Identifying Nature–Community Nexuses for Sustainably Managing Social and Ecological Systems: A Case Study of the Qianjiangyuan National Park Pilot Area
Abstract
:1. Introduction
- (1)
- Reveal causal mechanisms of how livelihood assets are linking to ecosystem services, and test the predicted mechanisms with data analysis.
- (2)
- Synthetically and quantitatively explore the multi-dimensional linkage between community livelihood and ecosystem services (the NCN), and to classify the NCNs identified.
- (3)
- Provide scientific evidence for optimizing institutional arrangements and contributing to the sustainable and harmonious development of social-ecological systems with new methodologies and new cases.
2. Materials and Methods
2.1. Study Area
2.2. A Systems Analysis Approach and the Design of the Study Area as a Social-Ecological System
2.3. Qualitative and Quantitative Analysis Methods: Causality Derivation and Hypothesis Testing
2.3.1. System Formulation and Causality Derivation with Qualitative Analysis
2.3.2. System Appraisal and Linkage Analysis with Data Computing
2.3.3. System Output and Hypothesis Verification with Nexus Analysis
3. Results
3.1. Causal Mechanisms Linking Livelihood Assets and Ecosystem Service
3.2. Assessment of Key Elements of the Study Area as a Social-Ecological System
3.2.1. Livelihood Structure of Local Communities
3.2.2. The Water-Related Regulation Services
3.3. Data-Based Linkage between Livelihood Structure and Water-Related Regulation Services
3.3.1. Influence of Livelihood Assets on Livelihood Structure of Residents
3.3.2. Influence of Land Use on the Water-Related Regulation Services (I-2)
3.4. Nature-Community Nexus in Terms of ESs and Community Livelihoods
4. Discussion
4.1. An Interdisciplinary Perspective and Qualitative-Quantitative Combined Methods to Understand the Complexity of the Socical-Ecological System and Support Its Sustainability
4.2. A Parallel Trend between Natural and Social Conditions Revealed by the Positive and Negative NCNs
4.3. Community-Friendly Land Use Regulation Directions and Sustainable Development Strategies Enlightened by ES-Livelihood Linkages and NCNs
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Collins, S.L.; Carpenter, S.R.; Swinton, S.M.; Orenstein, D.E.; Childers, D.L.; Gragson, T.L.; Grimm, N.B.; Grove, J.M.; Harlan, S.L.; Kaye, J.P. An integrated conceptual framework for long-term social–ecological research. Front. Ecol. Environ. 2011, 9, 351–357. [Google Scholar] [CrossRef]
- Berkes, F. Environmental Governance for the Anthropocene? Social-Ecological Systems, Resilience, and Collaborative Learning. Sustainability 2017, 9, 1232. [Google Scholar] [CrossRef]
- Mace, G.M. Whose conservation? Changes in the perception and goals of nature conservation require a solid scientific basis. Science 2014, 345, 1558–1560. [Google Scholar] [CrossRef] [PubMed]
- Jax, K.; Furman, E.; Saarikoski, H.; Barton, D.N.; Delbaere, B.; Dick, J.; Duke, G.; Görg, C.; Gómez-Baggethun, E.; Harrison, P.A.; et al. Handling a messy world: Lessons learned when trying to make the ecosystem services concept operational. Ecosyst. Serv. 2018, 29, 415–427. [Google Scholar] [CrossRef] [Green Version]
- Biggs, E.M.; Bruce, E.; Boruff, B.; Duncan, J.M.A.; Horsley, J.; Pauli, N.; McNeill, K.; Neef, A.; Van Ogtrop, F.; Curnow, J.; et al. Sustainable development and the water-energy-food nexus: A perspective on livelihoods. Environ. Sci. Policy 2015, 54, 389–397. [Google Scholar] [CrossRef]
- Fang, D.L.; Chen, B. Linkage analysis for the water-energy nexus of city. Appl. Energy 2016, 189, 770–779. [Google Scholar] [CrossRef]
- Casillas, C.E.; Kammen, D.M. The Energy-Poverty-Climate Nexus. Science 2010, 330, 1181–1182. [Google Scholar] [CrossRef]
- Liu, L.; Wu, T.; Xu, Z.H.; Pan, X.F.; Shahzad, M.W.; Burhan, M.; Ang, L.; Ng, K.C. The Water-Economy Nexus and Sustainable Transition of the Pearl River Delta, China (1999–2015). Sustainability 2018, 10, 2595. [Google Scholar] [CrossRef]
- Karabulut, A.; Egoh, B.N.; Lanzanova, D.; Grizzetti, B.; Bidoglio, G.; Pagliero, L.; Bouraoui, F.; Aloe, A.; Reynaud, A.; Maes, J.; et al. Mapping water provisioning services to support the ecosystem–water–food–energy nexus in the Danube river basin. Ecosyst. Serv. 2016, 17, 278–292. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M.; Jax, K.; Görg, C.; Heink, U.; Kelemen, E.; Schleyer, C.; OpenNESS Conceptual Nexus (ONcEX). Guidelines for Testing the Conceptual Frameworks in Case Study Areas Using Methods and Data Resources Developed in WPs 2, 3 and 4. Available online: https://trello.com/b/sm1lX0S0/the-onex-lab (accessed on 15 April 2019).
- Sangha, K.K.; Butler, J.R.A.; Delisle, A.; Stanley, O. Identifying Links between Ecosystem Services and Aboriginal Well-Being and Livelihoods in North Australia: Applying the Millennium Ecosystem Assessment Framework. J. Environ. Sci. Eng. 2011, 5, 931–946. [Google Scholar]
- He, S.Y.; Gallagher, L.; Su, Y.; Wang, L.; Cheng, H.G. Identification and assessment of ecosystem services for protected area planning: A case in rural communities of Wuyishan national park pilot. Ecosyst. Serv. 2018, 31, 169–180. [Google Scholar] [CrossRef]
- Duan, W.; Ren, Y.W.; Feng, J.; Wen, Y.L. Study on Natural Resource Dependence Based on Livelihood Assets: Examples from Nature Reserves in Hubei Province. Issues Agric. Econ. 2015, 8, 74–82. (In Chinese) [Google Scholar]
- Oikonomou, V.; Dimitrakopoulos, P.G.; Troumbis, A.Y. Incorporating ecosystem function concept in environmental planning and decision making by means of multi-criteria evaluation: The case-study of Kalloni, Lesbos, Greece. Environ. Manag. 2011, 47, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Hurwicz, L. The Design of Mechanisms for Resource Allocation. Am. Econ. Rev. 1973, 63, 1–30. [Google Scholar]
- Wisely, S.M.; Alexander, K.; Mahlaba, T.A.; Cassidy, L. Linking ecosystem services to livelihoods in southern Africa. Ecosyst. Serv. 2018, 30, 339–341. [Google Scholar] [CrossRef]
- Li, X.Y.; Yang, Y.; Liu, Y. Research progress in man-land relationship evolution and its resource environment base in China. J. Geogr. Sci. 2017, 27, 899–924. [Google Scholar] [CrossRef]
- Thompson, T.M.; Rausch, S.; Saari, R.K.; Selin, N.E. A systems approach to evaluating the air quality co-benefits of US carbon policies. Nat. Clim. Chang. 2014, 4, 917–923. [Google Scholar] [CrossRef]
- Baird, J.; Schultz, L.; Plummer, R.; Armitage, D.; Bodin, Ö. Emergence of Collaborative Environmental Governance: What are the Causal Mechanisms? Environ. Manag. 2018, 63, 16–31. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.L.; Zhao, S.; Hou, X.Y.; Xu, J.W.; Dong, S.K.; Liu, G.H. Quantification and driving force analysis of ecosystem services supply, demand and balance in China. Sci. Total Environ. 2019, 652, 1375–1386. [Google Scholar] [CrossRef]
- Hu, Y.N.; Peng, J.; Liu, Y.X.; Tian, L. Integrating ecosystem services trade-offs with paddy land-to-dry land decisions: A scenario approach in Erhai Lake Basin, southwest China. Sci. Total Environ. 2018, 625, 849–860. [Google Scholar] [CrossRef]
- Srichaichana, J.; Trisurat, Y.; Ongsomwang, S. Land Use and Land Cover Scenarios for Optimum Water Yield and Sediment Retention Ecosystem Services in Klong U-TapaoWatershed, Songkhla, Thailand. Sustainability 2019, 11, 2895. [Google Scholar] [CrossRef]
- Zheng, H.; Li, Y.F.; Robinson, B.E.; Liu, G.; Ma, D.C.; Wang, F.C.; Lu, F.; Ouyang, Z.Y.; Daily, G.C. Using ecosystem service trade-offs to inform water conservation policies and management practices. Front. Ecol. Environ. 2016, 14, 527–532. [Google Scholar] [CrossRef]
- Jin, L.S. Advances of China Eco-Compensation Policies and Practices in all Sectors; Economic Science Press: Beijing, China, 2016; Chapters 3 and 4. (In Chinese) [Google Scholar]
- Liu, M.C.; Yang, L.; Min, Q.W. Establishment of an eco-compensation fund based on eco-services consumption. J. Environ. Manag. 2018, 211, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.J.; Yan, Y.; Duan, J.; Fu, X.; Zhou, Q.R.; Huang, X.; Zhu, X.G.; Zhao, J.Z. Computing payment for ecosystem services in watersheds: An analysis of the Middle Route Project of South-to-North Water Diversion in China. J. Environ. Sci. 2011, 23, 2005–2012. [Google Scholar] [CrossRef]
- Rasul, G. Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. Environ. Dev. 2016, 18, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Bennett, E.M.; Cumming, G.S.; Peterson, G.D. A Systems Model Approach to Determining Resilience Surrogates for Case Studies. Ecosystems 2005, 8, 945–957. [Google Scholar] [CrossRef]
- Tian, G.J.; Jiang, J.; Yang, Z.F.; Zhang, Y.Q. The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China. Ecol. Model. 2011, 222, 865–878. [Google Scholar] [CrossRef]
- Yu, H.; Chen, T.; Zhong, L.S.; Zhou, R. Functional zoning of the Qianjiangyuan National Park System Pilot Area. Resour. Sci. 2017, 39, 20–29. (In Chinese) [Google Scholar]
- Tomlinson, B.; Sastre, S.; Blasco, D.; Guillén, J. The Systems Approach Framework as a Complementary Methodology of Adaptive Management: A Case Study in the Urban Beaches of Barcelona. Ecol. Soc. 2011, 16, 209–225. [Google Scholar] [CrossRef]
- Ye, D.; Qian, H.Y.; Wang, L.Y.; Jin, F.M.; Ni, J.; Chen, S.W.; Song, Y.F.; Chen, J.H. Sprouting characteristics of woody species in a subtropical evergreen broad-leaved forest in Gutianshan of Qianjiangyuan National Park, East China. Acta Ecol. Sin. 2018, 38, 3562–3568. (In Chinese) [Google Scholar]
- Yu, M.J.; Hu, Z.H.; Yu, J.P.; Ding, B.Y.; Fang, T. Forest vegetation types in Gutianshan Natural Reserve in Zhejiang. J. Zhejiang Univ. (Agric. Life Sci.) 2001, 27, 375–380. (In Chinese) [Google Scholar]
- Hu, Z.H.; Yu, M.J. Study on successions sequence of evergreen broad-leaved forest in Gutian Mountain of Zhejiang, Eastern China: Species diversity. Front. Biol. China 2008, 3, 45–49. (In Chinese) [Google Scholar] [CrossRef]
- Chinese Academy of Engineering Project Team. “Study on the Strategy of Sustainable Development of Water Resources in China in Twenty-First Century”. Comprehensive report on sustainable development of water resources in China. Eng. Sci. 2000, 2, 1–17. (In Chinese) [Google Scholar]
- Guo, X.C. Water security assessment and countermeasures in China. Acad. J. Zhongzhou 2015, 6, 78–82. (In Chinese) [Google Scholar]
- Sun, X.T.; Yue, M.H. Research on water resources strategy in China’s sustainable development. China Water Resour. 1999, 3, 6–7. (In Chinese) [Google Scholar]
- Cao, Y.; Ouyang, Z.Y.; Zheng, H.; Huang, Z.G.; Xing, F.F. Hydrological adjusting function of forest ecosystems and ecological mechanism: A review. Ecol. Environ. 2006, 15, 1360–1365. (In Chinese) [Google Scholar]
- Gong, S.H. Spatial Patterns of Water Regulating Service and Its Influence Factors in China. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, May 2016. (In Chinese). [Google Scholar]
- Davies, J.; White, J.; Wright, A.; Maru, Y.; Laflamme, M. Applying the sustainable livelihoods approach in Australian desert Aboriginal development. Rangel. J. 2008, 30, 55–65. [Google Scholar] [CrossRef]
- Hanif, M.A.; Roy, R.M.; Bari, M.S.; Ray, P.C.; Rahman, M.S.; Hasan, M.F. Livelihood Improvements Through Agroforestry: Evidence from Northern Bangladesh. Small-Scale For. 2018, 17, 505–522. [Google Scholar] [CrossRef]
- Tian, D.X.; Xie, Y.; Barnosky, A.D.; Wei, F.W. Defining the balance point between conservation and development. Conserv. Biol. 2018, 33, 231–238. [Google Scholar] [CrossRef]
- McAfee, K. The Contradictory Logic of Global Ecosystem Services Markets. Dev. Chang. 2012, 43, 105–131. [Google Scholar] [CrossRef]
- Runhardt, R.W. Evidence for Causal Mechanisms in Social Science: Recommendations from Woodward’s Manipulability Theory of Causation. Philos. Sci. 2015, 82, 1296–1307. [Google Scholar] [CrossRef]
- Zhang, B.; Li, W.H.; Xie, G.D.; Xiao, Y. Water conservation function and its measurement methods of forest ecosystem. Chin. J. Ecol. 2009, 28, 529–534. (In Chinese) [Google Scholar]
- Zheng, H.; Wang, L.J.; Peng, W.J.; Zhang, C.P.; Li, C.; Robinson, B.E.; Wu, X.C.; Kong, L.Q.; Li, R.N.; Xiao, Y. Realizing the values of natural capital for inclusive, sustainable development: Informing China’s new ecological development strategy. Proc. Natl. Acad. Sci. USA 2019, 116, 8623–8628. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, F.; Gao, H.; Zhou, C.B.; Zhang, X.L. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China. J. Clean. Prod. 2017, 163, S148–S155. [Google Scholar] [CrossRef]
- Sun, X.; Lu, Z.M.; Li, F.; Crittenden, J.C. Analyzing spatio-temporal changes and trade-offs to support the supply of multiple ecosystem services in Beijing, China. Ecol. Indic. 2018, 94, 117–129. [Google Scholar] [CrossRef]
- Li, Y.F.; Luo, Y.C.; Liu, G.; Ouyang, Z.Y.; Zheng, H. Effects of land use change on ecosystem services: A case study in Miyun reservoir watershed. Acta Ecol. Sin. 2013, 33, 726–736. (In Chinese) [Google Scholar]
- Liu, Y.N.; Kong, L.Q.; Xiao, Y.; Zheng, H. Effects of Landscape Pattern Changes on Ecosystem Water Purification Service in the Yangtze River Basin. Environ. Prot. Sci. 2018, 44, 6–13. (In Chinese) [Google Scholar]
- Xu, X.B.; Yang, G.S.; Tan, Y. Identifying ecological red lines in China’s Yangtze River Economic Belt: A regional approach. Ecol. Indic. 2019, 96, 635–646. [Google Scholar] [CrossRef]
- Rao, E.M.; Xiao, Y.; Ouyang, Z.Y.; Zheng, H. Changes in ecosystem service of soil conservation between 2000 and 2010 and its driving factors in southwestern China. Chin. Geogr. Sci. 2016, 26, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Wischemeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A guide to conservation planning. In Agriculture Handbook; No. 537; U.S. Department of Agriculture: Washington, DC, USA, 1978; p. 58. [Google Scholar]
- Ouyang, Z.Y.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.G.; Xu, W.H.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.M. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Kaihua News Network. Statistical Bulletin of National Economic and Social Development of Kaihua County. 2018. Available online: http://khnews.zjol.com.cn/khnews/system/2019/03/18/031527345.shtml (accessed on 29 March 2019). (In Chinese).
- Zhong, Y.G.; Jia, X.J.; Qian, Y. System Dynamics, 2nd ed.; Science Press: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Brunette, M.; Bourke, R.; Hanewinkel, M.; Yousefpour, R. Adaptation to Climate Change in Forestry: A Multiple Correspondence Analysis (MCA). Forests 2018, 9, 20. [Google Scholar] [CrossRef]
- Sandhu, H.; Sandhu, S. Linking ecosystem services with the constituents of human well-being for poverty alleviation in eastern Himalayas. Ecol. Econ. 2014, 107, 65–75. [Google Scholar] [CrossRef]
- Gong, S.H.; Xiao, Y.; Zheng, H.; Xiao, Y.; Ouyang, Z.Y. Spatial patterns of ecosystem water conservation in China and its impact factors analysis. Acta Ecol. Sin. 2017, 37, 2455–2462. (In Chinese) [Google Scholar] [Green Version]
- Hu, S.; Cao, M.M.; Liu, Q.; Zhang, T.Q.; Qiu, H.J.; Liu, W.; Song, J.X. Comparative study on the soil conservation function of InVEST model under different perspectives. Geogr. Res. 2014, 33, 2393–2406. (In Chinese) [Google Scholar]
- Rao, E.M.; Xiao, Y. Spatial characteristics and effects of soil conservation service in Sichuan Province. Acta Ecol. Sin. 2018, 38, 8741–8749. (In Chinese) [Google Scholar]
- Jin, G.; Deng, X.Z.; Chu, X.; Li, Z.H.; Wang, Y. Optimization of land-use management for ecosystem service improvement: A review. Phys. Chem. Earth 2017, 101, 70–77. [Google Scholar] [CrossRef]
- Islam, G.M.T.; Islam, A.K.M.S.; Shopan, A.A.; Rahman, M.M.; Lázár, A.N.; Mukhopadhyay, A. Implications of agricultural land use change to ecosystem services in the Ganges delta. J. Environ. Manag. 2015, 161, 443–452. [Google Scholar] [CrossRef]
- Cowling, R.M.; Benis, E.; Knight, A.T.; O’Farrell, P.J.; Belinda, R.; Mathieu, R.; Roux, D.J.; Adam, W.; Angelika, W.R. An operational model for mainstreaming ecosystem services for implementation. Proc. Natl. Acad. Sci. USA 2008, 105, 9483–9488. [Google Scholar] [CrossRef] [Green Version]
- Engel, S.; Pagiola, S.; Wunder, S. Designing payments for environmental services in theory and practice: An overview of the issues. Ecol. Econ. 2008, 65, 663–674. [Google Scholar] [CrossRef]
Capital Category | Indicators | Rank | Percentage or Mean Value |
---|---|---|---|
Human capital | Age | Age-1: 18–39 | 10.87% |
Age-2: 40–59 | 51.09% | ||
Age-3: ≥60 | 38.04% | ||
Educational level | Edu-1: Primary and under | 29.35% | |
Edu-2: Junior high school | 45.65% | ||
Edu-3: Senior high school | 22.28% | ||
Edu-4: College and above | 2.72% | ||
Natural capital | Per-capita cropland area | / | 0.66 ± 0.04 (mu) |
Per-capita forest area | / | 5.16 ± 0.57 (mu) | |
Financial capital | Annual Household income | AHI-1: ≤10,000 | 5.43% |
AHI-2: 10,000–100,000 | 82.61% | ||
AHI-3: ≥100,000 | 11.96% | ||
Annual per-capita income | API-1: ≤5000 | 11.41% | |
API-2: 5000–17,283 | 61.96% | ||
API-3: ≥17,283 | 26.63% |
Township | Water Retention (mm) | Water Purification (t/ha) | Soil Retention (t/ha) |
---|---|---|---|
Qixi | 799.44 | 0.0052 | 98.98 |
Hetian | 777.83 | 0.0097 | 96.52 |
Changhong | 782.83 | 0.0099 | 89.90 |
Suzhuang | 787.26 | 0.0086 | 86.23 |
Total | 788.85 | 0.0080 | 92.24 |
Livelihood Assets | PoPII | PoSII | PoTII | ||||
---|---|---|---|---|---|---|---|
Correlation | Regression | Correlation | Regression | Correlation | Regression | ||
Human capital | Age | / | ** | / | / | −0.267 *** | ** |
Edu | −0.190 ** | * | / | / | 0.311 *** | *** | |
Natural capital | PCA (mu) | −0.375 *** | *** | / | / | / | / |
PFA (mu) | −0.205 ** | * | / | / | / | / | |
Financial capital | AHI | −0.390 *** | *** | / | ** | / | / |
API | −0.364 *** | ** | / | / | / | ** |
Area Proportion | WatRet | WatPur | SoiRet | |||
---|---|---|---|---|---|---|
Correlation | Regression | Correlation | Regression | Correlation | Regression | |
Cropland | −0.757 *** | *** | / | / | / | / |
Orchard | / | / | / | / | −0.455 * | * |
Urbanland | / | / | / | / | / | / |
Forest | 0.475 * | * | / | / | 0.719 *** | ** |
Wetland | / | / | / | / | / | / |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; He, S.; Li, G.; Chen, X.; Shi, L.; Lei, G.; Su, Y. Identifying Nature–Community Nexuses for Sustainably Managing Social and Ecological Systems: A Case Study of the Qianjiangyuan National Park Pilot Area. Sustainability 2019, 11, 6182. https://doi.org/10.3390/su11216182
Wei Y, He S, Li G, Chen X, Shi L, Lei G, Su Y. Identifying Nature–Community Nexuses for Sustainably Managing Social and Ecological Systems: A Case Study of the Qianjiangyuan National Park Pilot Area. Sustainability. 2019; 11(21):6182. https://doi.org/10.3390/su11216182
Chicago/Turabian StyleWei, Yu, Siyuan He, Gang Li, Xutu Chen, Linlu Shi, Guangchun Lei, and Yang Su. 2019. "Identifying Nature–Community Nexuses for Sustainably Managing Social and Ecological Systems: A Case Study of the Qianjiangyuan National Park Pilot Area" Sustainability 11, no. 21: 6182. https://doi.org/10.3390/su11216182
APA StyleWei, Y., He, S., Li, G., Chen, X., Shi, L., Lei, G., & Su, Y. (2019). Identifying Nature–Community Nexuses for Sustainably Managing Social and Ecological Systems: A Case Study of the Qianjiangyuan National Park Pilot Area. Sustainability, 11(21), 6182. https://doi.org/10.3390/su11216182