Transcutaneous Electrical Nerve Stimulation for Muscle Recovery: Insights into Delayed Onset Muscle Soreness
Abstract
1. Introduction
Aim of the Study
2. Material and Methods
2.1. Study Design
2.2. Calf Raises—Muscle Fatigue Protocol
2.3. Therapeutic Interventions
2.4. Assessment—Myotonometry
2.5. Measurement of Pain Intensity
2.6. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hotfiel, T.; Freiwald, J.; Hoppe, M.W.; Lutter, C.; Forst, R.; Grim, C.; Bloch, W.; Hüttel, M.; Heiss, R. Advances in Delayed-Onset Muscle Soreness (DOMS): Part I: Patho-genesis and Diagnostics. Sportverl. Sportschad. 2018, 32, 243–250. [Google Scholar]
- Pedersen, B.K.; Ostrowski, K.; Rohde, T.; Bruunsgaard, H. The Cytokine Response to Strenuous Exercise. Can. J. Physiol. Pharmacol. 1998, 76, 505–511. [Google Scholar] [CrossRef]
- Souza, M.; Goston, J.L.; Martins-Costa, H.C.; Minighin, E.C.; Anastácio, L.R. Can Anthocyanins Reduce Delayed Onset Muscle Soreness or Are We Barking Up the Wrong Tree? Prev. Nutr. Food Sci. 2022, 27, 265–275. [Google Scholar] [CrossRef]
- Nahon, R.L.; Silva Lopes, J.S.; Monteiro De Magalhães Neto, A. Physical Therapy Interventions for the Treatment of Delayed Onset Muscle Soreness (DOMS): Systematic Review and Meta-Analysis. Phys. Ther. Sport. 2021, 52, 1–12. [Google Scholar] [CrossRef]
- Shi, Y.; Wu, W. Multimodal non-invasive non-pharmacological therapies for chronic pain: Mechanisms and progress. BMC Med. 2023, 21, 372. [Google Scholar] [CrossRef] [PubMed]
- Pasek, J.; Cieślar, G.; Motow-Czyż, M.; Sieroń, A. Selected physical methods used in ambulatory treatment. Rehabil. Pract. 2018, 5, 68–73. [Google Scholar]
- Vance, C.G.T.; Dailey, D.L.; Chimenti, R.L.; Van Gorp, B.J.; Crofford, L.J.; Sluka, K.A. Using (TENS) for Pain Control: Update on the State of the Evidence. Medicina 2022, 58, 1332. [Google Scholar] [CrossRef]
- Akinci, B.; Zenginler Yazgan, Y.; Altinoluk, T. The Effectiveness of Three Different Recovery Methods on Blood Lactate, Acute Muscle Performance, and Delayed-Onset Muscle Soreness: A Randomized Comparative Study. J. Sports Med. Phys. Fit. 2020, 60, 345–354. [Google Scholar] [CrossRef]
- Sañudo, B.; Bartolomé, D.; Tejero, S.; Ponce-González, J.G.; Loza, J.P.; Figueroa, A. Impact of Active Recovery and Whole-Body Electromyostimulation on Blood-Flow and Blood Lactate Removal in Healthy People. Front. Physiol. 2020, 310, 345–354. [Google Scholar] [CrossRef]
- Malmir, K.; Ghotbi, N.; Mir, S.M.; Moradi, B. Comparing effects of cryotherapy and transcutaneous electrical nerve stimulation on signs and symptoms of delayed onset muscle soreness in amateur athletes. Open Pain J. 2017, 10, 20–28. [Google Scholar] [CrossRef]
- Menezes, M.A.; Pereira, T.A.B.; Tavares, L.M.; Leite, B.T.Q.; Neto, A.G.R.; Chaves, L.M.S.; Lima, L.V.; Da Silva-Grigolleto, M.E.; De Santana, J.M. Immediate effects of transcutaneous electrical nerve stimulation (TENS) administered during resistance exercise on pain in(TENS)ity and physical performance of healthy subjects: A randomized clinical trial. Eur. J. Appl. Physiol. 2018, 118, 1941–1958. [Google Scholar] [CrossRef]
- Wirtz, N.; Wahl, P.; Kleinder, H.; Wechsler, K.; Achtzehn, S.; Mester, J. Acute metabolic, hormonal, and psychological responses to strength training with superimposed EMS at the beginning and the end of a 6 week training period. J. Musculoskelet. Neuronal Interact. 2015, 15, 325–332. [Google Scholar]
- Menezes, M.A.; Menezes, D.A.; Vasconcelos, L.L.; De Santana, J.M. Is Electrical Stimulation Effective in Preventing or Treating Delayed-Onset Muscle Soreness (DOMS) in Athletes and Untrained Adults? A Systematic Review with Meta-Analysis. J. Pain 2022, 23, 2013–2035. [Google Scholar] [CrossRef]
- McCarney, L.; Lythgo, N.; Fazalbhoy, A.; Moreland, A. Objective measures of stiffness and ratings of pain and stiffness in the gastrocnemii following delayed-onset muscle soreness. J. Bodyw. Mov. Ther. 2025, 41, 187–193. [Google Scholar] [CrossRef]
- Trybulski, R.; Kużdżał, A.; Stanula, A. Acute effects of cold, heat and contrast pressure therapy on forearm muscles regeneration in combat sports athletes: A randomized clinical trial. Sci. Rep. 2024, 14, 22410. [Google Scholar] [CrossRef]
- Kelly, J.P.; Koppenhaver, S.L.; Michener, L.A.; Proulx, L.; Bisagni, F.; Cleland, J.A. Characterization of tissue stiffness of the infraspinatus, erector spinae, and gastrocnemius muscle using ultrasound shear wave elastography and superficial mechanical deformation. J. Electromyogr. Kinesiol. 2018, 38, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Albin, S.R.; Koppenhaver, S.L.; Bailey, B.; Blommel, H.; Fenter, B.; Lowrimore, C.; Smith, A.C.; McPoil, T.G. The effect of manual therapy on gastrocnemius muscle stiffness in healthy individuals. Foot 2019, 38, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Rice, H.M.; Kenny, M.; Ellison, M.A.; Fulford, J.; Meardon, S.A.; Derrick, T.R.; Hamill, J. Tibial stress during running following a repeated calf-raise protocol. Scand. J. Med. Sci. Sports 2020, 30, 2382–2389. [Google Scholar] [CrossRef]
- Gervasio, S.; Finocchietti, S.; Stevenson, A.J.T.; Mrachacz-Kersting, N. Delayed muscle on-set soreness in the gastrocnemius muscle attenuates the spinal contribution to interlimb communication. Eur. J. Appl. Physiol. 2018, 118, 2393–2402. [Google Scholar] [CrossRef] [PubMed]
- Kreivinienė, B.; Šaltytė-Vaisiauskė, L.; Mačiulskytė, S. Therapeutic effect of proprioceptive dolphin assisted activities on health-related quality of life and muscle (TENS)ion, biomechanical and viscoelastic properties in major depressive disorder adults: Case analysis. Front. Hum. Neurosci. 2025, 18, 1487293. [Google Scholar] [CrossRef]
- Bartsch, K.; Brandtl, A.; Weber, P.; Wilke, J.; Bensamoun, S.F.; Bauermeister, W.; Klingler, W.; Schleip, R. Assessing reliability and validity of different stiffness measurement tools on a multi-layered phantom tissue model. Sci. Rep. 2023, 13, 815. [Google Scholar] [CrossRef]
- Delagi, E.; Perotto, A. Anatomic Guide for the Electromyographer: The Limbs and Trunks, 5th ed.; Charles C. Thomas: Springfield, IL, USA, 2011; Volume 124, pp. 196–332. [Google Scholar]
- Nugent, S.M.; Lovejoy, T.I.; Shull, S.; Dobscha, S.K.; Morasco, B.J. Associations of Pain Numeric Rating Scale Scores Collected during Usual Care with Research Administered Patient Reported Pain Outcomes. Pain. Med. 2021, 22, 2235–2241. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Cuthill, I.C. Effect size, confidence interval and statistical significance: A practical guide for biologists. Biol. Rev. 2007, 82, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Kang, H. Sample size determination and power analysis using the G*Power software. J. Educ. Eval. Health 2021, 18, 17. [Google Scholar] [CrossRef]
- Craig, J.A.; Cunningham, M.B.; Walsh, D.M.; Baxter, G.D.; Allen, J.M. Lack of effect of transcutaneous electrical nerve stimulation upon experimentally induced delayed onset muscle soreness in humans. Pain 1996, 67, 285–289. [Google Scholar] [CrossRef]
- Sara, H.S. Effects of Electrotherapy on Delayed Onset Muscle Soreness (DOMS). J. Biomed. Res. Environ. Sci. 2021, 2, 812–814. [Google Scholar] [CrossRef]
- Denegar, C.R.; Perrin, D.H. Effect of transcutaneous electrical nerve stimulation, cold, and a combination treatment on pain, decreased range of motion, and strength loss associated with delayed onset muscle soreness. J. Athl. Train. 1992, 27, 200–206. [Google Scholar]
- Wiecha, S.; Posadzki, P.; Prill, R.; Płaszewski, M. Physical Therapies for Delayed Onset Muscle Soreness: A Protocol for an Umbrella and Mapping Systematic Review with Meta-Meta-Analysis. J. Clin. Med. 2024, 13, 2006. [Google Scholar] [CrossRef]
- Gussoni, M.; Moretti, S.; Vezzoli, A.; Genitoni, V.; Giardini, G.; Balestra, C.; Bosco, G.; Pratali, L.; Spagnolo, E.; Montorsi, M.; et al. Effects of Electrical Stimulation on Delayed Onset Muscle Soreness (DOMS): Evidences from Laboratory and In-Field Studies. J. Funct. Morphol. Kinesiol. 2023, 8, 146. [Google Scholar] [CrossRef] [PubMed]
- Keriven, H.; Sánchez Sierra, A.; González de-la-Flor, Á.; García-Arrabé, M.; Bravo-Aguilar, M.; de la Plaza San Frutos, M.; Garcia-Perez-de-Sevilla, G.; Tornero-Aguilera, J.F.; Clemente-Suarez, V.J.; Domínguez-Balmaseda, D. Effects of combined treatment with transcranial and peripheral electromagnetic stimulation on performance and pain recovery from delayed onset muscle soreness induced by eccentric exercise in young athletes. A randomized clinical trial. Front. Physiol. 2023, 14, 1267315. [Google Scholar] [CrossRef]
- Balasubramaniyam, A.; Mohanraj, K.; Mohan Gandhi, V. Effect of transcutaneous electrical nerve stimulation (TENS) on delayed onset muscle soreness following eccentric exercises for elbow. Arch. Physiother. Glob. Res. 2017, 21, 15–20. [Google Scholar]
- McGowen, J.M.; Hoppes, C.W.; Forsse, J.S.; Albin, S.R.; Abt, J.; Koppenhaver, S.L. The Utility of Myotonometry in Musculoskeletal Rehabilitation and Human Performance Programming. J. Athl. Train. 2023, 58, 305–318. [Google Scholar] [CrossRef]
- Rawson, E.S.; Miles, M.P.; Larson-Meyer, D.E. Dietary Supplements for Health, Adaptation, and Recovery in Athletes. Int. J. Sport. Nutr. Exerc. Metab. 2018, 28, 188–199. [Google Scholar] [CrossRef]
- Roberts, B.M.; Szczuroski, C.E.; Caldwell, A.L.; Zeppetelli, D.J.; Smith, N.I.; Pecorelli, V.P.; Gwin, J.A.; Hughes, J.M.; Staab, J.S. NSAIDs do not prevent exercise-induced performance deficits or alleviate muscle soreness: A placebo-controlled randomized, double-blinded, cross-over study. J. Sci. Med. Sport 2024, 27, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Balbinot, G.; Milosevic, M.; Morshead, C.M.; Iwasa, S.N.; Zariffa, J.; Milosevic, L.; Valiante, T.A.; Hoffer, J.A.; Popovic, M.R. The mechanisms of electrical neuromodulation. J. Physiol. 2025, 603, 247–284. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Vöröslakos, M.; Kronberg, G.; Henin, S.; Krause, M.R.; Huang, Y.; Opitz, A.; Mehta, A.; Pack, C.C.; Krekelberg, B.; et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat. Commun. 2018, 9, 5092. [Google Scholar] [CrossRef] [PubMed]
- Paley, C.A.; Wittkopf, P.G.; Jones, G.; Johnsom, J.I. Does (TENS) Reduce the In(TENS)ity of Acute and Chronic Pain? A Comprehensive Appraisal of the Characteristics and Outcomes of 169 Reviews and 49 Meta-Analyses? Medicina 2021, 57, 1060. [Google Scholar] [CrossRef]
- Feng, Y.N.; Li, Y.P.; Liu, C.L.; Zhang, Z.J. Assessing the elastic properties of skeletal muscle and tendon using shearwave ultrasound elastography and MyotonPRO. Sci. Rep. 2018, 8, 17064. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, M.; Lee, H. The measurement of stiffness for major muscles with shear wave elastography and myoton: A quantitative analysis study. Diagnostics 2021, 11, 524. [Google Scholar] [CrossRef]
Day 0 | Day 1 | Day 2 | Day 3 | Day 4 | |||
---|---|---|---|---|---|---|---|
Median (Q1–Q3) | (ηp2) | ** p | |||||
(A) Tone [Hz] | |||||||
Group 1 | 13.1 (12.18–14.38) | 14.85 (13.75–17.23) | 13.7 (13.4–15.63) | 14.3 (13.3–15.53) | 13.75 (13.08–14.83) | 0.08 | 0.162 |
Group 2 | 13.4 (12.7–13.93) | 14.55 (13.28–16.23) | 14.85 (13.76–16.13) | 14.35 (13.25–16.25) | 14.55 (13.8–16.55) | 0.23 | 0.001 |
(ηp2) | 0.08 | 0.09 | 0.18 | 0.05 | 0.28 | ||
* p | 0.578 | 0.533 | 0.261 | 0.755 | 0.078 | ||
(B) Stiffness [N/m] | |||||||
Group 1 | 215 (187.25–240.5) | 242 (221–258.25) | 241 (229.5–265.5) | 232.5 (202.25–277.75) | 234 (194–259.75) | 0.07 | 0.212 |
Group 2 | 216 (193.75–266.25) | 252.5 (202–315) | 279.5 (235–312) | 262 (232.5–308.25) | 275.5 (237.5–308.25) | 0.27 | <0.001 |
(ηp2) | 0.08 | 0.07 | 0.23 | 0.22 | 0.42 | ||
* p | 0.635 | 0.674 | 0.140 | 0.171 | 0.008 | ||
(C) Decrement [log] | |||||||
Group 1 | 1.06 (1–1.15) | 1.09 (0.93–1.2) | 1.02 (0.92–1.25) | 1.03 (0.96–1.27) | 0.95 (0.86–1) | 0.16 | 0.015 |
Group 2 | 1.15 (1.01–1.37) | 1.12 (1.01–1.24) | 1.1 (0.98–1.22) | 1.03 (0.93–1.19) | 1.07 (0.91–1.21) | 0.16 | 0.014 |
(ηp2) | 0.18 | 0.17 | 0.07 | 0.09 | 0.3 | ||
* p | 0.249 | 0.273 | 0.664 | 0.578 | 0.058 | ||
(D) Relaxation [ms] | |||||||
Group 1 | 22.15 (20.43–25.48) | 20.45 (19.18–23.43) | 22.65 (19.03–23.63) | 20.65 (19.2–23.13) | 20.65 (18.75–22.7) | 0.1 | 0.086 |
Group 2 | 21.5 (19.55–22.75) | 20.25 (16.1–22.2) | 20.4 (17.75–22) | 19.8 (16.4–21.95) | 19.8 (15.88–22.23) | 0.1 | 0.105 |
(ηp2) | 0.19 | 0.13 | 0.29 | 0.13 | 0.13 | ||
* p | 0.239 | 0.393 | 0.067 | 0.424 | 0.394 | ||
(E) Creep [Deborach No.] | |||||||
Group 1 | 1.28 (1.15–1.47) | 1.23 (1.14–1.39) | 1.24 (1.1–1.37) | 1.21 (1.13–1.28) | 1.19 (1.07–1.26) | 0.08 | 0.185 |
Group 2 | 1.26 (1.11–1.4) | 1.12 (0.99–1.39) | 1.19 (1.06–1.29) | 1.22 (1.09–1.33) | 1.22 (1.08–1.29) | 0.05 | 0.374 |
(ηp2) | 0.09 | 0.16 | 0.12 | 0.09 | 0.11 | ||
* p | 0.551 | 0.303 | 0.432 | 0.569 | 0.498 |
Day 0 | Day 1 | Day 2 | Day 3 | Day 4 | |||
---|---|---|---|---|---|---|---|
Median (Q1–Q3) | (ηp2) | ** p | |||||
Numeric Rating Scale (NRS) for Pain | |||||||
Group 1 | 0 (0–0) | 4.5 (2.75–6) | 5 (3.75–7) | 3 (1.75–4) | 1.5 (1–2) | 0.76 | <0.001 |
Group 2 | 0 (0–0) | 5 (3–7) | 6 (4.5–7.5) | 4 (2.5–7) | 3.5 (1.75–5) | 0.55 | <0.001 |
(ηp2) | NA | 0.07 | 0.17 | 0.34 | 0.56 | ||
* p | NA | 0.681 | 0.427 | 0.328 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szajkowski, S.; Pasek, J.; Cieślar, G. Transcutaneous Electrical Nerve Stimulation for Muscle Recovery: Insights into Delayed Onset Muscle Soreness. Clin. Pract. 2025, 15, 157. https://doi.org/10.3390/clinpract15090157
Szajkowski S, Pasek J, Cieślar G. Transcutaneous Electrical Nerve Stimulation for Muscle Recovery: Insights into Delayed Onset Muscle Soreness. Clinics and Practice. 2025; 15(9):157. https://doi.org/10.3390/clinpract15090157
Chicago/Turabian StyleSzajkowski, Sebastian, Jarosław Pasek, and Grzegorz Cieślar. 2025. "Transcutaneous Electrical Nerve Stimulation for Muscle Recovery: Insights into Delayed Onset Muscle Soreness" Clinics and Practice 15, no. 9: 157. https://doi.org/10.3390/clinpract15090157
APA StyleSzajkowski, S., Pasek, J., & Cieślar, G. (2025). Transcutaneous Electrical Nerve Stimulation for Muscle Recovery: Insights into Delayed Onset Muscle Soreness. Clinics and Practice, 15(9), 157. https://doi.org/10.3390/clinpract15090157