0.111 | 0.149 | ||
KAT | 0.372 | 0.307 | MJR5 | −0.111 | 0.151 | ||
ln(RINC) | −9.027 | *** | 0.571 | MJR6 | −0.188 | 0.160 | |
ln(POP) | 5.828 | *** | 0.601 | GRADE | −0.033 | 0.085 | |
ln(RDU) | −15.060 | *** | 1.878 | GRDLATE | −0.174 | 0.108 | |
(lnRDU)2 | 0.600 | *** | 0.072 | EXPRGW | 0.586 | *** | 0.191 |
SOU | 3.329 | *** | 0.534 | EXPSL | −1.240 | *** | 0.262 |
ln(RDU)×SOU | −0.291 | *** | 0.103 | RGW | −0.206 | *** | 0.072 |
RTMA | −2.045 | *** | 0.296 | ln(WAGE) | −0.050 | 0.068 | |
ln(RINC)×RTMA | −6.773 | *** | 2.029 | ln(LCOST) | −0.860 | *** | 0.226 |
ln(POP)×RTMA | 7.241 | *** | 1.776 | HIND | 0.258 | 0.255 | |
Rho(ρ) | −0.359 | *** | 0.117 | HIND×MJR3 | 0.671 | * | 0.352 |
ln(RINC) | −0.021 | 0.057 | |||||
ln(POP) | −0.041 | 0.256 | |||||
DR | 0.462 | *** | 0.082 | ||||
UR | 2.017 | *** | 0.137 | ||||
Number of observations | 5232 | 1294 | |||||
Log likelihood | −1551.044 | ||||||
Wald chi2 (20) | 1045.57 | ||||||
Prob > chi2 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, Y.; Kim, E. Analyzing Determining Factors of Young Graduates’ Decision to Stay in Lagged Regions. Sustainability 2020, 12, 3094. https://doi.org/10.3390/su12083094
Woo Y, Kim E. Analyzing Determining Factors of Young Graduates’ Decision to Stay in Lagged Regions. Sustainability. 2020; 12(8):3094. https://doi.org/10.3390/su12083094
Chicago/Turabian StyleWoo, Youngjin, and Euijune Kim. 2020. "Analyzing Determining Factors of Young Graduates’ Decision to Stay in Lagged Regions" Sustainability 12, no. 8: 3094. https://doi.org/10.3390/su12083094
APA StyleWoo, Y., & Kim, E. (2020). Analyzing Determining Factors of Young Graduates’ Decision to Stay in Lagged Regions. Sustainability, 12(8), 3094. https://doi.org/10.3390/su12083094