The Use of Artificial Intelligence as a Tool Supporting Sustainable Development Local Policy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Object
- a large settlement,
- an industrial-economic and service center of a regional importance,
- an important railway junction and a significant road transport hub,
- a vocational education center,
- a health resort with a separate spa (Figure 1)
2.2. The Measurement of an Equivalent Sound Level
- temperature range from −10 °C to 40 °C,
- humidity from 25% to 98%,
- average wind speeds up to 5 m/s,
- atmospheric pressure from 940 hPa to 1060 hPa.
2.3. The SVM Neural Networks Used to Border the Land Use in Zones
3. Results and Discussion
4. Conclusions
- the size of the area,
- the accumulation of sound sources,
- the terrain shape,
- natural or artificial obstacles,
- the selection of sampling points,
- the number of visitors (capacity and functional program).
Author Contributions
Funding
Conflicts of Interest
References
- Marvin Herndon, J.; Whiteside, M. Further Evidence of Coal Fly Ash Utilization in Tropospheric Geoengineering: Implications on Human and Environmental Health. J. Geogr. Environ. Earth Sci. Int. 2017, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlas, K.; Pawlas, N.; Boroń, M.; Szłapa, P.; Zachara, J. Infrasound and low frequency noise assessment at workplaces and environment—Review of criteria. Environ. Med. 2013, 16, 82–89. (In Polish) [Google Scholar]
- Engel, Z. Environmental Protection against Vibration and Noise; Wyd. Nauk. PWN: Warszawa, Poland, 2001. (In Polish) [Google Scholar]
- Augustyńska, D.; Engel, Z.; Kaczmarska-Kozłowska, A.; Koton, J.; Mikulski, W. Noise. Infrasound and Ultrasound. Centralny Instytut Ochrony Pracy 2009. Available online: Ergonomia.ioz.pwr.wroc.pl/download/ciop-halas-text.pdf (accessed on 23 January 2017). (In Polish).
- Takayashi, Y.; Kanada, K.; Yonekawa, Y.; Harada, N.A. Study on the Relationship betweeen Subjective Unpleasantness and Body Surface Vibration Induced by Highlevel Low-frequency Pure Tones. Ind. Health 2005, 43, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Prasher, D. Is there evidence that environmental noise is immunotoxic? Noise Health 2009, 11, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.; Andersen, Z.J.; Nordsborg, R.B.; Jensen, S.S.; Lillelund, K.G.; Beelen, R. Road Traffic Noise and Incident Myocardial Infarction: A Prospective Cohort Study. PLoS ONE 2012, 7, e39283. [Google Scholar] [CrossRef] [PubMed]
- Van Kamp, I.; Davies, H. Noise and health in vulnerable groups: A review. Noise Health 2013, 15, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, D.; Welch, D.; Dirks, K.N.; Mathews, R. Exploring the relationship between noise sensitivity, annoyance and health-related quality of life in a sample of adults exposed to environmental noise. Int. J. Res. Public Health 2010, 7, 3579–3594. [Google Scholar] [CrossRef]
- Seltenrich, N. Wind Turbines: A Different Breed of Noise? Environ. Health Perspect 2014, 122, A20–A25. [Google Scholar] [CrossRef] [Green Version]
- Crichton, F.; Dodd, G.; Schmid, G.; Petrie, K.J. Framing sound: Using expectations to reduce environmental noise annoyance. Environ. Res. 2015, 142, 609–614. [Google Scholar] [CrossRef]
- Holzman, D. Vehicle Motion Alarms: Necessity, Noise Pollution or Both? Environ. Health Perspect 2011, 119, A30–A33. [Google Scholar] [CrossRef]
- Stansfeld, S.A.; Matheson, M.P. Noise pollution: Non-auditory effects on health. Br. Med. Bull. 2003, 68, 243–257. [Google Scholar] [CrossRef] [PubMed]
- Halonen, J.I.; Vahtera, J.; Stansfeld, S.; Yli-Tuomi, T.; Salo, P.; Pentti, J.; Kivimäki, M.; Lanki, T. Associations between nighttime traffic noise and sleep: The Finnish public sector study. Environ. Health Perspect 2012, 120, 1391–1396, Erratum in Environ. Health Perspect 2013, 121, A147. [Google Scholar] [CrossRef] [PubMed]
- Roswall, N.; Bidstrup, P.E.; Raaschou-Nielsen, O.; Jensen, S.S.; Olsen, A.; Sørensen, M. Residential road traffic noise exposure and survival after breast cancer—A cohort study. Environ. Res. 2016, 151, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Badran, M.; Yassin, B.A.; Fox, N.; Laher, I.; Ayas, N. Epidemiology of sleep disturbances and cardiovascular consequences. Can. J. Cardiol. 2015, 31, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Bush-Vishniac, I.J.; West, J.E.; Barnhill, C.; Hunter, T.; Orellana, D.; Chivukula, R. Noise levels in Johns Hopkins Hospital. J. Acoust. Soc. Am. 2005, 118, 3629–3645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begrlund, B.; Lindvall, T.; Schwela, D.H. Table 4.1: Guideline Values for Community Noise in Specific Environments. In Guidelines for Community Noise; World Health Organization: Geneva, Belgium, 1999. [Google Scholar]
- Polish Committee for Standardization. PN-B-02151-2:2018-01 Building Acoustics—Protection against Noise in Buildings—Part 2: Requirements regarding the Permissible Sound Level in Rooms. 08.12.2018. ICS 91.120.20; Polish Committee for Standardization: Warsaw, Poland, 2018; p. 12. (In Polish) [Google Scholar]
- Bazan-Krzywoszańska, A.; Mrówczyńska, M.; Skiba, M. Perceptions of Residents City Zielona Góra—Mental maps. J. Civ. Eng. Environ. Archit. 2015, 32, 19–32. Available online: http://doi.prz.edu.pl/pl/pdf/biis/435 (accessed on 23 January 17). (In Polish).
- Osman, T.; Divigalpitiyac, P.; Arima, T. Driving factors of urban sprawl in Giza. Governorate of Greater Cairo Metropolitan Region using AHP method. Land Use Policy 2016, 58, 21–31. [Google Scholar] [CrossRef]
- Italo, C.M.G.; Stelamaris, R.B.; Paulo, H.T.Z. Influence of urban shapes on environmental noise: A case study in Aracaju—Brazil. Sci. Total Environ. 2011, 412–413, 66–76. [Google Scholar] [CrossRef]
- Aletta, F.; Kang, J. Soundscape approach integrating noise mapping techniques: A case study in Brighton, UK. Noise Mapp. 2015, 2. [Google Scholar] [CrossRef]
- Genuit, K.; Fiebig, A. Psychoacoustics and its benefit for the soundscape approach. Acta Acoust. United Acoust. 2006, 92, 952–958. [Google Scholar]
- Genuit, K.; Schulte-Fortkamp, B.; Fiebig, A. Psychoacoustic mapping within the soundscape approach. Internoise 2008, 2008, 594–606. [Google Scholar]
- Hao, Y.; Kang, J.; Krijnders, J. Integrated effects of urban morphology on birdsong loudness and visibility of green areas. Landsc. Urban Plan. 2015, 137, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Kang, J.; Behm, H. Birdsong as an element of the urban sound environment: A case study concerning the area of Warnemünde in Germany. Acta Acoust. United Acoust. 2014, 100, 458–466. [Google Scholar] [CrossRef]
- Liu, J.; Kang, J.; Luo, T.; Behm, H. Landscape effects on soundscape experience in city parks. Sci. Total Environ. 2013, 454, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kang, J.; Luo, T.; Behm, H.; Coppack, T. Spatio temporal variability of soundscapes in a multiple functional urban area. Landsc. Urban Plan. 2013, 115, 1–9. [Google Scholar] [CrossRef]
- Boerenfijn, P.; Kazak, J.; Schellen, L.; van Hooff, J. A multi-case study of innovations in energy performance of social housing for older adults in the Netherlands. Energy Build. 2018, 158, 1762–1769. [Google Scholar] [CrossRef]
- Yerli, O.; Demir, Z. Relation between urban land uses and noise. A case study in Dulze, Turkey. Oxid. Commun. 2016, 39, 732–745. [Google Scholar]
- Vlahov, D.; Freudenberg, N.; Proietti, F. Urban as a determinant of health. J. Urban Health 2007, 84, 16–26. [Google Scholar] [CrossRef]
- Marquis-Favre, C.; Premat, E.; Aubree, D. Noise and its effect—A review on qualitative aspect of sound. Part II: Noise and annoyance. Acta Acoust. United Acoust. 2005, 91, 626–642. [Google Scholar]
- Honga, J.; Jeon, J. Exploring spatial relationships among soundscape variables in urbanareas: A spatial statistical modelling approach. Landsc. Urban Plan. 2017, 157, 352–364. [Google Scholar] [CrossRef]
- Corburn, J. Toward the Healthy City: People, Places, and the Politics of Urban Planning; MIT Press: Cambridge, MA, USA; London, UK, 2009; Available online: https://mitpress.mit.edu/sites/default/files/titles/content/9780262513074_sch_0001.pdf (accessed on 23 February 2017).
- Seidman, M.; Standring, R. Noise and quality of life. Int. J. Environ. Res. Public Health 2010, 7, 3730–3738. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, B.C. Shhh! Noisy cities, anti-noise groups and neoliberal citizenship. J. Sociol. 2013, 52, 190–203. [Google Scholar] [CrossRef]
- Passchier-Vermer, W.; Passchier, W.F. Noise exposure and public health. Environ. Health Perspect. 2000, 108, 123–131. [Google Scholar]
- AbhijitDebnath Prasoon KumarSingh Environmental traffic noise modelling of Dhanbad township area—A mathematical based approach. Appl. Acoust. 2018, 129, 161–172. [CrossRef]
- Berger, R.G.; Ashtiani, P.; Ollson, C.A.; Whitfield Aslund, M.; McCallum, L.C.; Leventhall, G.; Knopper, L.D. Health-based audible noise guidelines account for infrasound and low frequency noise produced by wind turbines. Front. Public Health 2015, 3, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ho-Huu, V.; Ganić, E.; Hartjes, S.; Babić, O.; Curran, R. Air traffic assignment based on daily population mobility to reduce aircraft noise effects and fuel consumption. Transp. Res. Part D Transp. Environ. 2019, 72, 127–147. [Google Scholar] [CrossRef]
- Ning, X.; Qi, J.; Wu, C.; Wang, W. Reducing noise pollution by planning construction site layout via a multi-objective optimization model. J. Clean. Prod. 2019, 222, 218–230. [Google Scholar] [CrossRef]
- Williams, R.; Veirs Val Veirs, S.; Ashe, E.; Mastick, N. Approaches to reduce noise from ships operating in important killer whale habitats. Mar. Pollut. Bull. 2019, 139, 459–469. [Google Scholar] [CrossRef]
- Richhariya, B.; Tanveer, M. EEG signal classification using universum support vector machine. Expert Syst. Appl. 2018, 106, 169–182. [Google Scholar] [CrossRef]
- Benítez-Peña, S.; Blanquero, R.; Carrizosa, E.; Ramírez-Cobo, P. Cost-sensitive Feature Selection for Support Vector Machines. Comput. Oper. Res. 2019, 106, 169–178. [Google Scholar] [CrossRef]
- Phangtriastu, M.R.; Harefa, J.; Tanoto, D.F. Comparison Between Neural Network and Support Vector Machine in Optical Character Recognition. Procedia Comput. Sci. 2017, 116, 351–357. [Google Scholar] [CrossRef]
- Leong, W.C.; Kelani, R.O.; Ahmad, Z. Prediction of air pollution index (API) using support vector machine (SVM). J. Environ. Chem. Eng. 2019, 103208. [Google Scholar] [CrossRef]
- Alirezaei, M.; Akhavan Niaki, S.T.; Akhavan Niaki, S.A. A bi-objective hybrid optimization algorithm to reduce noise and data dimension in diabetes diagnosis using support vector machines. Expert Syst. Appl. 2019, 127, 47–57. [Google Scholar] [CrossRef]
- Battineni, G.; Chintalapudi, N.; Amenta, F. Machine learning in medicine: Performance calculation of dementia prediction by support vector machines (SVM). Inform. Med. Unlocked 2019, 100200. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, Z.; Soares, C.G. Identification of ship manoeuvring motion based on nu-support vector machine. Ocean Eng. 2019, 183, 270–281. [Google Scholar] [CrossRef]
- Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Redgwell, R.D.; Szewczak, J.M.; Jones, G.; Parsons, S. Classification of Echolocation Calls from 14 Species of Bat by Support Vector Machines and Ensembles of Neural Networks. Algorithms 2009, 2, 907–924. [Google Scholar] [CrossRef]
- Parrado-Hernández, E.; Robles, G.; Ardila-Rey, J.A.; Martínez-Tarifa, J.M. Robust Condition Assessment of Electrical Equipment with One Class Support Vector Machines Based on the Measurement of Partial Discharges. Energies 2018, 11, 486. [Google Scholar] [CrossRef]
- Yu, H.; Gao, L.; Li, J.; Li, S.S.; Zhang, B.; Benediktsson, J.A. Spectral-Spatial Hyperspectral Image Classification Using Subspace-Based Support Vector Machines and Adaptive Markov Random Fields. Remote Sens. 2016, 8, 355. [Google Scholar] [CrossRef]
- Vuolo, F.; Atzberger, C. Exploiting the Classification Performance of Support Vector Machines with Multi-Temporal Moderate-Resolution Imaging Spectroradiometer (MODIS) Data in Areas of Agreement and Disagreement of Existing Land Cover Products. Remote Sens. 2012, 4, 3143–3167. [Google Scholar] [CrossRef] [Green Version]
- Elangovan, K.; Krishnasamy Tamilselvam, Y.; Mohan, R.E.; Iwase, M.; Takuma, N.; Wood, K.L. Fault Diagnosis of a Reconfigurable Crawling–Rolling Robot Based on Support Vector Machines. Appl. Sci. 2017, 7, 1025. [Google Scholar] [CrossRef]
- Shin, K.; Lee, K.J.; Kim, H. Support vector machines approach to pattern detection in bankruptcy prediction and its contingency. In Proceedings of the 11th International Conference on Neural Information Processing, ICONIP 2004, Calcutta, India, 22–25 November 2004. [Google Scholar]
- Platt, J.C. Probabilistic outputs for support vector machines and comparisons to regularized likelihood method. Adv. Large Margin Classif. 1999, 10, 61–74. [Google Scholar]
- Sztubecka, M.; Skiba, M. Noise level arrangement in determined zones of homogenous development of green areas on the example of the spa park in Inowrocław. Open Eng. 2016, 6, 524–531. [Google Scholar] [CrossRef]
- Polish Committee for Standardization. PN-ISO 1996-2:1999. Acoustics—Description and measurement of environmental noise.12.03.1999. ICS: 17.140.01; Polish Committee for Standardization: Warsaw, Poland, 1999; p. 9. (In Polish) [Google Scholar]
- Abbod, M.F.; Linkens, D.A.; Mahfouf, M.; Dounias, G. Survey on the use of smart and adaptive engineering systems in medicine. Artif. Intell. Med. 2002, 26, 179–209. [Google Scholar] [CrossRef]
- Mrówczyńska, M. Study on the Selection of Numerical Intelligence Methods for Solving Surveying Problems; Oficyna Wydawnicza Uniwersytetu Zielonogórskiego: Zielona Góra, Poland, 2015. (In Polish) [Google Scholar]
- Osowski, S. Neural Networks for Processing Information; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2006. (In Polish) [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning. In Information Science and Statistics; Springer Science + Business Media: New York, NY, USA, 2006. [Google Scholar]
- Jankowski, N. Ontogemic Neural Networks. About Networks Changing Their Structure; Akademicka Oficyna Wydawnicza EXIT: Warszawa, Poland, 2003. (In Polish) [Google Scholar]
- Skrzypczak, I.; Kokoszka, W.; Kogut, J.; Oleniacz, G. Methods of Measuring and Mapping of Landslide Areas. In Proceedings of the Conference: 3rd World Multidisciplinary Earth Sciences Symposium (WMESS), Prague, Czech Republic, 11–15 September 2017. [Google Scholar]
- Cover, T. Geometrical and statistical properties of system of linear inequalities with applications in pattern recognition. IEEE Trans. Electron. Comput. 1965, 14, 326–334. [Google Scholar] [CrossRef]
- Beycioglu, A.; Gultekin, A.; Aruntas, H.Y.; Gencel, O.; Dobiszewska, M.; Brostow, W. Mechanical properties of blended cements at elevated temperatures predicted using a fuzzy logic model. Comput. Concr. 2017, 20, 247–255. [Google Scholar]
- Tse, M.S.; Chau, C.K.; Choy, Y.S.; Tsui, W.K.; Chan, C.N.; Tang, S.K. Perception of urban park soundscape, Published by the Acoustical Society of America. J. Acoust. Soc. Am. 2012, 131. [Google Scholar] [CrossRef]
- King, G.; Roland-Mieszkowski, M.; Jason, T.; Rainham, D.G. Noise Levels Associated with Urban Land Use. J. Urban Health 2012, 89, 1017–1030. [Google Scholar] [CrossRef] [Green Version]
- Hassana, A.M.; Lee, H. Toward the sustainable development of urban areas: An overview of global trends in trials and policies. Land Use Policy 2015, 48, 199–212. [Google Scholar] [CrossRef]
- Foraster, M.; Eze, I.; Vienneau, D.; Brink, M.; Cajochen, C.; Caviezel, S.; Héritier, H.; Schaffner, E.; Schindler, C.; Wanner, M.; et al. Long-term transportation noise annoyance is associated with subsequent lower levels of physical activity. Environ. Int. 2016, 91, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Świąder, M.; Szewrański, S.; Kazak, J.; van Hoof, J.; Lin, D.; Wackernagel, M.; Alves, A. Application of Ecological Footprint Accounting as a Part of an Integrated Assessment of Environmental Carrying Capacity: A Case Study of the Footprint of Food of a Large City. Resources 2018, 7, 52. [Google Scholar] [CrossRef]
- Juszczyk, M.; Leśniak, A.; Zima, K. ANN Based Approach for Estimation of Construction Costs of Sports Fields. Complexity 2018, 2018, 7952434. [Google Scholar] [CrossRef]
Point No. | The Name of the Sanatorium | LAeq for 8 h During the Day [dB] | LAeq for 1 h During the Night [dB] | Point No. | The Name of the Sanatorium | LAeq for 8 h During the Day [dB] | LAeq for 1 h During the Night [dB] |
---|---|---|---|---|---|---|---|
1 | Oaza | 56.9 | 40.5 | 10 | Kujawiak | 48.5 | 45.1 |
2 | Oaza | 64.4 | 46.2 | 11 | Kujawiak | 45.7 | 42.4 |
3 | Oaza | 51.0 | 40.0 | 12 | Przy Tężni | 48.8 | 45.2 |
4 | Oaza | 55.9 | 40.1 | 13 | Przy Tężni | 54.2 | 46.8 |
2 | Energetyk | 64.4 | 46.2 | 14 | Przy Tężni | 47.9 | 41.6 |
3 | Energetyk | 51.0 | 40.0 | 15 | Przy Tężni | 54.3 | 45.3 |
5 | Energetyk | 58.8 | 47.6 | 20 | Przy Tężni | 54.6 | 45.8 |
6 | Energetyk | 52.0 | 48.1 | 16 | Modrzew | 52.8 | 41.5 |
7 | Kujawiak | 47.8 | 45.4 | 17 | Modrzew | 45.1 | 38.9 |
8 | Kujawiak | 62.9 | 50.8 | 18 | Modrzew | 47.9 | 40.7 |
9 | Kujawiak | 49.5 | 45.0 | 19 | Modrzew | 48.3 | 37.6 |
Type Kernel | Equation K(x, xi) | Comment |
---|---|---|
linear | ||
polynomial | b—degree polynomial | |
radial (Gaussian) | σ—for all kernels | |
sigmoidal | restrictions on the |
Current Status | Zone A | Separation Margin | Zone B |
---|---|---|---|
Park development | Park development (paths, high greenery, low greenery) | Change of park management (acoustic barriers) | Change of park management (change of track surface, change of track width depending on the boundary absorption of zones) |
Sanatorium buildings | limiting the amount of acceptable space in sanatorium buildings | Slopes—earth acoustic barriers | change of building elements (windows, doors) to muted—less noisy |
Current Status | Reform Guidelines |
---|---|
residents are indifferent to the public domain management technique | strengthening the role of civic organizations to establish partnership in development policy |
lack of entries in the planning documents for parks, health areas and healthcare facilities, which are based on the acoustic analysis and study of the experience of space users |
|
uncontrolled spatial policy system | obligatory monitoring to control the appropriateness of activities (the reduction of sound-active materials and the introduction of functional program) |
inefficient ways to write the land destination and utilization in the planning documents of the areas | changes to the law in order to introduce modern and effective methods of managing the land destination and utilization in accordance with the principles of sustainable development |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrówczyńska, M.; Sztubecka, M.; Skiba, M.; Bazan-Krzywoszańska, A.; Bejga, P. The Use of Artificial Intelligence as a Tool Supporting Sustainable Development Local Policy. Sustainability 2019, 11, 4199. https://doi.org/10.3390/su11154199
Mrówczyńska M, Sztubecka M, Skiba M, Bazan-Krzywoszańska A, Bejga P. The Use of Artificial Intelligence as a Tool Supporting Sustainable Development Local Policy. Sustainability. 2019; 11(15):4199. https://doi.org/10.3390/su11154199
Chicago/Turabian StyleMrówczyńska, Maria, Małgorzata Sztubecka, Marta Skiba, Anna Bazan-Krzywoszańska, and Przemysław Bejga. 2019. "The Use of Artificial Intelligence as a Tool Supporting Sustainable Development Local Policy" Sustainability 11, no. 15: 4199. https://doi.org/10.3390/su11154199
APA StyleMrówczyńska, M., Sztubecka, M., Skiba, M., Bazan-Krzywoszańska, A., & Bejga, P. (2019). The Use of Artificial Intelligence as a Tool Supporting Sustainable Development Local Policy. Sustainability, 11(15), 4199. https://doi.org/10.3390/su11154199