A Panel Investigation of High-Speed Rail (HSR) and Urban Transport on China’s Carbon Footprint
Abstract
:1. Introduction
2. Conceptual Framework, Hypotheses and Model
2.1. Background and Conceptual Analytic Framework
2.2. Fundamental Hypotheses
2.3. Augmented IPAT Model
+ α7t ln(SCALEit) * ln(TRANSit) + eit.
3. Empirical Research Results
3.1. Data Description
3.2. Empirical Research Results
4. Results and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Terms | Abbreviation | Terms | Abbreviation | Terms | Abbreviation |
---|---|---|---|---|---|
High-speed rail | HSR | Gross domestic product | GDP | Electric multiple unit | EMU |
Transport demand management | TDM | Transport supply management | TSM | Impact, population, affluence, technology | IPAT |
Stochastic Impacts by Regression on IPAT | STIRPAT | Population | P, POP | Economy | A |
City | CITY | Transportation | TRANS | Accessibility | ACC |
Subway | SUB | Carbon emission | CARB | Population | POP |
% of economy employed in manufacturing | MAN | Build up area | AREA | The value added of the tertiary industry over the secondary industry | TS |
The employment of the tertiary industry divided by the secondary industry | TSTE | Urban internal potential | IMP | Science and technology expenditure budget | TECH |
Artificial gas | AG | Liquefied petroleum gas | LPG | Natural gas | NG |
Generalized weighted accessibility | gwt | Travel expenditure | F | Weighted time value | TV |
Working hour | WH | Average annual disposable income | WAGE | Transit oriented development | TOD |
Variables | CARB CARB/GDP CARB/POP | CARB | CARB Growth Rate | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Nat | Nat | Nat | East | Central | West | CARB | CARB/GDP | CARB/POP | ||
Transportation | ACC2 | 0.111 *** | 0.143 *** | 0.126 *** | 0.114 *** | 0.113 *** | −0.051 | 0.122 *** | 0.157 *** | 0.140 *** |
(0.004) | (0.006) | (0.005) | (0.015) | (0.009) | (0.040) | (0.041) | (0.053) | (0.047) | ||
ACC1 | 0.130 *** | 0.167 *** | 0.148*** | 0.119 *** | 0.129 *** | 0.024 | 0.030 * | 0.157 *** | 0.035* | |
(0.003) | (0.004) | (0.004) | (0.014) | (0.008) | (0.028) | (0.016) | (0.053) | (0.019) | ||
BUS | 0.241 *** | 0.310 *** | 0.275 *** | 0.127 *** | 0.300 *** | 0.675 *** | 0.024 ** | 0.031 ** | 0.027 ** | |
(0.015) | (0.020) | (0.018) | (0.026) | (0.045) | (0.157) | (0.010) | (0.013) | (0.011) | ||
ROAD | −0.078 *** | −0.100 *** | −0.088 *** | 0.238 *** | −0.089 ** | −0.212 *** | −0.003 | −0.004 | −0.004 | |
(0.015) | (0.019) | (0.017) | (0.022) | (0.043) | (0.069) | (0.010) | (0.013) | (0.012) | ||
RAIL | 0.026 ** | 0.034 ** | 0.030 ** | 0.045 * | −0.074 ** | −0.019 | 0.012 *** | 0.016 *** | 0.014 *** | |
(0.012) | (0.015) | (0.013) | (0.026) | (0.030) | (0.063) | (0.003) | (0.003) | (0.003) | ||
SUB | 0.382 *** | 0.491 *** | 0.435 *** | 0.434 *** | 0.265 *** | 0.138 *** | ||||
(0.050) | (0.065) | (0.057) | (0.024) | (0.025) | (0.132) | |||||
Interactions | ACC2 | 0.004 | 0.005 | 0.009 | 0.188 *** | −0.017 | 0.035 * | 0.100 *** | 0.129 *** | 0.115 *** |
(0.008) | (0.010) | (0.009) | (0.013) | (0.012) | (0.021) | (0.005) | (0.007) | (0.006) | ||
ACC1 | 0.008 | 0.010 | −0.056 *** | 0.190 *** | −0.024 ** | 0.024 | 0.061 *** | 0.078 *** | 0.069 *** | |
(0.008) | (0.010) | (0.019) | (0.011) | (0.012) | (0.018) | (0.004) | (0.005) | (0.004) | ||
BUS | −0.038 ** | −0.049 *** | −0.056 ** | 0.055 ** | 0.035 | −0.054 | 0.009 *** | 0.012 *** | 0.010 *** | |
(0.018) | (0.017) | (0.019) | (0.020) | (0.046) | (0.072) | (0.002) | (0.002) | (0.002) | ||
ROAD | −0.050 *** | −0.061 *** | −0.042 *** | −0.102 *** | −0.031 | 0.131 ** | −0.010 ** | −0.021 *** | −0.022 *** | |
(0.017) | (0.021) | (0.017) | (0.019) | (0.033) | (0.065) | (0.004) | (0.005) | (0.004) | ||
RAIL | 0.050 *** | 0.062 ** | 0.060 *** | 0.081 *** | −0.110 *** | −0.091 *** | 0.010 *** | 0.022 *** | 0.011 *** | |
(0.018) | (0.024) | (0.021) | (0.020) | (0.036) | (0.016) | (0.003) | (0.004) | (0.003) | ||
Adjusted R2 | 0.83 | 0.31 | 0.69 | 0.90 | 0.87 | 0.74 | 0.04 | 0.93 | 0.91 |
Variables | CARB (GDP Interaction) | CARB (Population Interaction) | CARB/GDP (GDP Interaction) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
East | Central | West | East | Central | West | East | Central | West | ||
Transportation | ACC2 | 0.097 *** | 0.115 *** | 0.046 | 0.125 *** | 0.121 *** | −0.074 | 0.124 *** | 0.155 *** | 0.059 |
(0.010) | (0.013) | (0.045) | (0.009) | (0.009) | (0.045) | (0.022) | (0.020) | (0.113) | ||
ACC1 | 0.106 *** | 0.128 *** | 0.112 *** | 0.125 *** | 0.136 *** | 0.032 | 0.137 *** | 0.176 *** | 0.144 | |
(0.009) | (0.013) | (0.045) | (0.009) | (0.008) | (0.054) | (0.023) | (0.021) | (0.122) | ||
BUS | 0.092 *** | 0.228 *** | 0.799 *** | 0.125 *** | 0.272 *** | 0.956 *** | 0.118 *** | 0.392 *** | 1.026 *** | |
(0.025) | (0.04) | (0.167) | (0.010) | (0.048) | (0.175) | (0.040) | (0.059) | (0.208) | ||
ROAD | 0.243 * | −0.034 | −0.193 *** | 0.229 *** | −0.105 *** | −0.169 ** | 0.312 *** | −0.144 ** | −0.248 | |
(0.020) | (0.043) | (0.033) | (0.023) | (0.037) | (0.060) | (0.040) | (0.068) | (0.162) | ||
RAIL | 0.040 | −0.033 ** | −0.080 | 0.047 * | −0.019 | −0.110 ** | 0.051 *** | −0.119 *** | −0.102 | |
(0.032) | (0.015) | (0.062) | (0.028) | (0.020) | (0.049) | (0.020) | (0.042) | (0.104) | ||
SUB | 0.529 *** | 0.220 *** | 0.153 | 0.448 *** | 0.186 *** | −0.085 | 0.680 *** | 0.294 *** | 0.196 | |
(0.028) | (0.054) | (0.137) | (0.036) | (0.043) | (0.154) | (0.096) | (0.094) | (0.527) | ||
Interactions | ACC2 | 0.220 *** | −0.012 | −0.016 | 0.152 *** | −0.041 *** | 0.150 *** | 0.283 *** | −0.009 | −0.020 |
(0.019) | (0.011) | (0.035) | (0.005) | (0.005) | (0.027) | (0.021) | (0.019) | (0.104) | ||
ACC1 | 0.222 *** | −0.021 | −0.030 | 0.152 *** | −0.037 *** | 0.153 *** | 0.286 *** | −0.028 * | −0.039 | |
(0.016) | (0.01) | (0.047) | (0.006) | (0.004) | (0.039) | (0.021) | (0.020) | (0.112) | ||
BUS | 0.025 | −0.075 | 0.097 | 0.000 | −0.102 | −0.045 | 0.056 | 0.110 * | −0.315 * | |
(0.019) | (0.022) | (0.040) | (0.022) | (0.026) | (0.058) | (0.035) | (0.066) | (0.211) | ||
ROAD | −0.090 *** | 0.040 | 0.070 * | −0.090 *** | 0.021 | 0.101 * | −0.130 *** | −0.032 *** | 0.341 * | |
(0.016) | (0.039) | (0.036) | (0.015) | (0.015) | (0.063) | (0.033) | (0.049) | (0.158) | ||
RAIL | 0.100 *** | −0.070 *** | −0.161 *** | 0.142 *** | 0.019 | −0.070 *** | 0.111 *** | −0.142 *** | −0.009 | |
(0.037) | (0.019) | (0.030) | (0.019) | (0.023) | (0.016) | (0.029) | (0.050) | (0.103) | ||
Adjusted R2 | 0.90 | 0.87 | 0.70 | 0.91 | 0.89 | 0.82 | 0.53 | 0.31 | 0.25 |
References
- Liu, L.; Wang, K.; Wang, S.; Zhang, R.; Tang, X. Assessing energy consumption, CO2 and pollutant emissions and health benefits from China’s transport sector through 2050. Energy Policy 2018, 116, 382–396. [Google Scholar] [CrossRef]
- Lombardi, M.; Laiola, E.; Tricase, C.; Rana, R. Assessing the urban carbon footprint: An overview. Environ. Impact Assess. Rev. 2017, 66, 43–52. [Google Scholar] [CrossRef]
- Shunping, J.; Baohua, M.; Shuang, L.; Qipeng, S. Calculation and analysis of transportation energy consumption level in China. J. Transp. Syst. Eng. Inf. Technol. 2010, 10, 22–27. [Google Scholar]
- Notice of Coping with Climate Change Plan (2014–2020). Available online: http://www.ndrc.gov.cn/zcfb/zcfbtz/201411/t20141104_642612.html (accessed on 11 December 2018).
- Lin, W.; Chen, B.; Xie, L.; Pan, H. Estimating Energy Consumption of Transport Modes in China Using DEA. Sustainability 2015, 7, 4225–4239. [Google Scholar] [CrossRef] [Green Version]
- Addanki, S.C.; Venkataraman, H. Greening the economy: A review of urban sustainability measures for developing new cities. Sustain. Cities Soc. 2017, 32, 1–8. [Google Scholar] [CrossRef]
- Pandey, D.; Agrawal, M.; Pandey, J.S. Carbon footprint: Current methods of estimation. Environ. Monit. Assess. 2011, 178, 135–160. [Google Scholar] [CrossRef]
- Ma, M.; Shen, L.; Ren, H.; Cai, W.; Ma, Z. How to measure carbon emission reduction in China’s public building sector: Retrospective decomposition analysis based on STIRPAT model in 2000–2015. Sustainability 2017, 9, 1744. [Google Scholar] [CrossRef]
- Acquaye, A.; Feng, K.; Oppon, E.; Salhi, S.; Ibn-Mohammed, T.; Genovese, A.; Hubacek, K. Measuring the environmental sustainability performance of global supply chains: A multi-regional input-output analysis for carbon, sulphur oxide and water footprints. J. Environ. Manag. 2017, 187, 571–585. [Google Scholar] [CrossRef] [Green Version]
- Southworth, F.; Sonnenberg, A. Set of comparable carbon footprints for highway travel in metropolitan America. J. Transp. Eng. 2011, 137, 426–435. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Stehfest, E.; Gernaat, D.E.; Doelman, J.C.; Van den Berg, M.; Harmsen, M.; Girod, B. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Chang. 2017, 42, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhong, J.; Sun, Z.; Yang, W. Spatial pattern of carbon sequestration and urban sustainability: Analysis of land-use and carbon emission in Guang’an, China. Sustainability 2017, 9, 1951. [Google Scholar] [CrossRef]
- Martínez-Zarzoso, I.; Maruotti, A. The impact of urbanization on CO2 emissions: Evidence from developing countries. Ecol. Econ. 2011, 70, 1344–1353. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Zaman, K.; Moemen, M.A.E.; Islam, T. Dynamic linkages between tourism transportation expenditures, carbon dioxide emission, energy consumption and growth factors: Evidence from the transition economies. Curr. Issues Tour. 2017, 20, 1720–1735. [Google Scholar] [CrossRef]
- Marquez, L.O.; Smith, N.C. A framework for linking urban form and air quality. Environ. Model. Softw. 1999, 14, 541–548. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kahn, M.E. The greenness of cities: Carbon dioxide emissions and urban development. J. Urban Econ. 2010, 67, 404–418. [Google Scholar] [CrossRef] [Green Version]
- VandeWeghe, J.R.; Kennedy, C. A spatial analysis of residential greenhouse gas emissions in the Toronto census metropolitan area. J. Ind. Ecol. 2007, 11, 133–144. [Google Scholar] [CrossRef]
- He, B.J.; Zhao, D.X.; Zhu, J.; Darko, A.; Gou, Z.H. Promoting and implementing urban sustainability in China: An integration of sustainable initiatives at different urban scales. Habitat Int. 2018, 82, 83–93. [Google Scholar] [CrossRef]
- Chen, Z.; Xue, J.; Rose, A.Z.; Haynes, K.E. The impact of high-speed rail investment on economic and environmental change in China: A dynamic CGE analysis. Transp. Res. Part A Policy Pract. 2016, 92, 232–245. [Google Scholar] [CrossRef]
- Wang, K.; Xia, W.; Zhang, A. Should China further expand its high-speed rail network? Consider the low-cost carrier factor. Transp. Res. Part A Policy Pract. 2017, 100, 105–120. [Google Scholar] [CrossRef]
- Xia, W.; Zhang, A. Air and high-speed rail transport integration on profits and welfare: Effects of air-rail connecting time. J. Air Transp. Manag. 2017, 65, 181–190. [Google Scholar] [CrossRef]
- Westin, J.; Kågeson, P. Can high speed rail offset its embedded emissions? Transp. Res. D Transp. Environ. 2012, 17, 1–7. [Google Scholar] [CrossRef]
- Li, L.; Loo, B.P. Railway development and air patronage in China, 1993–2012: Implications for low-carbon transport. J. Reg. Sci. 2017, 57, 507–522. [Google Scholar] [CrossRef]
- Wee, B.V.; Janse, P.; Brink, R.V.D. Comparing energy use and environmental performance of land transport modes. Transp. Rev. 2005, 25, 3–24. [Google Scholar] [CrossRef]
- Janic, M. Assessing some social and environmental effects of transforming an airport into a real multimodal transport node. Transp. Res. D Transp. Environ. 2011, 16, 137–149. [Google Scholar] [CrossRef]
- Givoni, M. Environmental benefits from mode substitution: Comparison of the environmental impact from aircraft and high-speed train operations. Int. J. Sustain. Transp. 2007, 1, 209–230. [Google Scholar] [CrossRef]
- Åkerman, J. The role of high-speed rail in mitigating climate Change—The Swedish case Europabanan from a life cycle perspective. Transp. Res. D Transp. Environ. 2011, 16, 208–217. [Google Scholar] [CrossRef]
- Lin, H.; Zeng, S.; Ge, S.; Chen, Y. Can the bullet train speed up climate change mitigation in China? Front. Eng. 2017, 4, 104–105. [Google Scholar] [CrossRef]
- Wu, J.; Nash, C.; Wang, D. Is high speed rail an appropriate solution to China’s rail capacity problems? J. Transp. Geogr. 2014, 40, 100–111. [Google Scholar] [CrossRef]
- Chang, B.; Kendall, A. Life cycle greenhouse gas assessment of infrastructure construction for California’s high-speed rail system. Transp. Res. D Transp. Environ. 2011, 16, 429–434. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, H.; Zhang, S. Calculation method for carbon dioxide emission in the life cycle of high-speed railway. China Railw. Sci. 2013, 34, 140–144. [Google Scholar]
- Givoni, M. Development and impact of the modern high-speed train: A review. Transp. Rev. 2006, 26, 593–611. [Google Scholar] [CrossRef]
- Albalate, D.; Bel, G. High-speed rail: Lessons for policy makers from experiences abroad. Public Admin. Rev. 2012, 72, 336–349. [Google Scholar] [CrossRef]
- Hall, P.; Banister, D. The second railway age. Built Environ. 1993, 19, 157–162. [Google Scholar]
- Railway Development Bulletin of 2017. Available online: http://www.nra.gov.cn/xwzx/zlzx/hytj/201804/t20180412_55248.shtml (accessed on 12 April 2018).
- Statistics Information of China Railway Corporation. Available online: http://www.china-railway.com.cn/cpyfw/tjxx/ (accessed on 21 December 2018).
- Medium and Long-Term Railway Network Plan. Available online: http://www.ndrc.gov.cn/zcfb/zcfbtz/201607/t20160720_811696.html (accessed on 13 July 2016).
- High-Speed Rail Network to Cover 80% of Major Cities in China by 2020. Available online: https://gbtimes.com/high-speed-rail-network-to-cover-80-of-major-cities-in-china-by-2020 (accessed on 2 January 2018).
- Railway Statistics Bulletin (2008–2016). Available online: http://www.china-railway.com.cn/ (accessed on 10 January 2018).
- National Statistics Bureau. Available online: http://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 16 March 2018).
- Annual Audit Report of China Railway Corporation (2008–2016). Available online: https://www.chinabond.com.cn/ (accessed on 18 March 2018).
- Dong, D.; Duan, H.; Mao, R.; Song, Q.; Zuo, J.; Zhu, J.; Liu, G. Towards a low carbon transition of urban public transport in megacities: A case study of Shenzhen, China. Resour. Conserv. Recycl. 2018, 134, 149–155. [Google Scholar] [CrossRef]
- Li, P.; Zhao, P.; Brand, C. Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach. Appl. Energ. 2018, 211, 820–842. [Google Scholar] [CrossRef]
- Loo, B.P.; Li, L. Carbon dioxide emissions from passenger transport in China since 1949: Implications for developing sustainable transport. Energy Policy 2012, 50, 464–476. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B. Factors affecting carbon dioxide (CO2) emissions in China’s transport sector: A dynamic nonparametric additive regression model. J. Clean. Prod. 2015, 101, 311–322. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, X. Dynamic total factor carbon emissions performance changes in the Chinese transportation industry. Appl. Energ. 2015, 146, 409–420. [Google Scholar] [CrossRef]
- Ma, J.; Chai, Y.; Liu, Z. The Mechanism of CO2 emissions from urban transport based on individuals’ travel behavior in Beijing. Acta Geogr. Sin. 2011, 66, 1023–1032. [Google Scholar]
- Urban Public Transport. Available online: http://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 21 December 2018).
- Yearly Statistical Report 2017 of China Association of Metros. Available online: http://www.camet.org.cn (accessed on 21 December 2018).
- Miao, L. Examining the impact factors of urban residential energy consumption and CO2 emissions in China—Evidence from city-level data. Ecol. Indic. 2017, 73, 29–37. [Google Scholar] [CrossRef]
- Zhang, L.; Long, R.; Chen, H.; Yang, T. Analysis of an optimal public transport structure under a carbon emission constraint: A case study in Shanghai, China. Environ. Sci. Pollut. R. 2018, 25, 3348–3359. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, H.; Ou, X. Vehicle Ownership Analysis Based on GDP per Capita in China: 1963–2050. Sustainability 2014, 6, 4877–4899. [Google Scholar] [CrossRef] [Green Version]
- Zahabi, S.A.H.; Miranda-Moreno, L.; Patterson, Z.; Barla, P.; Harding, C. Transportation greenhouse gas emissions and its relationship with urban form, transit accessibility and emerging green technologies: A Montreal case study. Procedia Soc. Behav. Sci. 2012, 54, 966–978. [Google Scholar] [CrossRef]
- Focas, C. Travel behaviour and CO2 emissions in urban and exurban London and New York. Transp. Policy 2016, 46, 82–91. [Google Scholar] [CrossRef]
- He, D.; Liu, H.; He, K.; Meng, F.; Jiang, Y.; Wang, M.; Wang, Q. Energy use of, and CO2 emissions from China’s urban passenger transportation sector–carbon mitigation scenarios upon the transportation mode choices. Transp. Res. Part A Policy Pract. 2013, 53, 53–67. [Google Scholar] [CrossRef]
- Andong, R.F.; Sajor, E. Urban sprawl, public transport, and increasing CO2 emissions: The case of Metro Manila, Philippines. Environ. Dev. Sustain. 2017, 19, 99–123. [Google Scholar] [CrossRef]
- Chapman, L. Transport and climate change: A review. J. Transp. Geogr. 2007, 15, 354–367. [Google Scholar] [CrossRef]
- Brännlund, R.; Ghalwash, T.; Nordström, J. Increased energy efficiency and the rebound effect: Effects on consumption and emissions. Energy Econ. 2007, 29, 1–17. [Google Scholar] [CrossRef]
- Darido, G.; Torres-Montoya, M.; Mehndiratta, S. Urban transport and CO2 emissions: Some evidence from Chinese cities. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 122–155. [Google Scholar] [CrossRef]
- Hongchang, L.; Strauss, J.; Shunxiang, H.; Lihong, L. Do high-speed railways lead to urban economic growth in China? A panel data study of China’s cities. Q. Rev. Econ. Finance 2018, 69, 70–89. [Google Scholar]
- Jiao, J.; Wang, J.; Jin, F.; Dunford, M. Impacts on accessibility of China’s present and future HSR network. J. Transp. Geogr. 2014, 40, 123–132. [Google Scholar] [CrossRef]
- Jiao, J.; Wang, J.; Jin, F. Impacts of high-speed rail lines on the city network in China. J. Transp. Geogr. 2017, 60, 257–266. [Google Scholar] [CrossRef]
- Ishii, S.; Tabushi, S.; Aramaki, T.; Hanaki, K. Impact of future urban form on the potential to reduce greenhouse gas emissions from residential, commercial and public buildings in Utsunomiya, Japan. Energy Policy 2010, 38, 4888–4896. [Google Scholar] [CrossRef]
- Nakamura, H. The economic evaluation of transport infrastructure: Needs for international comparisons. Transp. Policy 2000, 7, 3–6. [Google Scholar] [CrossRef]
- Ramaswami, A.; Jiang, D.; Tong, K.; Zhao, J. Impact of the economic structure of cities on urban scaling factors: Implications for urban material and energy flows in China. J. Ind. Ecol. 2018, 22, 392–405. [Google Scholar] [CrossRef]
- Ji, X.; Chen, B. Assessing the energy-saving effect of urbanization in China based on stochastic impacts by regression on population, affluence and technology (STIRPAT) model. J. Clean Prod. 2017, 163, 306–314. [Google Scholar] [CrossRef]
- Vickerman, R. Can high-speed rail have a transformative effect on the economy? Trans. Policy 2018, 62, 31–37. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Zhou, C.; Hu, J.; Ou, J. Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities. Appl. Energy 2017, 185, 189–200. [Google Scholar] [CrossRef]
- Pojani, D.; Stead, D. The Urban Transport Crisis in Emerging Economies; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- McLeod, S.; Scheurer, J.; Curtis, C. Urban public transport: Planning principles and emerging practice. J. Plan. Lit. 2017, 32, 223–239. [Google Scholar] [CrossRef]
- Black, J. Urban Transport Planning: Theory and Practice; Routledge: Abingdon-on-Thames, UK, 2018. [Google Scholar]
- Williams, K. Spatial Planning, Urban Form and Sustainable Transport. In Spatial Planning, Urban Form and Sustainable Transport: An Introduction; Routledge: Abingdon-on-Thames, UK, 2017. [Google Scholar]
- Pan, H. Urban spatial structure towards low carbon: New urban transport and land use model. Urban Stud. 2010, 17, 40–45. [Google Scholar]
- Zeng, C.; Yang, L.; Dong, J. Management of urban land expansion in China through intensity assessment: A big data perspective. J. Clean Prod. 2017, 153, 637–647. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Holdren, J.P. Impact of population growth. Science 1971, 171, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wu, J. The impact of urban scale and spatial structure on carbon emissions. Urban Stud. 2012, 3, 89–95. [Google Scholar]
- Du, Q.; Xu, Y.; Wu, M.; Sun, Q.; Bai, L.; Yu, M. A network analysis of indirect carbon emission flows among different industries in China. Environ. Sci. Pollut. R. 2018, 25, 1–19. [Google Scholar] [CrossRef]
- Zhao, R.; Chuai, X.; Huang, X.; Lai, L.; Peng, J. Carbon emission and carbon footprint of different industrial spaces in different regions of China. In Assessment of Carbon Footprint in Different Industrial Sectors; Springer: Singapore, 2014; Volume 1, pp. 191–220. [Google Scholar]
- Lan, J.; Fu, W.; Yuan, B. Analysis of carbon emission and carbon footprint of different land use in Chongqing. J. Soil Water Conserv. 2012, 26, 146–150. [Google Scholar]
- Harris, C.D. The market as a factor in the localization of industry in the United States. Ann. Assoc. Am. Geogr. 1954, 44, 315–348. [Google Scholar]
- Head, K.; Mayer, T. Non-Europe: The magnitude and causes of market fragmentation in the EU. Rev. World Econ. 2000, 136, 284–314. [Google Scholar] [CrossRef]
- Hongchang, L.; Tjia, L.; Shunxiang, H. The impact of China’s high-speed railway on economic agglomeration and equalization of cities along the routes. J. Quant. Tech. Econ. 2016, 11, 127–143. [Google Scholar]
- Shi, J.; Zhou, N. How cities influenced by high speed rail development: A case study in China. J. Transp. Technol. 2013, 3, 7–16. [Google Scholar] [CrossRef]
- Li, J. Survey and analysis on passenger travel characteristics and distribution features of Wuhan-Guangzhou high speed railway. Railw. Stand. Des. 2011, 11, 1–4. [Google Scholar]
- Tao, Y. Research on economic impacts of HSR. Rail. Transp. Econ. 2007, 29, 4–6. [Google Scholar]
- The China City Statistics Yearbook (2008–2014). Available online: http://data.cnki.net/ (accessed on 20 March 2018).
- National Railway Passenger Time Schedule (2007–2013). Available online: https://www.wandoujia.com/mip/apps/za.co.nasdev.gt.ui/history (accessed on 20 March 2018).
- China Transportation Statistics Yearbook (2008–2014). Available online: http://www.chinayearbook.com/yearbook/ (accessed on 20 March 2018).
- Robertson, S. The potential mitigation of CO2 emissions via modal substitution of high-speed rail for short-haul air travel from a life cycle perspective—An Australian case study. Transp. Res. D Transp. Environ. 2016, 46, 365–380. [Google Scholar] [CrossRef]
- Yu, N.; de Roo, G.; De Jong, M.; Storm, S. Does the expansion of a motorway network lead to economic agglomeration? Evidence from China. Transp. Policy 2016, 45, 218–227. [Google Scholar] [CrossRef]
- Liu, W.; Qin, B. Low-carbon city initiatives in China: A review from the policy paradigm perspective. Cities 2016, 51, 131–138. [Google Scholar] [CrossRef]
- Acheampong, R.A.; Silva, E.A. Land use—Transport interaction modeling: A review of the literature and future research directions. J. Transp. Land Use 2015, 8, 11–38. [Google Scholar] [CrossRef]
- Baron, T.; Martinetti, G.; Pépion, D. Carbon Footprint of High Speed Rail; UIC: Paris, France, 2011; pp. 23–25. [Google Scholar]
- Ribalaygua, C.; Perez-Del-Caño, S. Assessing spatial planning strategy in high-speed rail station areas in Spain (1992–2018): Towards a sustainable model. Eur. Plan. Stud. 2019, 1–23. [Google Scholar] [CrossRef]
- Cao, X.J.; Pan, Q. Rapid transit and land development in a diverse world. Transp. Policy 2016, 51, 1–3. [Google Scholar] [CrossRef]
- Lin, X.; Yang, J.; MacLachlan, I. High-speed rail as a solution to metropolitan passenger mobility: The case of Shenzhen-Dongguan-Huizhou metropolitan area. J. Transp. Land Use 2018, 11, 1257–1270. [Google Scholar] [CrossRef]
No. | Key Conclusions | References |
---|---|---|
1 | Emission reductions through substitution of other transportation modes by HSR is small, offset by output growth, and induces demand increases. | [20] |
2 | The aggregate effect of HSR on carbon emissions depends on the comparative magnitudes of the substitution and consumption promotion effect. | [23,24] |
3 | HSR can have significant CO2 emission reduction effects, with less than 1/3 of that of highways, and the reduction effect can be greater if HSR replaces short-haul civil aviation passenger demand. | [25,26,27] |
4 | The contribution of HSR to greenhouse gas emissions should consider both passenger and freight markets and be based on life-cycle evaluations. | [28,29,30,31] |
5 | HSR maybe more energy efficient than conventional railways, let alone civil aviation or highways due to economies of scale. | [32] |
6 | Most studies focus on HSR carbon emission measurement or case studies, while research on HSR’s carbon emissions in cities is limited. | [33,34] |
Year | New Added HSR Lines | Total Length (10,000 km) | Prefectural Cities Covered | Passenger Volume Sent by HSR (100 million) | % of HSR Passenger Volume to Total Railway Passengers | Key Accounting Performance Indices | ||
---|---|---|---|---|---|---|---|---|
Profit after Tax (100 million Yuan) | Debt (trillion Yuan) | Debt to Asset Ratio | ||||||
2008 | 3 | 404 | 13 | 1.28 | 8.76% | |||
2009 | 4 | 1052 | 34 | 1.72 | 11.28% | |||
2010 | 6 | 4243 | 57 | 2.85 | 17.00% | |||
2011 | 3 | 5855 | 69 | 4.07 | 21.86% | |||
2012 | 6 | 7275 | 94 | 5.01 | 26.47% | |||
2013 | 11 | 10,164 | 116 | 6.57 | 31.20% | 2.57 | 3.23 | 64% |
2014 | 9 | 13,626 | 138 | 8.76 | 37.17% | 6.36 | 3.68 | 66% |
2015 | 13 | 19,195 | 151 | 11.39 | 44.93% | 6.81 | 4.10 | 66% |
2016 | 8 | 23,602 | 166 | 14.46 | 51.39% | 10.76 | 4.72 | 65% |
Variables | Index | Unit | ||
---|---|---|---|---|
Type | Description | Name | Abbreviation | |
Environment | Carbon footprint | Carbon emission | CARB | Ten thousand tons |
Population (P) | Urban population | Municipal district population | POP | Ten thousand persons |
Economy (A) | Urban economic scale | GDP of all prefectural cities | GDP | Ten thousand Yuan |
Industrial structure | % of economy employed in manufacturing | MAN | % | |
City (CITY) | Urban land scale | Built up area | AREA | Square kilometer |
Transportation (TRANS) | External transportation | Accessibility | ACC1 ACC2 | Dimensionless |
Conventional rail passenger volume | Rail | Ten thousand persons | ||
Internal transportation | Road area | ROAD | Ten thousand square meters | |
Number of public buses | BUS | Number | ||
Presence of subway | SUB | Dummy variable |
Fossil Fuel Type | ki (i = 1, 2, 3) (kg Equivalent Standard coal/m3) | mj (j = 1, 2, 3) (kg CO2/m3) |
---|---|---|
Natural gas (NG) | k1 = 1.330 | m1 = 1.879 |
Artificial gas (AG) | k2 = 0.5816 | m2 = 0.3548 |
Liquefied petroleum gas (LPG) | k3 = 1.7143 | k3 = 0.5042 |
Variables | CARB | ACC2 | ACC1 | BUS | ROAD | RAIL | SUB | GDP | POP | MAN | AREA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CARB | 1.00 | |||||||||||
ACC2 | 0.06 | 1.00 | ||||||||||
ACC1 | 0.06 | 0.99 | 1.00 | |||||||||
BUS | 0.62 | −0.03 | −0.03 | 1.00 | ||||||||
ROAD | 0.56 | 0.10 | 0.08 | 0.85 | 1.00 | |||||||
RAIL | 0.40 | −0.02 | −0.02 | 0.65 | 0.55 | 1.00 | ||||||
SUB | 0.38 | −0.08 | −0.09 | 0.50 | 0.47 | 0.38 | 1.00 | |||||
GDP | 0.63 | −0.04 | −0.06 | 0.86 | 0.86 | 0.54 | 0.51 | 1.00 | ||||
POP | 0.48 | 0.05 | 0.04 | 0.78 | 0.80 | 0.55 | 0.48 | 0.76 | 1.00 | |||
MAN | 0.13 | −0.01 | 0.00 | 0.15 | 0.11 | 0.05 | 0.08 | 0.14 | 0.10 | 1.00 | ||
AREA | 0.60 | −0.08 | −0.09 | 0.90 | 0.89 | 0.63 | 0.51 | 0.88 | 0.81 | 0.14 | 1.00 |
Variables | CARB | CARB/GDP | CARB/POP | |||||||
---|---|---|---|---|---|---|---|---|---|---|
NAT | Big | Small | NAT | Big | Small | NAT | Big | Small | ||
Transportation | ACC2 | 0.111 *** | 0.048 ** | 0.170 *** | 0.144 *** | 0.061 *** | 0.218 *** | 0.144 *** | 0.075 *** | 0.193 *** |
(0.010) | (0.022) | (0.022) | (0.007) | (0.017) | (0.016) | (0.007) | (0.016) | (0.015) | ||
ACC1 | 0.130 *** | 0.061 *** | 0.189 *** | 0.168 *** | 0.085 *** | 0.243 *** | 0.168 *** | 0.075 *** | 0.215 *** | |
(0.010) | (0.017) | (0.013) | (0.006) | (0.018) | (0.015) | (0.006) | (0.016) | (0.013) | ||
BUS | 0.232 *** | 0.181 *** | 0.253 *** | 0.299 *** | 0.233 *** | 0.325 *** | 0.299 *** | 0.211 *** | 0.288 *** | |
(0.024) | (0.037) | (0.036) | (0.013) | (0.018) | (0.036) | (0.013) | (0.016) | (0.032) | ||
ROAD | −0.066 *** | 0.029 | −0.129 *** | −0.106 *** | 0.037 ** | −0.166 *** | −0.106 *** | 0.018 | −0.147 *** | |
(0.024) | (0.036) | (0.036) | (0.014) | (0.017) | (0.025) | (0.014) | (0.016) | (0.023) | ||
RAIL | 0.011 | 0.087 *** | −0.084 *** | 0.000 | 0.111 *** | −0.108 *** | 0.000 | 0.095 *** | −0.095 *** | |
(0.013) | (0.024) | (0.014) | (0.011) | (0.018) | (0.016) | (0.011) | (0.017) | (0.014) | ||
SUB | 0.363 *** | 0.230 *** | 0.410 *** | 0.323 *** | 0.295 *** | 0.527 *** | 0.323 *** | 0.248 *** | 0.466 *** | |
(0.023) | (0.063) | (0.142) | (0.026) | (0.044) | (0.040) | (0.026) | (0.035) | (0.035) | ||
City Controls | GDP | 0.256 *** | 0.158 *** | 0.439 *** | −0.294 *** | −0.589 *** | −0.229 *** | −0.294 *** | 0.185 *** | 0.499 *** |
(0.037) | (0.04) | (0.027) | (0.022) | (0.063) | (0.03) | (0.022) | (0.059) | (0.027) | ||
POP | −0.081 *** | −0.191 *** | −0.080 *** | −0.122 *** | −0.246 *** | −0.103 *** | −0.122 *** | −0.705 *** | −0.575 *** | |
(0.015) | (0.033) | (0.028) | (0.017) | (0.046) | (0.037) | (0.017) | (0.04) | (0.033) | ||
MAN | −0.032 *** | −0.009 | 0.009 | 0.001 | −0.012 | 0.011 | 0.001 | −0.010 | 0.010* | |
(0.011) | (0.017) | (0.011) | (0.005) | (0.01) | (0.007) | (0.005) | (0.009) | (0.006) | ||
AREA | 0.155 *** | 0.323 *** | 0.045 | 0.210 *** | 0.420 *** | 0.060 *** | 0.210 *** | 0.392 *** | 0.050 | |
(0.027) | (0.057) | (0.037) | (0.020) | (0.061) | (0.032) | (0.021) | (0.050) | (0.031) | ||
Adjusted R2 | 0.87 | 0.86 | 0.84 | 0.29 | 0.29 | 0.24 | 0.69 | 0.66 | 0.62 |
Variables | CARB | CARB/GDP | CARB/POP | |||||||
---|---|---|---|---|---|---|---|---|---|---|
EAST | CEN | WEST | EAST | CEN | WEST | EAST | CEN | WEST | ||
Transportation | ACC2 | 0.125 *** | 0.133 *** | 0.027 | 0.182 *** | 0.171 *** | 0.034 | 0.161 *** | 0.151 *** | 0.030 |
(0.011) | (0.013) | (0.075) | (0.029) | (0.016) | (0.067) | (0.026) | (0.014) | (0.059) | ||
ACC1 | 0.143 *** | 0.142 *** | 0.041 | 0.194 *** | 0.195 *** | 0.013 | 0.172 *** | 0.173 *** | 0.020 | |
(0.012) | (0.016) | (0.076) | (0.030) | (0.015) | (0.062) | (0.026) | (0.013) | (0.110) | ||
BUS | 0.279 *** | 0.236 *** | 0.626 *** | 0.151 *** | 0.340 *** | 0.821 *** | 0.134 *** | 0.319 *** | 0.728 *** | |
(0.035) | (0.035) | (0.118) | (0.043) | (0.069) | (0.186) | (0.038) | (0.033) | (0.165) | ||
ROAD | −0.108 *** | −0.104 ** | −0.317 *** | 0.257 *** | −0.134 *** | −0.380 *** | 0.228 *** | −0.046 *** | −0.336 *** | |
(0.045) | (0.044) | (0.134) | (0.03) | (0.038) | (0.043) | (0.026) | (0.012) | (0.038) | ||
RAIL | −0.070 | −0.040 * | 0.056 | 0.070 *** | −0.052 *** | −0.032 | 0.062 *** | 0.236 *** | −0.028 | |
(0.045) | (0.022) | (0.063) | (0.024) | (0.013) | (0.079) | (0.021) | (0.075) | (0.070) | ||
SUB | 0.211 *** | 0.207 *** | 0.053 | 0.633 *** | 0.266 *** | 0.531 *** | 0.560 *** | 0.575 *** | 0.470 *** | |
(0.060) | (0.062) | (0.146) | (0.028) | (0.085) | (0.118) | (0.025) | (0.032) | (0.105) | ||
City Controls | GDP | 0.532 *** | 0.507 *** | 0.197 | −0.457 *** | −0.144 *** | −0.545 *** | 0.298 *** | −0.660 *** | 0.219 *** |
(0.032) | (0.032) | (0.142) | (0.036) | (0.036) | (0.146) | (0.032) | (0.029) | (0.13) | ||
POP | −0.176 *** | −0.015 | −0.225 *** | −0.075 *** | −0.199 *** | −0.289 *** | −0.550 *** | 0.007 | −0.739 *** | |
(0.026) | (0.026) | (0.082) | (0.028) | (0.033) | (0.046) | (0.024) | (0.005) | (0.041) | ||
MAN | 0.065 *** | 0.007 | −0.091 *** | −0.022 | 0.008 | 0.116 ** | −0.020 ** | 0.177 *** | 0.103 *** | |
(0.016) | (0.029) | (0.039) | (0.011) | (0.006) | (0.055) | (0.010) | (0.059) | (0.049) | ||
AREA | 0.027 | 0.155 | 0.345 *** | 0.022 | 0.202 *** | 0.451 *** | 0.012 | 0.012 | 0.402 *** | |
(0.060) | (0.049) | (0.144) | 0.031) | (0.072) | (0.141) | (0.030) | (0.031) | (0.121) | ||
Adjusted R2 | 0.84 | 0.85 | 0.84 | 0.44 | 0.31 | 0.30 | 0.68 | 0.72 | 0.44 |
Variables | CARB | CARB/GDP | CARB/POP | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Square | GDP | POP | Square | GDP | POP | Square | GDP | POP | ||
Transportation | ACC2 | 0.209 *** | 0.111 *** | 0.110 *** | 0.269 *** | 0.142 *** | 0.141 *** | 0.238 *** | 0.126 *** | 0.125 *** |
(0.012) | (0.004) | (0.006) | (0.011) | (0.006) | (0.008) | (0.01) | (0.005) | (0.007) | ||
ACC1 | 0.178 *** | 0.131 *** | 0.100 *** | 0.228 *** | 0.168 *** | 0.166 *** | 0.202 *** | 0.149 *** | 0.147 *** | |
(0.012) | (0.003) | (0.006) | (0.014) | (0.004) | (0.005) | (0.013) | (0.004) | (0.005) | ||
BUS | 0.232 *** | 0.218 *** | 0.238 *** | 0.298 *** | 0.281 *** | 0.306 *** | 0.264 *** | 0.249 *** | 0.271 *** | |
(0.024) | (0.013) | (0.012) | (0.012) | (0.017) | (0.015) | (0.011) | (0.015) | (0.013) | ||
ROAD | −0.059 *** | −0.064 *** | −0.077 *** | −0.076 *** | −0.082 *** | −0.098 *** | −0.068 *** | −0.072 *** | −0.087 *** | |
(0.024) | (0.014) | (0.013) | (0.027) | (0.013) | (0.016) | (0.024) | (0.011) | (0.014) | ||
RAIL | 0.010 | 0.018 | 0.012 | 0.012 | 0.023 | 0.015 | 0.011 | 0.020 * | 0.013 | |
(0.015) | (0.011) | (0.01) | (0.018) | (0.014) | (0.012) | (0.016) | (0.012) | (0.011) | ||
SUB | 0.349 *** | 0.293 *** | 0.294 *** | 0.449 *** | 0.377 *** | 0.378 *** | 0.398 *** | 0.334 *** | 0.335 *** | |
(0.041) | (0.028) | (0.05) | (0.047) | (0.036) | (0.064) | (0.042) | (0.032) | (0.057) | ||
Interactions | ACC2 | 0.057 *** | −0.002 | 0.018 *** | 0.074 *** | −0.002 | 0.024 *** | 0.065 *** | −0.002 | 0.021 *** |
(0.008) | (0.007) | (0.006) | (0.006) | (0.009) | (0.008) | (0.005) | (0.008) | (0.007) | ||
ACC1 | 0.046 *** | −0.078 *** | −0.014 | 0.059 *** | −0.002 * | 0.021 *** | −0.060 *** | −0.089 *** | −0.016 | |
(0.008) | (0.023) | (0.014) | (0.009) | (0.011) | (0.008) | (0.011) | (0.026) | (0.015) | ||
BUS | −0.053 *** | −0.001 | 0.021 *** | −0.068 *** | −0.101 *** | −0.018 | 0.039 *** | 0.041 *** | −0.043 *** | |
(0.012) | (0.008) | (0.008) | (0.013) | (0.029) | (0.017) | (0.006) | (0.013) | (0.015) | ||
ROAD | 0.034 *** | 0.040 *** | −0.041 *** | 0.042 *** | 0.051 *** | −0.049 *** | 0.010 | 0.051 ** | 0.060 *** | |
(0.011) | (0.011) | (0.013) | (0.007) | (0.015) | (0.017) | (0.009) | (0.021) | (0.006) | ||
RAIL | 0.004 | 0.050 *** | 0.049 *** | 0.012 | 0.060 *** | 0.069 *** | 0.050 *** | 0.001 | 0.020 *** | |
(0.009) | (0.018) | (0.005) | (0.01) | (0.023) | (0.007) | (0.008) | (0.009) | (0.007) | ||
Adjusted R2 | 0.84 | 0.86 | 0.85 | 0.40 | 0.24 | 0.23 | 0.67 | 0.69 | 0.66 |
Variables | Growth Rates | Growth Rate & Quadratic Interaction | Growth Rate & GDP Interaction | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CARB | CARB/GDP | CARB/POP | CARB | CARB/GDP | CARB/POP | CARB | CARB/GDP | CARB/POP | ||
Transportation | ACC2 | 0.123 *** | 0.158 *** | 0.140 *** | 0.075 | 0.096 | 0.085 | 0.113 *** | 0.146 *** | 0.129 *** |
(0.036) | (0.047) | (0.052) | (0.068) | (0.088) | (0.078) | (0.039) | (0.05) | (0.044) | ||
ACC1 | 0.024 *** | 0.031 *** | 0.028 *** | 0.034 | 0.055 | 0.049 | 0.023 | 0.030 | 0.026 | |
(0.009) | (0.012) | (0.011) | (0.036) | (0.045) | (0.040) | (0.016) | (0.021) | (0.018) | ||
BUS | −0.009 | −0.011 | −0.010 | 0.029 *** | 0.038 *** | 0.034 *** | 0.024 ** | 0.031 ** | 0.027 ** | |
(0.010) | (0.013) | (0.008) | (0.010) | (0.013) | (0.012) | (0.010) | (0.013) | (0.012) | ||
ROAD | 0.015 ** | 0.019 ** | 0.017 *** | −0.017 ** | −0.022 ** | −0.020 ** | −0.003 | −0.004 | −0.004 | |
(0.007) | (0.008) | (0.003) | (0.009) | (0.011) | (0.010) | (0.011) | (0.014) | (0.013) | ||
RAIL | 0.008 | 0.012 | 0.009 | 0.016 *** | 0.021 *** | 0.018 *** | 0.012 *** | 0.015 *** | 0.014 *** | |
(0.010) | (0.013) | (0.007) | (0.002) | (0.002) | (0.002) | (0.003) | (0.003) | (0.003) | ||
Control Variables & Interactions | ACC2 | 0.016 * | 0.021 * | −0.466 *** | 0.544 *** | 0.700 *** | 0.621 *** | 0.099 *** | 0.127 *** | 0.113 *** |
(0.009) | (0.011) | (0.007) | (0.094) | (0.121) | (0.108) | (0.026) | (0.034) | (0.03) | ||
ACC1 | −0.044 *** | −0.056 *** | −0.050 *** | 0.191 ** | 0.245 *** | 0.218 *** | 0.064 *** | 0.083 *** | 0.074 *** | |
(0.011) | (0.014) | (0.018) | (0.090) | (0.038) | (0.034) | (0.018) | (0.023) | (0.021) | ||
BUS | −0.008 ** | −0.011 | −0.010 *** | −0.001 | −0.001 | −0.001 | 0.011 | 0.014 *** | 0.012 | |
(0.003) | (0.004) | (0.002) | (0.002) | (0.003) | (0.002) | (0.003) | (0.004) | (0.003) | ||
ROAD | 0.013 ** | 0.017 ** | 0.015 ** | −0.002 * | −0.003 *** | −0.003 *** | −0.016 *** | −0.021 *** | −0.019 *** | |
(0.006) | (0.008) | (0.006) | (0.001) | (0.001) | (0.001) | (0.003) | (0.004) | (0.004) | ||
RAIL | 0.012 *** | 0.010 *** | 0.010 *** | 0.010 *** | 0.022 *** | 0.013 *** | ||||
(0.001) | (0.001) | (0.001) | (0.003) | (0.004) | (0.003) | |||||
Adjusted R2 | 0.04 | 0.91 | 0.89 | 0.04 | 0.93 | 0.88 | 0.05 | 0.90 | 0.91 |
Hypotheses | Empirical Results | Note | |
---|---|---|---|
General Conclusions | Sign of Coefficient | ||
H1: HSR has a significant influence on urban carbon emission | √ | + | |
H2a: HSR leads to overall carbon emission growth for all cities | Generally proved | + | HSR leads to higher carbon emissions for smaller cities |
H2b: HSR has greater impacts on big cities’ emissions than small- and medium-sized ones | X | + | |
H2c: HSR has greater impacts on cities located in eastern China than other regions | √ | + | |
H3a: HSR interacts with the urban population and increases urban carbon emissions | √ | + | |
H3b: HSR interacts with urban GDP and increases urban carbon emissions | √ | + | |
H3c: HSR interacts with land usage area and boosts carbon emissions | Generally proved | + | |
H4: Public transport has a significant influence on urban carbon emissions | √ | - | Roads can help reduce carbon emissions |
H5: Public transport tends to decrease carbon emissions | Partially proved | - | |
H6a: Bus transit system decreases urban carbon emissions | X | + | |
H6b: Subways decrease urban carbon emissions | X | + | |
H6c: Urban road expansion lowers urban carbon emissions | √ | - | |
H7: Land usage area expansion increases urban carbon emissions | √ | + | |
H8a: Urban public transport interacts with population and boosts carbon emissions | Partially proved | - | Bus and road interact with urban land usage and decrease carbon emissions |
H8b: Urban public transport interacts with urban GDP and boosts carbon emissions | Generally proved | + | |
H8c: Urban public transport interacts with land usage area and boosts carbon emissions | X | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Strauss, J.; Liu, L. A Panel Investigation of High-Speed Rail (HSR) and Urban Transport on China’s Carbon Footprint. Sustainability 2019, 11, 2011. https://doi.org/10.3390/su11072011
Li H, Strauss J, Liu L. A Panel Investigation of High-Speed Rail (HSR) and Urban Transport on China’s Carbon Footprint. Sustainability. 2019; 11(7):2011. https://doi.org/10.3390/su11072011
Chicago/Turabian StyleLi, Hongchang, Jack Strauss, and Lihong Liu. 2019. "A Panel Investigation of High-Speed Rail (HSR) and Urban Transport on China’s Carbon Footprint" Sustainability 11, no. 7: 2011. https://doi.org/10.3390/su11072011
APA StyleLi, H., Strauss, J., & Liu, L. (2019). A Panel Investigation of High-Speed Rail (HSR) and Urban Transport on China’s Carbon Footprint. Sustainability, 11(7), 2011. https://doi.org/10.3390/su11072011