Primary Pollutants and Air Quality Analysis for Urban Air in China: Evidence from Shanghai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction of China’s AQI System
2.2. Overview of Shanghai Air Quality
2.3. Overview of Shanghai Climate
2.4. Three Air Quality Assessment Methods
2.4.1. Comprehensive Pollution Index Method
- is the annual average concentration of the ith pollutant in the atmosphere;
- is the evaluation criteria of the ith pollutant in the atmosphere;
- is the sub-index of the ith pollutant;
- is the pollution load coefficient of the ith pollutant.
- is the observed concentration value of a pollutant;
- is the corresponding evaluation criteria in Level II national air quality standard for the pollutant;
- I is the Comprehensive Pollution Index.
2.4.2. The Improved Grey Relational Degree Method
- is the difference in the absolute value of and at point K;
- is the minimum differnce between two levels;
- is the maximum difference between two levels;
- is the Graded Index of the jth pollution indicator on Level K;
- is the Graded Index of the jth pollution indicator on Level I;
- is the observed value of the jth pollution indicator in the ith monitoring point.
2.4.3. Euclid Approach Degree Method
- represents the observed concentration value of the jth pollution indicator at the ith monitoring point;
- represents the the mean value of the characteristic values of different levels of the jth pollution indicator;
- represents the characteristic value of Level II of the jth pollution indicator.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Zhang, D.; Liu, J.; Li, B. Tackling Air Pollution in China—What do We Learn from the Great Smog of 1950s in LONDON. Sustainability 2014, 6, 5322–5338. [Google Scholar] [CrossRef]
- Yang, W.; Li, L. Energy efficiency, ownership structure, and sustainable development: Evidence from China. Sustainability 2017, 9, 912. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, W. Does Whistleblowing Work for Air Pollution Control in China? A Study Based on Three-party Evolutionary Game Model under Incomplete Information. Sustainability 2019, 11, 324. [Google Scholar] [CrossRef]
- Yuan, G.; Yang, W. Evaluating China’s Air Pollution Control Policy with Extended AQI Indicator System: Example of the Beijing-Tianjin-Hebei Region. Sustainability 2019, 11, 939. [Google Scholar] [CrossRef]
- Li, H.; Tan, X.; Guo, J.; Zhu, K.; Huang, C. Study on an Implementation Scheme of Synergistic Emission Reduction of CO2 and Air Pollutants in China’s Steel Industry. Sustainability 2019, 11, 352. [Google Scholar] [CrossRef]
- Bloss, W. Measurement of Air Pollutants. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-12-409548-9. [Google Scholar]
- Park, J.H.; Lee, S.H.; Yun, S.J.; Ryu, S.; Choi, S.W.; Kim, H.J.; Kang, T.K.; Oh, S.C.; Cho, S.J. Air pollutants and atmospheric pressure increased risk of ED visit for spontaneous pneumothorax. Am. J. Emerg. Med. 2018, 36, 2249–2253. [Google Scholar] [CrossRef] [PubMed]
- Filonchyk, M.; Yan, H.; Li, X. Temporal and spatial variation of particulate matter and its correlation with other criteria of air pollutants in Lanzhou, China, in spring-summer periods. Atmos. Pollut. Res. 2018, 9, 1100–1110. [Google Scholar] [CrossRef]
- Dirgawati, M.; Heyworth, J.S.; Wheeler, A.J.; McCaul, K.A.; Blake, D.; Boeyen, J.; Cope, M.; Yeap, B.B.; Nieuwenhuijsen, M.; Brunekreef, B.; et al. Development of Land Use Regression models for particulate matter and associated components in a low air pollutant concentration airshed. Atmos. Environ. 2016, 144, 69–78. [Google Scholar] [CrossRef]
- Son, Y.; Osornio-Vargas, Á.R.; O’Neill, M.S.; Hystad, P.; Texcalac-Sangrador, J.L.; Ohman-Strickland, P.; Meng, Q.; Schwander, S. Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters. Sci. Total Environ. 2018, 639, 40–48. [Google Scholar] [CrossRef]
- Tao, H.; Xing, J.; Zhou, H.; Chang, X.; Li, G.; Chen, L.; Li, J. Impacts of land use and land cover change on regional meteorology and air quality over the Beijing-Tianjin-Hebei region, China. Atmos. Environ. 2018, 189, 9–21. [Google Scholar] [CrossRef]
- Pérez, J.F.; Sabatino, S.; Galia, A.; Rodrigo, M.A.; Llanos, J.; Sáez, C.; Scialdone, O. Effect of air pressure on the electro-Fenton process at carbon felt electrodes. Electrochim. Acta 2018, 273, 447–453. [Google Scholar] [CrossRef]
- Kalisa, E.; Fadlallah, S.; Amani, M.; Nahayo, L.; Habiyaremye, G. Temperature and air pollution relationship during heatwaves in Birmingham, UK. Sustain. Cities Soc. 2018, 43, 111–120. [Google Scholar] [CrossRef]
- Yu, Y.; Kwok, K.C.S.; Liu, X.P.; Zhang, Y. Air pollutant dispersion around high-rise buildings under different angles of wind incidence. J. Wind Eng. Ind. Aerodyn. 2017, 167, 51–61. [Google Scholar] [CrossRef]
- Yang, W.; Li, L. Efficiency evaluation of industrial waste gas control in China: A study based on data envelopment analysis (DEA) model. J. Clean. Prod. 2018, 179, 1–11. [Google Scholar] [CrossRef]
- Cheng, M.; Zhi, G.; Tang, W.; Liu, S.; Dang, H.; Guo, Z.; Du, J.; Du, X.; Zhang, W.; Zhang, Y.; et al. Air pollutant emission from the underestimated households’ coal consumption source in China. Sci. Total Environ. 2017, 580, 641–650. [Google Scholar] [PubMed]
- Cai, P.; Nie, W.; Chen, D.; Yang, S.; Liu, Z. Effect of air flowrate on pollutant dispersion pattern of coal dust particles at fully mechanized mining face based on numerical simulation. Fuel 2019, 239, 623–635. [Google Scholar] [CrossRef]
- Liu, B.; Wu, S.; Shen, L.; Zhao, T.; Wei, Y.; Tang, X.; Long, C.; Zhou, Y.; He, D.; Lin, T.; et al. Spermatogenesis dysfunction induced by PM2.5 from automobile exhaust via the ROS-mediated MAPK signaling pathway. Ecotoxicol. Environ. Saf. 2019, 167, 161–168. [Google Scholar] [CrossRef]
- Yang, W.; Li, L. Analysis of Total Factor Efficiency of Water Resource and Energy in China: A Study Based on DEA-SBM Model. Sustainability 2017, 9, 1316. [Google Scholar]
- Li, L.; Yang, W. Total Factor Efficiency Study on China’s Industrial Coal Input and Wastewater Control with Dual Target Variables. Sustainability 2018, 10, 2121. [Google Scholar] [CrossRef]
- Shanghai Municipal Statistics Bureau. Shanghai Statistical Yearbook 2017; China Statistics Press: Shanghai, China, 2018.
- National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook 2017; China Statistics Press: Beijing, China, 2018.
- Shanghai Municipal Environmental Protection Bureau. 2017 Shanghai Environmental Bulletin; Shanghai Municipal Environmental Protection Bureau: Shanghai, China, 2018.
- Ministry of Environmental Protection of the People’s Republic of China. Ambient Air Quality Standards: GB3095-2012; China Environmental Science Press: Beijing, China, 2012.
- Ministry of Environmental Protection of the People’s Republic of China. Technical Regulation on Ambient Air Quality Index (on Trial): HJ 633-2012; China Environmental Science Press: Beijing, China, 2012.
- Li, X.; Gao, Z.; Li, Y.; Gao, C.Y.; Ren, J.; Zhang, X. Meteorological conditions for severe foggy haze episodes over north China in 2016–2017 winter. Atmos. Environ. 2019, 199, 284–298. [Google Scholar] [CrossRef]
- Golly, B.; Waked, A.; Weber, S.; Samake, A.; Jacob, V.; Conil, S.; Rangognio, J.; Chrétien, E.; Vagnot, M.P.; Robic, P.Y.; et al. Organic markers and OC source apportionment for seasonal variations of PM2.5 at 5 rural sites in France. Atmos. Environ. 2019, 198, 142–157. [Google Scholar] [CrossRef]
- Ryu, J.; Kim, J.J.; Byeon, H.; Go, T.; Lee, S.J. Removal of fine particulate matter (PM2.5) via atmospheric humidity caused by evapotranspiration. Environ. Pollut. 2019, 245, 253–259. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Air Emissions Inventories; United States Environmental Protection Agency: Washington, DC, USA, 2018.
- European Environment Agency. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016; European Environment Agency: Copenhagen, Denmark, 2016.
- Ohara, T.; Akimoto, H.; Kurokawa, J.I.; Horii, N.; Yamaji, K.; Yan, X.; Hayasaka, T. An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos. Chem. Phys. 2007, 7, 4419–4444. [Google Scholar]
- Kim, J.-H.; Park, J.-M.; Lee, S.-B.; Pudasainee, D.; Seo, Y.-C. Anthropogenic mercury emission inventory with emission factors and total emission in Korea. Atmos. Environ. 2010, 44, 2714–2721. [Google Scholar] [CrossRef]
- Kim, N.K.; Kim, Y.P.; Morino, Y.; Kurokawa, J.; Ohara, T. Verification of NOx emission inventory over South Korea using sectoral activity data and satellite observation of NO2 vertical column densities. Atmos. Environ. 2013, 77, 496–508. [Google Scholar] [CrossRef]
- Kannari, A.; Streets, D.G.; Tonooka, Y.; Murano, K.; Baba, T. MICS-Asia II: An inter-comparison study of emission inventories for the Japan region. Atmos. Environ. 2008, 42, 3584–3591. [Google Scholar] [CrossRef]
- Li, Y.; Qian, X.; Zhang, L.; Dong, L. Exploring spatial explicit greenhouse gas inventories: Location-based accounting approach and implications in Japan. J. Clean. Prod. 2017, 167, 702–712. [Google Scholar] [CrossRef]
- Shanghai Municipal Environmental Protection Bureau. 2012 Shanghai Environmental Bulletin; Shanghai Municipal Environmental Protection Bureau: Shanghai, China, 2013.
- Shanghai Municipal Environmental Protection Bureau. 2013 Shanghai Environmental Bulletin; Shanghai Municipal Environmental Protection Bureau: Shanghai, China, 2014.
- Shanghai Municipal Environmental Protection Bureau. 2014 Shanghai Environmental Bulletin; Shanghai Municipal Environmental Protection Bureau: Shanghai, China, 2015.
- Shanghai Municipal Environmental Protection Bureau. 2015 Shanghai Environmental Bulletin; Shanghai Municipal Environmental Protection Bureau: Shanghai, China, 2016.
- Shanghai Municipal Environmental Protection Bureau. 2016 Shanghai Environmental Bulletin; Shanghai Municipal Environmental Protection Bureau: Shanghai, China, 2017.
- Shen, Z.; Liang, P.; He, J. Analysis on the climatic characteristics of the fine structure of the urban heat island in Shanghai. Trans. Atmos. Sci. 2017, 40, 369–378. [Google Scholar]
- Meteorological Data Center of China Meteorological Administration Observation Data of Shanghai Ground Meteorology. Available online: https://data.cma.cn/ (accessed on 17 March 2019).
- Guo, H.; Chen, M. Short-term effect of air pollution on asthma patient visits in Shanghai area and assessment of economic costs. Ecotoxicol. Environ. Saf. 2018, 161, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Meng, X.; Liu, C.; Chen, R.; Ge, Y.; Kan, L.; Fu, Q.; Li, W.; Tse, L.A.; Kan, H. Nitrogen dioxide air pollution and preterm birth in Shanghai, China. Environ. Res. 2019, 169, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Xiaoyu, L.; Jun, Y.; Pengfei, S. Structure and Application of a New Comprehensive Environmental Pollution Index. Energy Procedia 2011, 5, 1049–1054. [Google Scholar] [CrossRef]
- Gąsiorek, M.; Kowalska, J.; Mazurek, R.; Pająk, M. Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the Planty Park in Krakow (Poland). Chemosphere 2017, 179, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Li, N. Study on Grey Clustering Model of Indoor Air Quality Indicators. Procedia Eng. 2017, 205, 2815–2822. [Google Scholar] [CrossRef]
- Yunlong, W.; Kai, L.; Guan, G.; Yanyun, Y.; Fei, L. Evaluation method for Green jack-up drilling platform design scheme based on improved grey correlation analysis. Appl. Ocean Res. 2019, 85, 119–127. [Google Scholar] [CrossRef]
- Yan, F.; Qiao, D.; Qian, B.; Ma, L.; Xing, X.; Zhang, Y.; Wang, X. Improvement of CCME WQI using grey relational method. J. Hydrol. 2016, 543, 316–323. [Google Scholar] [CrossRef]
- Sun, G.; Guan, X.; Yi, X.; Zhou, Z. Grey relational analysis between hesitant fuzzy sets with applications to pattern recognition. Expert Syst. Appl. 2018, 92, 521–532. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Zhang, L.; Zou, C.; Dorrell, D.D. State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis. J. Power Sources 2019, 410–411, 106–114. [Google Scholar] [CrossRef]
- Du, X.; Yang, Z.; Li, G.; Jia, Y.; Chen, C.; Gui, L. Remaining useful life assessment of machine tools based on AHP method and Euclid approach degree. In Proceedings of the International Conference on System Reliability and Science (ICSRS), Paris, France, 15–18 November 2016; pp. 46–52. [Google Scholar]
- Wang, S.; Zhang, T.; Cheng, L.; Li, J.; Tang, H.; Guo, M. Comprehensive performance of compound fabrics in terms of electromagnetic shielding and wearability based on the Euclid approach degree of fuzzy matter elements. J. Text. Inst. 2017, 108, 341–346. [Google Scholar]
- Niu, D.; Song, Z.; Wang, M.; Xiao, X. Improved TOPSIS method for power distribution network investment decision-making based on benefit evaluation indicator system. Int. J. Energy Sect. Manag. 2017, 11, 595–608. [Google Scholar]
- Gysel, N.; Welch, W.A.; Chen, C.-L.; Dixit, P.; Cocker, D.R.; Karavalakis, G. Particulate matter emissions and gaseous air toxic pollutants from commercial meat cooking operations. J. Environ. Sci. 2018, 65, 162–170. [Google Scholar] [CrossRef]
- Feng, Y.; Li, Y.; Cui, L. Critical review of condensable particulate matter. Fuel 2018, 224, 801–813. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Analysis of the diversity in emissions of selected gaseous and particulate pollutants in the European Union countries. J. Environ. Manag. 2019, 231, 582–595. [Google Scholar] [CrossRef]
- Ren, G.; Chen, Z.; Feng, J.; Ji, W.; Zhang, J.; Zheng, K.; Yu, Z.; Zeng, X. Organophosphate esters in total suspended particulates of an urban city in East China. Chemosphere 2016, 164, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.; Figueiredo, B.R.; Alves, C.A.; Cardoso, A.A.; da Silva, R.; Kanzawa, S.H.; Vicente, A.M. Chemical characterisation of total suspended particulate matter from a remote area in Amazonia. Atmos. Res. 2016, 182, 102–113. [Google Scholar] [CrossRef]
- Feng, W.; Li, H.; Wang, S.; Van Halm Lutterodt, N.; An, J.; Liu, Y.; Liu, M.; Wang, X.; Guo, X. Short-term PM10 and emergency department admissions for selective cardiovascular and respiratory diseases in Beijing, China. Sci. Total Environ. 2019, 657, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, S.; Longhin, E.; Bengalli, R.; Avino, P.; Stabile, L.; Buonanno, G.; Colombo, A.; Camatini, M.; Mantecca, P. In vitro lung toxicity of indoor PM10 from a stove fueled with different biomasses. Sci. Total Environ. 2019, 649, 1422–1433. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.R.; da Graça, G.C. Impact of PM2.5 in indoor urban environments: A review. Sustain. Cities Soc. 2018, 42, 259–275. [Google Scholar] [CrossRef]
- Xu, M.; Ge, C.; Qin, Y.; Gu, T.; Lou, D.; Li, Q.; Hu, L.; Feng, J.; Huang, P.; Tan, J. Prolonged PM2.5 exposure elevates risk of oxidative stress-driven nonalcoholic fatty liver disease by triggering increase of dyslipidemia. Free Radic. Biol. Med. 2019, 130, 542–556. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, G.; Zhou, F.; Hao, J.; Tian, L.; Guan, L.; Geng, X.; Ding, Y.; Wu, H.; Zhang, K. PM2.5 induces liver fibrosis via triggering ROS-mediated mitophagy. Ecotoxicol. Environ. Saf. 2019, 167, 178–187. [Google Scholar] [CrossRef]
- Duan, J.; Chen, Y.; Fang, W.; Su, Z. Characteristics and Relationship of PM, PM10, PM2.5 Concentration in a Polluted City in Northern China. Procedia Eng. 2015, 102, 1150–1155. [Google Scholar] [CrossRef]
- Fang, X.; Bi, X.; Xu, H.; Wu, J.; Zhang, Y.; Feng, Y. Source apportionment of ambient PM10 and PM2.5 in Haikou, China. Atmos. Res. 2017, 190, 1–9. [Google Scholar] [CrossRef]
- Pan, S.; Du, S.; Wang, X.; Zhang, X.; Xia, L.; Liu, J.; Pei, F.; Wei, Y. Analysis and interpretation of the particulate matter (PM10 and PM2.5) concentrations at the subway stations in Beijing, China. Sustain. Cities Soc. 2019, 45, 366–377. [Google Scholar] [CrossRef]
- Xue, H.; Liu, G.; Zhang, H.; Hu, R.; Wang, X. Similarities and differences in PM10 and PM2.5 concentrations, chemical compositions and sources in Hefei City, China. Chemosphere 2019, 220, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Huang, B.; Lin, C. Modeling the spatio-temporal heterogeneity in the PM10-PM2.5 relationship. Atmos. Environ. 2015, 102, 176–182. [Google Scholar] [CrossRef]
- gon Ryou, H.; Heo, J.; Kim, S.-Y. Source apportionment of PM10 and PM2.5 air pollution, and possible impacts of study characteristics in South Korea. Environ. Pollut. 2018, 240, 963–972. [Google Scholar] [CrossRef]
- Sahanavin, N.; Prueksasit, T.; Tantrakarnapa, K. Relationship between PM10 and PM2.5 levels in high-traffic area determined using path analysis and linear regression. J. Environ. Sci. 2018, 69, 105–114. [Google Scholar] [CrossRef]
- Gao, Y.; Ji, H. Microscopic morphology and seasonal variation of health effect arising from heavy metals in PM2.5 and PM10: One-year measurement in a densely populated area of urban Beijing. Atmos. Res. 2018, 212, 213–226. [Google Scholar] [CrossRef]
- Shanghai Municipal Bureau of Ecology and Enviroment. 2018 Shanghai Air Quality Monthly Report. Available online: http://www.sepb.gov.cn/fa/cms/shhj/shhj2143/shhj5157/index.shtml (accessed on 10 January 2018).
- Hu, Q.; Fu, H.; Wang, Z.; Kong, L.; Chen, M.; Chen, J. The variation of characteristics of individual particles during the haze evolution in the urban Shanghai atmosphere. Atmos. Res. 2016, 181, 95–105. [Google Scholar] [CrossRef]
- Chen, L.; Ma, J.; Zhen, X.; Cao, Y. Variation characteristics and meteorological influencing factors of air pollution in Shanghai. J. Meteorol. Environ. 2017, 33, 59–67. [Google Scholar] [CrossRef]
- Gao, S.; Tian, R.; Guo, B.; Zhang, L.; Ma, X. Characteristics of PM2.5 Concentration and its Relations with Meteorological Factors in Typical Cities of the Yangtze River Delta. Sci. Technol. Eng. 2018, 18, 142–155. [Google Scholar]
- Liu, Y.; Yu, Y.; Liu, M.; Lu, M.; Ge, R.; Li, S.; Liu, X.; Dong, W.; Qadeer, A. Characterization and source identification of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in different seasons from Shanghai, China. Sci. Total Environ. 2018, 644, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yuan, G.; Han, J. Is China’s air pollution control policy effective? Evidence from Yangtze River Delta cities. J. Clean. Prod. 2019, 220, 110–133. [Google Scholar] [CrossRef]
- Yang, W.; Li, L. Efficiency Evaluation and Policy Analysis of Industrial Wastewater Control in China. Energies 2017, 10, 1201. [Google Scholar] [CrossRef]
Air Quality Index Range | Air Quality Level | Air Quality Category | Representative Color | Impacts on Human Health and Recommended Actions |
---|---|---|---|---|
0–50 | Level I | Superior | Green | The air quality is satisfactory. There is basically no air pollution, and no impact on human activities. |
51–100 | Level II | Good | Yellow | The air quality is acceptable. There are certain air pollutants that may cause health issues to a small number of people who should reduce outdoor activities. |
101–150 | Level III | Mild Pollution | Orange | Symptoms in susceptible people would intensify, and healthy people would show irritation symptoms. Elderly people and children should avoid long hours of high-intensity outdoor exercises. |
151–200 | Level IV | Moderate Pollution | Red | Symptoms in susceptible people would further intensify, and the breathing of healthy people would be affected. Elderly people and children should avoid outdoor sports. |
201–300 | Level V | Heavy Pollution | Purple | Ordinary people would show symptoms. Elderly people and children should avoid outdoor sports. The general population should reduce outdoor activities. |
>300 | Level VI | Severe Pollution | Maroon | Obvious and strong symptoms would appear, and all groups of people should avoid outdoor activities. |
Pollutant | Average Value | Concentration Threshold | Unit of Measurement | |
---|---|---|---|---|
Level I | Level II | |||
Sulfur Dioxide (SO2) | Annual Average | 20 | 60 | μg/m3 |
24-h Average | 50 | 150 | ||
Hourly Average | 150 | 500 | ||
Nitrogen Dioxide (NO2) | Annual Average | 40 | 40 | μg/m3 |
24-h Average | 80 | 80 | ||
Hourly Average | 200 | 200 | ||
Particulate Matter (PM10) | Annual Average | 40 | 70 | μg/m3 |
24-h Average | 50 | 150 | ||
Particulate Matter (PM2.5) | Annual Average | 15 | 35 | μg/m3 |
24-h Average | 35 | 75 | ||
Ozone (O3) | 24-h Average | 100 | 160 | μg/m3 |
Hourly Average | 160 | 200 | ||
Carbonic Oxide (CO) | 24-h Average | 4 | 4 | mg/m3 |
Hourly Average | 10 | 10 |
Air Quality Level | Clean | Mild Pollution | Moderate Pollution | Heavy Pollution | Severe Pollution |
---|---|---|---|---|---|
I | <0.6 | 0.6–1 | 1–1.9 | 1.9–2.8 | >2.8 |
Pollution Level | Safe | Standard | Alert | Warning | Emergency |
Pollutant | PM2.5 | PM10 | SO2 | NO2 | O3 | CO | |
---|---|---|---|---|---|---|---|
Season | |||||||
Winter | 52.00 | 66.67 | 14.33 | 58.00 | 83 | 0.82 | |
Spring | 42.33 | 62.67 | 12.00 | 44.33 | 97 | 0.76 | |
Summer | 24.33 | 36.67 | 8.00 | 25.33 | 112 | 0.68 | |
Autumn | 31.67 | 52.67 | 9.67 | 46.00 | 103 | 0.53 |
Season | Winter | Spring | Summer | Autumn |
---|---|---|---|---|
Comprehensive Pollution Index | 1.24 | 1.02 | 0.59 | 0.92 |
Method | Improved Grey Relational Degree Method | Euclid Approach Degree Method | |
---|---|---|---|
Season | |||
Winter | II | II | |
Spring | II | II | |
Summer | I | I | |
Autumn | I | II |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Y.; Li, Y.; Sun, M.; Wu, Z. Primary Pollutants and Air Quality Analysis for Urban Air in China: Evidence from Shanghai. Sustainability 2019, 11, 2319. https://doi.org/10.3390/su11082319
Yan Y, Li Y, Sun M, Wu Z. Primary Pollutants and Air Quality Analysis for Urban Air in China: Evidence from Shanghai. Sustainability. 2019; 11(8):2319. https://doi.org/10.3390/su11082319
Chicago/Turabian StyleYan, Ying, Yuangang Li, Maohua Sun, and Zhenhua Wu. 2019. "Primary Pollutants and Air Quality Analysis for Urban Air in China: Evidence from Shanghai" Sustainability 11, no. 8: 2319. https://doi.org/10.3390/su11082319
APA StyleYan, Y., Li, Y., Sun, M., & Wu, Z. (2019). Primary Pollutants and Air Quality Analysis for Urban Air in China: Evidence from Shanghai. Sustainability, 11(8), 2319. https://doi.org/10.3390/su11082319