The Influence of Multi-Scale Atmospheric Circulation on Severe Haze Events in Autumn and Winter in Shanghai, China
Abstract
:1. Introduction
2. Data and Methods
2.1. Meteorological and Air Quality Data
2.1.1. Sea Level Pressure Data
2.1.2. Local Meteorological Data
2.1.3. Air Quality Data
2.2. Classification of Circulation Patterns
2.3. Classification of Local Wind Field
2.4. Classification of Haze
3. Results and Discussion
3.1. Circulation Results
3.2. The Relationship between CTs and Local Wind Fields
3.3. Associations between Circulation Patterns, Particulate Matter Concentration, and Visibility
3.4. The Relationship between Local Wind Fields and Particulate Matter Concentration and Visibility in Shanghai
4. Analysis of the CTs and Wind Fields during a Severe Haze Event in Shanghai in November 2016
4.1. Haze Event Overview
4.2. HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) Model Simulation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Zhang, J.P. The challenge of improving visibility in Beijing. Atmos. Chem. Phys. 2010, 10, 7821–7827. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5, 148–184. [Google Scholar] [CrossRef] [PubMed]
- Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Penner, J.P.; Andreae, M. Their Direct and Indirect Effects, in: Climate Change 2001: The Scientific Basis.Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; pp. 289–348. [Google Scholar]
- Du, E.; Dong, D.; Zeng, X. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China. Sci. Total Environ. 2017, 605, 764–769. [Google Scholar] [CrossRef]
- Zhou, C.J.; Wei, G. Effects of potential recirculation on air quality in coastal cities in the Yangtze River Delta. Sci. Total Environ. 2019, 651, 12–23. [Google Scholar] [CrossRef]
- Pope Iii, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Chiu, H.F.; Tiao, M.M. Effects of Asian Dust Storm Events on Hospital Admissions for Chronic Obstructive Pulmonary Disease in Taipei, Taiwan. Inhal. Toxicol. 2008, 20, 777–781. [Google Scholar] [CrossRef]
- Krewski, D.; Jerrett, M. Extended Followup and Spatial Analysis of the American Cancer Society Study Linking Particulate Air Pollution and Mortality; HEI Research Report 140; Health Effects Institute: Boston, MA, USA, 2009. [Google Scholar]
- Zhang, J.; Mauzerall, D.L. Environmental health in China: Progress towards clean air and safe water. Lancet 2010, 375, 1110–1119. [Google Scholar] [CrossRef]
- Yu, H.L.; Yang, C.H. Spatial vulnerability under extreme events: A case of Asian dust storm’s effects on children’s respiratory health. Environ. Int. 2013, 54, 35–44. [Google Scholar] [CrossRef]
- Liu, J.; Han, Y. Estimating adult mortality attributable to PM2.5 exposure in China with assimilated PM2.5 concentrations based on a ground monitoring network. Sci. Total Environ. 2016, 568, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Kan, H.; Chen, B. Particulate air pollution in urban areas of Shanghai, China: Health-based economic assessment. Sci. Total Environ. 2004, 322, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Zhuang, G. Typical types and formation mechanisms of haze in an Eastern Asia megacity, Shanghai. Atmos. Chem. Phys. 2012, 12, 105–124. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liao, H.; Hu, J.; Li, N. Severe particulate pollution days in China during 2013–2018 and the associated typical weather patterns in Beijing-Tianjin-Hebei and the Yangtze River Delta regions. Environ. Pollut. 2019, 248, 74–81. [Google Scholar] [CrossRef]
- Ma, T.; Duan, F.; He, K.; Qin, Y.; Tong, D.; Geng, G.; Liu, X.; Li, H.; Yang, S.; Ye, S.; et al. Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014–2016. J. Environ. Sci. 2019, 83, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.F.; Wang, W. Analysis of the Reason of Formation and the Characteristic of Pollution about Fog or Haze at Key Cities in Autumn and Winter in China. Environ. Sustain. Dev. 2013, 1, 33–36. [Google Scholar]
- Li, K.; Liao, H.; Cai, W.; Yang, Y. Attribution of anthropogenic influence on atmospheric patterns conducive to recent most severe haze over eastern China. Geophys. Res. Lett. 2018, 45, 2072–2081. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, T.; Lv, M.; Zhang, Q. On the severe haze in Beijing during January 2013: Unraveling the effects of meteorological anomalies with WRF-Chem. Atmos. Environ. 2015, 104, 11–21. [Google Scholar] [CrossRef]
- Bei, N.F.; Li, G.H. Typical synoptic situations and their impacts on the wintertime air pollution in the Guanzhong basin in China. Atmos. Chem. Phys. 2016, 16, 7373–7387. [Google Scholar] [CrossRef]
- Zheng, G.J.; Duan, F.K. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys. 2015, 15, 2969–2983. [Google Scholar] [CrossRef]
- Paredes, D.; Trigo, R.M. Understanding precipitation changes in Iberia in early spring: Weather typing and storm-tracking approaches. J. Hydrometeorol. 2006, 7, 101–113. [Google Scholar] [CrossRef]
- Lorenzo, M.N.; Taboada, J.J. Links between circulation weather types and teleconnection patterns and their influence on precipitation patterns in Galicia (NW Spain). Int. J. Climatol. 2008, 28, 1493–1505. [Google Scholar] [CrossRef]
- Ramos, A.M.; Barriopedro, D. Circulation weather types as a tool in atmospheric, climate, and environmental research. Front. Environ. Sci. 2015, 3, 44. [Google Scholar] [CrossRef]
- Russo, A.; Trigo, R.M. NO2, PM10 and O3 urban concentrations and its association with circulation weather types in Portugal. Atmos. Environ. 2014, 89, 768–785. [Google Scholar] [CrossRef]
- Ramos, A.M.; Ramos, R. Cloud to ground lightning activity over Portugal and its association with circulation weather types. Atmos. Res. 2011, 101, 84–101. [Google Scholar] [CrossRef]
- Russo, A.C.; Gouveia, C.M. The influence of circulation weather patterns at different spatial scales on drought variability in the Iberian Peninsula. Front. Environ. Sci. 2015, 3, 1. [Google Scholar] [CrossRef]
- Beck, C.; Philipp, A. Evaluation and comparison of circulation type classifications for the European domain. Phys. Chem. Earth Parts A/B/C 2010, 35, 374–387. [Google Scholar] [CrossRef]
- McGregor, G.R.; Bamzelis, D. Synoptic typing and its application to the investigation of weather air pollution relationships, Birmingham, United Kingdom. Theor. Appl. Climatol. 1995, 51, 223–236. [Google Scholar] [CrossRef]
- Jiang, N.; Hay, J.E.; Fisher, G.W. Synoptic weather types and morning rush hour nitrogen oxides concentrations during Auckland winters. Weather Clim. 2005, 25, 43–69. [Google Scholar] [CrossRef]
- Levy, I.; Dayan, U.; Mahrer, Y. Differing atmospheric scales of motion and their impact on air pollutants. Int. J. Climatol. 2010, 30, 612–619. [Google Scholar] [CrossRef]
- The National Centers for Environmental Prediction. Available online: https://www.ncep.noaa.gov (accessed on 25 October 2019).
- The China National Environmental Monitoring Center. Available online: http://www.cnemc.cn (accessed on 25 October 2019).
- Huth, R. An intercomparison of computer-assisted circulation classification methods. Int. J. Climatol. 1996, 16, 893–922. [Google Scholar] [CrossRef]
- Huth, R.; Beck, C. Classifications of atmospheric circulation patterns. Ann. N. Y. Acad. Sci. 2008, 1146, 105–152. [Google Scholar] [CrossRef] [PubMed]
- Huth, R. Properties of the circulation classification scheme based on the rotated principal component analysis. Meteorol. Atmos. Phys. 1996, 59, 217–233. [Google Scholar] [CrossRef]
- Richman, M.B. Obliquely rotated principal components: An improved meteorological map typing technique. J. Appl. Meteorol. 1981, 20, 1145–1159. [Google Scholar] [CrossRef]
- Compagnucci, R.H.; Richman, M.B. Can principal component analysis provide atmospheric circulation or teleconnection patterns? Int. J. Climatol. 2008, 28, 703–726. [Google Scholar] [CrossRef]
- Philipp, A.; Beck, C.; Esteban, P.; Kreienkamp, F.; Krennert, T.; Lochbihler, K.; Lykoudis, S.P.; Pianko-Kluczynska, K.; Post, P.; Alvarez, D.R.; et al. cost733-class-1.2 User Guide; Augsburg, Germany, 2014; pp. 10–21. [Google Scholar]
- The COST733 website. Available online: http://cost733.met.no/ (accessed on 25 October 2019).
- Allwine, K.J.; Whiteman, C.D. Single-station integral measures of atmospheric stagnation, recirculation and ventilation. Atmos. Environ. 1994, 28, 713–721. [Google Scholar] [CrossRef]
- Seagram, A.; Steyn, D.G. Modelled recirculation of pollutants during ozone episodes in the Lower Fraser Valley. In Air Pollution Modelling and its Application XXII; Springer: Dordrecht, The Netherlands, 2012; Volume 49, pp. 291–294. [Google Scholar]
- Surkova, G. Air recirculation and ventilation in the coastal regions of the Black Sea. Open Geosci. 2013, 5, 196–207. [Google Scholar] [CrossRef] [Green Version]
- Levy, I.; Dayan, U.; Mahrer, Y. Studying coastal recirculation with a simplified analytical land-sea breeze model. J. Geophys. Res. Atmos. 2008, 113, 144–156. [Google Scholar] [CrossRef]
- Levy, I.; Dayan, U.; Mahrer, Y. A five-year study of coastal recirculation and its effect on air pollutants over the East Mediterranean region. J. Geophys. Res. Atmos. 2008, 113, 2310–2324. [Google Scholar] [CrossRef]
- Nankar, D.P.; Patra, A.K. Atmospheric stagnation, recirculation and ventilation characteristics at Kakrapar atomic power station site. Ann. Nucl. Energy 2009, 36, 475–480. [Google Scholar] [CrossRef]
- Russo, A.; Gouveia, C. Coastal recirculation potential affecting air pollutants in Portugal: The role of circulation weather types. Atmos. Environ. 2016, 135, 9–19. [Google Scholar] [CrossRef]
- Zhou, C.J.; Wei, G. Effects of synoptic circulation patterns on air quality in Nanjing and its surrounding areas during 2013–2015. Atmos. Pollut. Res. 2018, 9, 723–734. [Google Scholar] [CrossRef]
- Mohan, M.; Bhati, S. Wind flow conditions as an indicator to assimilative capacities of urban airsheds towards atmospheric pollution potential. J. Civ. Environ. Eng. 2013, S1, 1. [Google Scholar] [CrossRef]
- Russo, A.; Gouveia, C.M.; Soares, P.M.M.; Cardoso, R.M.; Mendes, M.T.; Trigo, R.M. The unprecedented 2014 Legionnaires’ disease outbreak in Portugal: atmospheric driving mechanisms. Int. J. Biometeorol. 2018, 11, 1–13. [Google Scholar]
- The HYSPLIT model. Available online: https://www.arl.noaa.gov/hysplit/hysplit (accessed on 25 October 2019).
Station | Longitude (°E) | Latitude (°N) | Station | Longitude (°E) | Latitude (°N) |
---|---|---|---|---|---|
1 | 121.418 | 31.241 | 6 | 121.414 | 31.183 |
2 | 121.548 | 31.288 | 7 | 121.699 | 31.201 |
3 | 121.489 | 31.208 | 8 | 121.618 | 31.203 |
4 | 121.464 | 31.416 | 9 | 121.545 | 31.233 |
5 | 121.460 | 31.281 | 10 | 121.099 | 31.141 |
Visibility (m) | RH | PM2.5 Concentration (μg/m3) | Alert Level | Precautions | |
---|---|---|---|---|---|
Moderate | <3000 | <80% | Yellow | 1. Air quality is significantly reduced; personnel need appropriate protection. 2. The general population should reduce outdoor activities to moderate levels, and children, the elderly, and susceptible people should reduce outdoor exposure time. | |
<3000 | ≥80% | 115–150 | |||
<5000 | 150–250 | ||||
Serious | <2000 | <80% | Orange | 1. Air quality is poor; personnel need appropriate protection. 2. The general population should reduce outdoor activities, and children, the elderly, and susceptible people should avoid going outdoors. | |
<2000 | <80% | 150–250 | |||
<5000 | 250–500 | ||||
Severe | <1000 | <80% | Red | 1. The air quality is very poor; personnel need to strengthen protection. 2. The general population should completely avoid outdoor activities, and children, the elderly, and susceptible people should remain indoors. | |
<1000 | <80% | 250–500 | |||
<5000 | >500 |
CT | Temperature (°C) | Dewpoint (°C) | Pressure (hPa) | Minimum RH (%) | Average Wind Speed (m/s) |
---|---|---|---|---|---|
1 | 14.42 | 9.53 | 1019.10 | 72.10 | 3.13 |
2 | 11.55 | 7.33 | 1023.23 | 75.01 | 2.71 |
3 | 12.58 | 7.16 | 1023.99 | 69.10 | 2.48 |
4 | 5.83 | −1.88 | 1028.92 | 58.38 | 2.05 |
5 | 13.73 | 8.85 | 1021.52 | 72.19 | 2.50 |
6 | 21.76 | 17.50 | 1016.50 | 76.08 | 2.16 |
CT | Average Visibility (m) | Average PM2.5 Concentration (μg/m3) | Minimum Visibility (m) | Maximum PM2.5 Concentration (μg/m3) |
---|---|---|---|---|
1 | 9075.24 | 51.38 | 234 | 198 |
2 | 9413.45 | 47.47 | 6 | 195 |
3 | 11,147.02 | 40.21 | 928 | 179 |
4 | 8418.97 | 64.36 | 952 | 184 |
5 | 9808.08 | 38.84 | 357 | 116 |
6 | 12,811.40 | 31.29 | 1064 | 123 |
CT1 | CT2 | CT3 | CT4 | CT5 | CT6 | |
---|---|---|---|---|---|---|
Total Days | 46 | 59 | 14 | 21 | 17 | 25 |
Sta | 20 | 32 | 9 | 16 | 11 | 22 |
Ven | 11 | 10 | 2 | 2 | 3 | 2 |
Rec | 14 | 17 | 6 | 6 | 7 | 9 |
Moderate | 10 | 13 | 1 | 4 | 2 | 2 |
31.3% | 40.6% | 3.1% | 12.5% | 6.3% | 6.3% | |
Serious | 9 | 9 | 3 | 5 | 5 | 4 |
25.7% | 25.7% | 8.6% | 14.3% | 14.3% | 11.4% | |
Severe | 7 | 6 | 1 | 2 | 1 | 0 |
41.2% | 35.3% | 5.9% | 11.8% | 5.9% | 0.0% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Xi, H.; Russo, A.; Du, H.; Gong, Y.; Xiang, J.; Zhou, Z.; Zhang, J.; Li, C.; Zhou, C. The Influence of Multi-Scale Atmospheric Circulation on Severe Haze Events in Autumn and Winter in Shanghai, China. Sustainability 2019, 11, 5979. https://doi.org/10.3390/su11215979
Zhao Z, Xi H, Russo A, Du H, Gong Y, Xiang J, Zhou Z, Zhang J, Li C, Zhou C. The Influence of Multi-Scale Atmospheric Circulation on Severe Haze Events in Autumn and Winter in Shanghai, China. Sustainability. 2019; 11(21):5979. https://doi.org/10.3390/su11215979
Chicago/Turabian StyleZhao, Zezheng, Hailing Xi, Ana Russo, Huadong Du, Youguo Gong, Jie Xiang, Zeming Zhou, Jiping Zhang, Chengcai Li, and Chengjun Zhou. 2019. "The Influence of Multi-Scale Atmospheric Circulation on Severe Haze Events in Autumn and Winter in Shanghai, China" Sustainability 11, no. 21: 5979. https://doi.org/10.3390/su11215979
APA StyleZhao, Z., Xi, H., Russo, A., Du, H., Gong, Y., Xiang, J., Zhou, Z., Zhang, J., Li, C., & Zhou, C. (2019). The Influence of Multi-Scale Atmospheric Circulation on Severe Haze Events in Autumn and Winter in Shanghai, China. Sustainability, 11(21), 5979. https://doi.org/10.3390/su11215979