The Role of Serotonergic and Noradrenergic Descending Pathways on Performance-Based Cognitive Functioning at Rest and in Response to Exercise in People with Chronic Whiplash-Associated Disorders: A Randomized Controlled Crossover Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Procedure
2.3.1. Medication Administration
2.3.2. Submaximal Aerobic Exercise
2.4. Demographic Characteristics and Self-Reported Measures
2.5. Performance-Based Cognitive Function
2.6. Statistical Analysis
3. Results
3.1. Participant Flow, Group Characteristics, and Self-Reported Measures
3.2. Submaximal Aerobic Exercise
3.3. The Isolated Effect of a Single Dose of a SSRI or a Selective NRI on Cognitive Performance at Rest in People with CWAD
3.4. The Effect of a Single Dose of a SSRI or a Selective NRI on Cognitive Performance in Response to Submaximal Aerobic Exercise in People with CWAD
4. Discussion
Limitations and Recommendations for Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodriquez, A.A.; Barr, K.P.; Burns, S.P. Whiplash: Pathophysiology, diagnosis, treatment, and prognosis. Muscle Nerve 2004, 29, 768–781. [Google Scholar] [CrossRef] [PubMed]
- Sterling, M. A proposed new classification system for whiplash associated disorders—Implications for assessment and management. Man. Ther. 2004, 9, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Coppieters, I.; Ickmans, K.; Cagnie, B.; Nijs, J.; De Pauw, R.; Noten, S.; Meeus, M. Cognitive Performance Is Related to Central Sensitization and Health-related Quality of Life in Patients with Chronic Whiplash-Associated Disorders and Fibromyalgia. Pain Physician 2015, 18, E389–E401. [Google Scholar]
- Sterner, Y.; Gerdle, B. Acute and chronic whiplash disorders—A review. J. Rehabil. Med. 2004, 36, 193–209. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, H.G.; Haug, T.T.; Mykletun, A.; Dahl, A.A. A population study of anxiety and depression among persons who report whiplash traumas. J. Psychosom. Res. 2002, 53, 831–835. [Google Scholar] [CrossRef]
- Coppieters, I.; De Pauw, R.; Kregel, J.; Malfliet, A.; Goubert, D.; Lenoir, D.; Cagnie, B.; Meeus, M. Differences Between Women with Traumatic and Idiopathic Chronic Neck Pain and Women Without Neck Pain: Interrelationships Among Disability, Cognitive Deficits, and Central Sensitization. Phys. Ther. 2017, 97, 338–353. [Google Scholar]
- Antepohl, W.; Kiviloog, L.; Andersson, J.; Gerdle, B. Cognitive impairment in patients with chronic whiplash-associated disorder--a matched control study. NeuroRehabilitation 2003, 18, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Meeus, M.; Van Oosterwijck, J.; Ickmans, K.; Baert, I.; Coppieters, I.; Roussel, N.; Struyf, F.; Pattyn, N.; Nijs, J. Interrelationships between pain processing, cortisol and cognitive performance in chronic whiplash-associated disorders. Clin. Rheumatol. 2015, 34, 545–553. [Google Scholar] [CrossRef]
- Ickmans, K.; Meeus, M.; De Kooning, M.; De Backer, A.; Kooremans, D.; Hubloue, I.; Schmitz, T.; Van Loo, M.; Nijs, J. Exercise and Cognitive Functioning in People with Chronic Whiplash-Associated Disorders: A Controlled Laboratory Study. J. Orthop. Sport. Phys. Ther. 2016, 46, 87–95. [Google Scholar] [CrossRef]
- Kessels, R.P.; Aleman, A.; Verhagen, W.I.; Van Luijtelaar, E.L. Cognitive functioning after whiplash injury: A meta-analysis. J. Int. Neuropsychol. Soc. 2000, 6, 271–278. [Google Scholar] [CrossRef]
- Konrad, C.; Geburek, A.J.; Rist, F.; Blumenroth, H.; Fischer, B.; Husstedt, I.; Arolt, V.; Schiffbauer, H.; Lohmann, H. Long-term cognitive and emotional consequences of mild traumatic brain injury. Psychol. Med. 2011, 41, 1197–1211. [Google Scholar] [CrossRef] [PubMed]
- Schmand, B.; Lindeboom, J.; Schagen, S.; Heijt, R.; Koene, T.; Hamburger, H.L. Cognitive complaints in patients after whiplash injury: The impact of malingering. J. Neurol. Neurosurg. Psychiatry 1998, 64, 339–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosek, E.; Cohen, M.; Baron, R.; Gebhart, G.F.; Mico, J.-A.; Rice, A.S.C.; Rief, W.; Sluka, A.K. Do we need a third mechanistic descriptor for chronic pain states? Pain 2016, 157, 1382–1386. [Google Scholar] [CrossRef] [PubMed]
- Moriarty, O.; Finn, D.P. Cognition and pain. Curr. Opin. Support. Palliat. Care 2014, 8, 130–136. [Google Scholar] [CrossRef]
- Moriarty, O.; McGuire, B.E.; Finn, D.P. The effect of pain on cognitive function: A review of clinical and preclinical research. Prog. Neurobiol. 2011, 93, 385–404. [Google Scholar] [CrossRef] [Green Version]
- Ickmans, K.; Meeus, M.; De Kooning, M.; Lambrecht, L.; Pattyn, N.; Nijs, J. Associations Between Cognitive Performance and Pain in Chronic Fatigue Syndrome: Comorbidity with Fibromyalgia Does Matter. Pain Physician 2015, 18, E841–E852. [Google Scholar] [CrossRef]
- Daenen, L.; Nijs, J.; Roussel, N.; Wouters, K.; Van Loo, M.; Cras, P. Dysfunctional pain inhibition in patients with chronic whiplash-associated disorders: An experimental study. Clin. Rheumatol. 2013, 32, 23–31. [Google Scholar] [CrossRef]
- Van Oosterwijck, J.; Nijs, J.; Meeus, M.; Van Loo, M.; Paul, L. Lack of endogenous pain inhibition during exercise in people with chronic whiplash associated disorders: An experimental study. J. Pain 2012, 13, 242–254. [Google Scholar] [CrossRef]
- Banic, B.; Petersen-Felix, S.; Andersen, O.K.; Radanov, B.P.; Villiger, M.P.; Arendt-Nielsen, L.; Curatolo, M. Evidence for spinal cord hypersensitivity in chronic pain after whiplash injury and in fibromyalgia. Pain 2004, 107, 7–15. [Google Scholar] [CrossRef]
- Linnman, C.; Appel, L.; Söderlund, A.; Frans, Ö.; Engler, H.; Furmark, T.; Gordh, T.; Långström, B.; Fredrikson, M. Chronic whiplash symptoms are related to altered regional cerebral blood flow in the resting state. Eur. J. Pain 2009, 13, 65–70. [Google Scholar] [CrossRef]
- Bannister, K.; Dickenson, A.H. What do monoamines do in pain modulation? Curr. Opin. Support. Palliat. Care 2016, 10, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, M.; Furue, H. Mechanisms for the anti-nociceptive actions of the descending noradrenergic and serotonergic systems in the spinal cord. J. Pharmacol. Sci. 2006, 101, 107–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannister, K.; Dickenson, A.H. The plasticity of descending controls in pain: Translational probing. J. Physiol. 2017, 595, 4159–4166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ossipov, M.H.; Morimura, K.; Porreca, F. Descending pain modulation and chronification of pain. Curr. Opin. Support. Palliat. Care 2014, 8, 143–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamberlain, S.R.; Robbins, T.W. Noradrenergic modulation of cognition: Therapeutic implications. J. Psychopharmacol. 2013, 27, 694–718. [Google Scholar] [CrossRef]
- Cowen, P.; Sherwood, A.C. The role of serotonin in cognitive function: Evidence from recent studies and implications for understanding depression. J. Psychopharmacol. 2013, 27, 575–583. [Google Scholar] [CrossRef]
- Sara, S.J.; Bouret, S. Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron 2012, 76, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Svob Strac, D.; Pivac, N.; Muck-Seler, D. The serotonergic system and cognitive function. Transl. Neurosci. 2016, 7, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Tully, K.; Bolshakov, V.Y. Emotional enhancement of memory: How norepinephrine enables synaptic plasticity. Mol. Brain 2010, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Santos, R.; Galdino, G. Endogenous systems involved in exercise-induced analgesia. J. Physiol. Pharmacol. 2018, 69, 3–13. [Google Scholar]
- Nijs, J.; Kosek, E.; Van Oosterwijck, J.; Meeus, M. Dysfunctional endogenous analgesia during exercise in patients with chronic pain: To exercise or not to exercise? Pain Physician 2012, 15 (Suppl. S3), Es205–Es213. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.; Nijs, J.; Kosek, E.; Wideman, T.; Hasenbring, M.I.; Koltyn, K.; Graven-Nielsen, T.; Polli, A. Exercise-Induced Hypoalgesia in Pain-Free and Chronic Pain Populations: State of the Art and Future Directions. J. Pain 2019, 20, 1249–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meeusen, R.; Smolders, I.; Sarre, S.; DE Meirleir, K.; Keizer, H.; Serneels, M.; Ebinger, G.; Michotte, Y. Endurance training effects on neurotransmitter release in rat striatum: An in vivo microdialysis study. Acta Physiol. Scand. 1997, 159, 335–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.W.; Kuo, Y.M. Exercise benefits brain function: The monoamine connection. Brain Sci. 2013, 3, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.K.; Labban, J.D.; Gapin, J.I.; Etnier, J.L. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loprinzi, P.D.; Kane, C.J. Exercise and cognitive function: A randomized controlled trial examining acute exercise and free-living physical activity and sedentary effects. Mayo Clin. Proc. 2015, 90, 450–460. [Google Scholar] [CrossRef] [Green Version]
- Dwan, K.; Li, T.; Altman, D.G.; Elbourne, D. CONSORT 2010 statement: Extension to randomised crossover trials. BMJ 2019, 366, l4378. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.B.; Nagelkirk, P.R.; Peckerman, A.; Poluri, A.; Mores, J.; Natelson, B.H. Exercise and cognitive performance in chronic fatigue syndrome. Med. Sci. Sport. Exerc. 2005, 37, 1460–1467. [Google Scholar] [CrossRef]
- Spitzer, W.O.; Skovron, M.L.; Salmi, L.R.; Cassidy, J.D.; Duranceau, J.; Suissa, S.; Zeiss, E. Scientific monograph of the Quebec Task Force on Whiplash-Associated Disorders: Redefining “whiplash” and its management. Spine 1995, 20 (Suppl. 8), 1S–73S. [Google Scholar]
- Rey, A. L’examen Clinique en Psychologie (The Clinical Examination in Psychology); University Press of France: Paris, France, 1964. [Google Scholar]
- Sauer, J.M.; Ring, B.J.; Witcher, J.W. Clinical pharmacokinetics of atomoxetine. Clin. Pharmacokinet. 2005, 44, 571–590. [Google Scholar] [CrossRef]
- Sangkuhl, K.; Klein, T.E.; Altman, R.B. PharmGKB summary: Citalopram pharmacokinetics pathway. Pharm. Genom. 2011, 21, 769–772. [Google Scholar] [CrossRef] [PubMed]
- Borchert, R.J.; Rittman, T.; Rae, C.; Passamonti, L.; Jones, S.P.; Vatansever, D.; Rodríguez, P.V.; Ye, Z.; Nombela, C.; Hughes, L.E.; et al. Atomoxetine and citalopram alter brain network organization in Parkinson’s disease. Brain Commun. 2019, 1, fcz013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borchert, R.J.; Rittman, T.; Passamonti, L.; Ye, Z.; Sami, S.; Jones, S.P.; Nombela, C.; Vázquez Rodríguez, P.; Vatansever, D.; Rae, C.L.; et al. Atomoxetine Enhances Connectivity of Prefrontal Networks in Parkinson’s Disease. Neuropsychopharmacology 2016, 41, 2171–2177. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, S.R.; Hampshire, A.; Müller, U.; Rubia, K.; Del Campo, N.; Craig, K.; Regenthal, R.; Suckling, J.; Roiser, J.P.; Grant, J.E.; et al. Atomoxetine modulates right inferior frontal activation during inhibitory control: A pharmacological functional magnetic resonance imaging study. Biol. Psychiatry 2009, 65, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, S.R.; Muller, U.; Blackwell, A.D.; Clark, L.; Robbins, T.W.; Sahakian, B.J. Neurochemical modulation of response inhibition and probabilistic learning in humans. Science 2006, 311, 861–863. [Google Scholar] [CrossRef] [Green Version]
- Chalon, S.; Desager, J.; DeSante, K.A.; Frye, R.F.; Witcher, J.; Long, A.J.; Sauer, J.; Golnez, J.; Smith, B.P.; Thomasson, H.R.; et al. Effect of hepatic impairment on the pharmacokinetics of atomoxetine and its metabolites. Clin. Pharmacol. Ther. 2003, 73, 178–191. [Google Scholar] [CrossRef]
- Rocha, A.; Marques, M.P.; Coelho, E.B.; Lanchote, V.L. Enantioselective analysis of citalopram and demethylcitalopram in human and rat plasma by chiral LC-MS/MS: Application to pharmacokinetics. Chirality 2007, 19, 793–801. [Google Scholar] [CrossRef]
- Milne, R.J.; Goa, K.L. Citalopram: A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in depressive illness. Drugs 1991, 41, 450–477. [Google Scholar] [CrossRef]
- Clemow, D.B.; Bushe, C.J. Atomoxetine in patients with ADHD: A clinical and pharmacological review of the onset, trajectory, duration of response and implications for patients. J. Psychopharmacol. 2015, 29, 1221–1230. [Google Scholar] [CrossRef]
- Telford, R.D.; Minikin, B.R.; Hahn, A.G.; Hooper, L.A. A simple method for the assessment of general fitness: The tri-level profile. Aust. J. Sci. Med. Sport. 1989, 21, 6–9. [Google Scholar]
- Wallman, K.E.; Morton, A.R.; Goodman, C.; Grove, J.R. Physiological responses during a submaximal cycle test in chronic fatigue syndrome. Med. Sci. Sport. Exerc. 2004, 36, 1682–1688. [Google Scholar] [CrossRef] [PubMed]
- Vernon, H. The Neck Disability Index: State-of-the-art, 1991–2008. J. Manip. Physiol. Ther. 2008, 31, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Vernon, H.; Mior, S. The Neck Disability Index: A study of reliability and validity. J. Manip. Physiol. Ther. 1991, 14, 409–415. [Google Scholar]
- Jorritsma, W.; De Vries, G.E.; Geertzen, J.H.B.; Dijkstra, P.U.; Reneman, M.F. Neck Pain and Disability Scale and the Neck Disability Index: Reproducibility of the Dutch Language Versions. Eur. Spine J. 2010, 19, 1695–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorritsma, W.; de Vries, G.E.; Dijkstra, P.U.; Geertzen, J.H.B.; Reneman, M.F. Neck Pain and Disability Scale and Neck Disability Index: Validity of Dutch language versions. Eur. Spine J. 2012, 21, 93–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawker, G.A.; Mian, S.; Kendzerska, T.; French, M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 2011, 63 (Suppl. S11), S240–S252. [Google Scholar]
- Nijs, J.; Thielemans, A. Kinesiophobia and symptomatology in chronic fatigue syndrome: A psychometric study of two questionnaires. Psychol. Psychother. 2008, 81 Pt 3, 273–283. [Google Scholar] [CrossRef]
- Ickmans, K.; Meeus, M.; Kos, D.; Clarys, P.; Meersdom, G.; Lambrecht, L.; Pattyn, N.; Nijs, J. Cognitive performance is of clinical importance, but is unrelated to pain severity in women with chronic fatigue syndrome. Clin. Rheumatol. 2013, 32, 1475–1485. [Google Scholar] [CrossRef]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Tipper, S.P. The negative priming effect: Inhibitory priming by ignored objects. Q. J. Exp. Psychol. A 1985, 37, 571–590. [Google Scholar] [CrossRef]
- Westerhausen, R.; Kompus, K.; Hugdahl, K. Impaired cognitive inhibition in schizophrenia: A meta-analysis of the Stroop interference effect. Schizophr. Res. 2011, 133, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Dinges, D.; Powell, J. Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behav. Res. Methods Instrum. Comput. 1985, 17, 652–655. [Google Scholar] [CrossRef]
- Dorrian, J.; Rogers, N.; Dinges, D. Psychomotor Vigilance Performance: Neurocognitive Assay Sensitive to Sleep Loss; Marcel Dekker: New York, NY, USA, 2005; pp. 39–70. [Google Scholar]
- Richter, T.; Paluch, Z.; Alusik, S. The non-antidepressant effects of citalopram: A clinician’s perspective. Neuro Endocrinol. Lett. 2014, 35, 7–12. [Google Scholar] [PubMed]
- Nandam, L.S.; Hester, R.; Wagner, J.; Cummins, T.D.; Garner, K.; Dean, A.J.; Kim, B.N.; Nathan, P.J.; Mattingley, J.B.; Bellgrove, M.A. Methylphenidate but not atomoxetine or citalopram modulates inhibitory control and response time variability. Biol. Psychiatry 2011, 69, 902–904. [Google Scholar] [CrossRef]
- Almeida, S.; Glahn, D.; Argyropoulos, S.; Frangou, S. Acute citalopram administration may disrupt contextual information processing in healthy males. Eur. Psychiatry 2010, 25, 87–91. [Google Scholar] [CrossRef]
- LaManca, J.J.; Sisto, S.A.; DeLuca, J.; Johnson, S.K.; Lange, G.; Pareja, J.; Cook, S.; Natelson, B.H. Influence of exhaustive treadmill exercise on cognitive functioning in chronic fatigue syndrome. Am. J. Med. 1998, 105, 59S–65S. [Google Scholar] [CrossRef]
- Luoto, S.; Taimela, S.; Hurri, H.; Alaranta, H. Mechanisms explaining the association between low back trouble and deficits in information processing. A controlled study with follow-up. Spine 1999, 24, 255–261. [Google Scholar] [CrossRef]
- Wallman, K.E.; Morton, A.R.; Goodman, C.; Grove, R.; Guilfoyle, A.M. Randomised controlled trial of graded exercise in chronic fatigue syndrome. Med. J. Aust. 2004, 180, 444–448. [Google Scholar] [CrossRef]
- Munguia-Izquierdo, D.; Legaz-Arrese, A. Exercise in warm water decreases pain and improves cognitive function in middle-aged women with fibromyalgia. Clin. Exp. Rheumatol. 2007, 25, 823–830. [Google Scholar]
- Etnier, J.L.; Karper, W.B.; Gapin, J.I.; Barella, L.A.; Chang, Y.K.; Murphy, K.J. Exercise, fibromyalgia, and fibrofog: A pilot study. J. Phys. Act. Health 2009, 6, 239–246. [Google Scholar] [CrossRef]
- Munguia-Izquierdo, D.; Legaz-Arrese, A. Assessment of the effects of aquatic therapy on global symptomatology in patients with fibromyalgia syndrome: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2008, 89, 2250–2257. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Ritchie, C.; Pedler, A.; McCamley, K.; Roberts, K.; Sterling, M. Exercise induced hypoalgesia is elicited by isometric, but not aerobic exercise in individuals with chronic whiplash associated disorders. Scand. J. Pain 2017, 15, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Citalopram—Atomoxetine (n = 12) | Atomoxetine—Citalopram (n = 13) | |
---|---|---|
Age, y | 42.7 (11.6) | 38.9 (9.9) |
Women, n | 7 (58.3) | 8 (62) |
Body mass, kg | 71.8 (9.1) | 75.7 (18.2) |
Height, cm | 170.8 (9.1) | 172.5 (8.7) |
BMI, kg/m2 | 24.6 (2.2) | 25.2 (4.2) |
Disease duration, months | 89.4 (109.7) | 23.4 (29.7) |
Occupational situation, n | 4 inactive (33.3); 3 part-time (25); 5 full-time (41.7); 0 students (0); 0 retired (0) | 5 inactive (38.5); 3 part-time (23.1); 3 full-time (23.1); 2 students (15.4); 0 retired (0) |
Education level, n | 0 primary education (0); 4 secondary education (33.3) 7 bachelor’s degree (58.3); 1 master’s degree (8.3); 0 PhD (0) | 0 primary education (0); 5 secondary education (38.5) 4 bachelor’s degree (30.8); 2 master’s degree (15.4); 0 PhD (0) |
Time of cognitive testing, n | 0 early morning (0); 5 late morning (41.7); 3 early afternoon (25) 0 late afternoon (0); 4 evening (33.3) | 0 early morning (0); 3 late morning (23.1); 5 early afternoon (38.5) 2 late afternoon (15.4); 3 evening (23.1) |
Antidepressants, n | 0 (0) | 1 (7.7) a |
Analgesics, n | 5 (41.7) a | 3 (23.1) a |
Anti-epileptics, n | 0 (0) | 0 (0) |
Legal conflict, n | 6 no (50); 0 employer (0); 4 insurance company (33.3) 1 employer and insurance company (8.3) | 7 no (53.9); 1 employer (7.7); 5 insurance company (38.5) 0 employer and insurance company (0) |
Malingering/feigned cognitive impairment, n | 0 (0) | 0 (0) |
Successful blinding of patients, % | 96 | |
Successful blinding of assessors, % | 100 |
No Medication | After Intake Citalopram | After Intake Atomoxetine | p Value † | |
---|---|---|---|---|
Neck Disability Index, /100 | 40.2 (35.0–45.5) | 38.7 (33.3–44.1) | 38.7 (33.4–44.1) | >0.05 |
VAS fatigue, mm (/100): pre-exercise | 45.5 (32.5–58.5) | 48.3 (34.8–61.8) | 51.6 (38.3–64.9) | >0.05 ‡ |
VAS fatigue, mm (/100): post-exercise | 46.8 (33.8–59.8) | 43.4 (30.0–56.9) | 45.2 (31.9–58.5) | >0.05 ‡ |
VAS fatigue, mm (/100): 24 h post-exercise | 53.0 (39.9–66.1) | 50.7 (37.3–64.2) | 45.2 (31.9–58.5) | >0.05 ‡ |
Submaximal aerobic exercise characteristics | ||||
Resting heart rate, beats per minute | 83.0 § (77.8–88.1) | 84.7 (79.1–90.4) | 91.6 § (86.1–97.1) | <0.05 § |
Duration aerobic cycling exercise, minutes | 4.8 (4.3–5.3) | 5.1 § (4.6–5.7) | 4.5 § (3.9–5.1) | <0.05 § |
Max Wattage | 120 (106.5–133.5) | 128.1 § (113.9–142.2) | 112.3 § (98.4–126.2) | <0.05 § |
Cognitive Performance Variable | Time Condition | Medication Condition | Estimated Means | 95% Confidence Interval | Medication Conditions (No Medication Versus Citalopram or Atomoxetine) | Estimated Mean Difference | p Value | Cohen’s d Effect Size | ||
---|---|---|---|---|---|---|---|---|---|---|
Lower bound | Upper bound | Pre-exc | ||||||||
Pre-exc | No medication | 1373.09 | 1078.38 | 1667.80 | No medication | Citalopram | 26.03 | 1 | −0.04 | |
Citalopram | 1347.06 | 1047.51 | 1646.61 | No medication | Atomoxetine | 123.05 | 0.200 | −0.26 | ||
Atomoxetine | 1250.04 | 952.56 | 1547.53 | |||||||
Pre-exc | No medication | 1262.15 | 1028.75 | 1495.56 | No medication | Citalopram | 43.148 | 1 | −0.09 | |
Citalopram | 1219.01 | 981.19 | 1456.82 | |||||||
Atomoxetine | 1118.93 | 883.00 | 1354.87 | No medication | Atomoxetine | 143.22 | 0.048 | −0.37 | ||
Pre-exc | No medication | 1206.95 | 1008.70 | 1405.19 | No medication | Citalopram | 27.43 | 1 | −0.06 | |
Citalopram | 1179.52 | 975.85 | 1383.19 | |||||||
Atomoxetine | 1141.57 | 940.22 | 1342.93 | No medication | Atomoxetine | 65.38 | 0.614 | −0.15 | ||
Pre-exc | No medication | 110.94 | 24.79 | 197.09 | No medication | Citalopram | −20.58 | 1 | 0.07 | |
Citalopram | 131.52 | 40.40 | 222.64 | |||||||
Atomoxetine | 130.41 | 41.42 | 219.40 | No medication | Atomoxetine | −19.47 | 1 | 0.07 | ||
Pre-exc | No medication | 1336.26 | 1052.46 | 1620.06 | No medication | Citalopram | −68.64 | 0.830 | 0.10 | |
Citalopram | 1404.90 | 1114.97 | 1694.83 | |||||||
Atomoxetine | 1219.71 | 932.39 | 1507.02 | No medication | Atomoxetine | 116.55 | 0.308 | −0.31 | ||
Pre-exc | No medication | 94 | 88 | 100 | No medication | Citalopram | −1 | 1 | 0.21 | |
Citalopram | 95 | 89 | 100 | |||||||
Atomoxetine | 95 | 89 | 100 | No medication | Atomoxetine | −1 | 1 | 0.12 | ||
Pre-exc | No medication | 99 | 97 | 100 | No medication | Citalopram | 1 | 1 | 0.00 | |
Citalopram | 99 | 97 | 100 | |||||||
Atomoxetine | 99 | 97 | 100 | No medication | Atomoxetine | 0 | 1 | 0.00 | ||
Pre-exc | No medication | 99 | 97 | 100 | No medication | Citalopram | 0 | 1 | 0.00 | |
Citalopram | 99 | 97 | 100 | |||||||
Atomoxetine | 99 | 97 | 100 | No medication | Atomoxetine | 0 | 1 | 0.00 | ||
Pre-exc | No medication | 93 | 87 | 100 | No medication | Citalopram | −4 | 0.318 | 0.37 | |
Citalopram | 97 | 90 | 100 | |||||||
Atomoxetine | 93 | 86 | 100 | No medication | Atomoxetine | 0 | 1 | 0.00 | ||
Pre-exc | No medication | 336.12 | 320.03 | 352.21 | No medication | Citalopram | −5.28 | 0.848 | 0.15 | |
Citalopram | 341.40 | 324.64 | 358.17 | |||||||
Atomoxetine | 339.55 | 323.07 | 356.03 | No medication | Atomoxetine | −3.43 | 1 | 0.12 | ||
Pre-exc | No medication | 17.62 | 8.41 | 26.83 | No medication | Citalopram | 0.85 | 1 | −0.11 | |
Citalopram | 16.77 | 7.36 | 26.18 | |||||||
Atomoxetine | 12.85 | 3.48 | 22.21 | No medication | Atomoxetine | 4.77 | 0.148 | −0.30 |
Cognitive Performance Variable | Medication Condition | Time Condition | Estimated Means | 95% Confidence Interval | Estimated Mean Difference | p Value | Cohen’s d Effect Size | ||
---|---|---|---|---|---|---|---|---|---|
Lower bound | Upper bound | ||||||||
No medication | Pre-exc | 1373.09 | 1078.38 | 1667.80 | Pre-Post exc | 159.67 | 0.025 | −0.70 | |
Post-exc | 1213.42 | 918.71 | 1508.13 | ||||||
Citalopram | Pre-exc | 1347.06 | 1047.51 | 1646.61 | Pre-Post exc | −3.83 | 0.961 | 0.02 | |
Post-exc | 1350.89 | 1051.34 | 1650.44 | ||||||
Atomoxetine | Pre-exc | 1250.04 | 952.56 | 1547.53 | Pre-Post exc | 43.66 | 0.562 | −0.70 | |
Post-exc | 1206.38 | 908.90 | 1503.87 | ||||||
No medication | Pre-exc | 1262.15 | 1028.75 | 1495.56 | Pre-Post exc | 143.58 | 0.018 | −0.92 | |
Post-exc | 1118.58 | 885.17 | 1351.98 | ||||||
Citalopram | Pre-exc | 1219.01 | 981.19 | 1456.82 | Pre-Post exc | −12.98 | 0.846 | 0.06 | |
Post-exc | 1231.99 | 994.18 | 1469.80 | ||||||
Atomoxetine | Pre-exc | 1118.93 | 883.00 | 1354.87 | Pre-Post exc | 3.14 | 0.961 | −0.03 | |
Post-exc | 1115.80 | 879.86 | 1351.73 | ||||||
No medication | Pre-exc | 1206.95 | 1008.70 | 1405.19 | Pre-Post exc | 155.39 | 0.012 | −0.65 | |
Post-exc | 1051.56 | 853.31 | 1249.81 | ||||||
Citalopram | Pre-exc | 1179.52 | 975.85 | 1383.19 | Pre-Post exc | −10.08 | 0.883 | 0.05 | |
Post-exc | 1189.60 | 985.93 | 1393.27 | ||||||
Atomoxetine | Pre-exc | 1141.57 | 940.22 | 1342.93 | Pre-Post exc | 95.57 | 0.144 | −0.65 | |
Post-exc | 1046.00 | 844.64 | 1247.35 | ||||||
No medication | Pre-exc | 110.94 | 24.79 | 197.09 | Pre-Post exc | 16.09 | 0.677 | −0.11 | |
Post-exc | 94.85 | 8.70 40.40 | 180.99 222.64 | ||||||
Citalopram | Pre-exc | 131.52 | Pre-Post exc | 9.16 | 0.832 | −0.05 | |||
Post-exc | 122.36 | 31.25 | 213.48 | ||||||
Atomoxetine | Pre-exc | 130.41 | 41.42 | 219.40 | Pre-Post exc | 40.52 | 0.326 | −0.29 | |
Post-exc | 89.89 | 0.90 | 178.88 | ||||||
No medication | Pre-exc | 1336.26 | 1052.46 | 1620.06 | Pre-Post exc | 153.34 | 0.051 | −0.71 | |
Post-exc | 1182.92 | 899.12 | 1466.72 | ||||||
Citalopram | Pre-exc | 1404.90 | 1114.97 | 1694.83 | Pre-Post exc | 105.28 | 0.228 | −0.30 | |
Post-exc | 1299.62 | 1009.69 | 1589.55 | ||||||
Atomoxetine | Pre-exc | 1219.71 | 932.39 | 1507.02 | Pre-Post exc | 20.72 | 0.803 | −0.21 | |
Post-exc | 1198.99 | 911.67 | 1486.30 | ||||||
No medication | Pre-exc | 94 | 88 | 100 | Pre-Post exc | 2 | 0.196 | −0.22 | |
Post-exc | 92 | 86 | 98 | ||||||
Citalopram | Pre-exc | 95 | 89 | 100 | Pre-Post exc | 2 | 0.213 | −0.34 | |
Post-exc | 93 | 87 | 99 | ||||||
Atomoxetine | Pre-exc | 95 | 89 | 100 | Pre-Post exc | 4 | 0.030 | −0.50 | |
Post-exc | 91 | 85 | 97 | ||||||
No medication | Pre-exc | 99 | 97 | 100 | Pre-Post exc | 1 | 0.387 | −0.31 | |
Post-exc | 98 | 96 | 100 | ||||||
Citalopram | Pre-exc | 99 | 97 | 100 | Pre-Post exc | 2 | 0.055 | −0.32 | |
Post-exc | 96 | 94 | 98 | ||||||
Atomoxetine | Pre-exc | 99 | 97 | 100 | Pre-Post exc | 0 | 0.614 | −0.39 | |
Post-exc | 98 | 96 | 100 | ||||||
No medication | Pre-exc | 99 | 97 | 100 | Pre-Post exc | 1 | 0.478 | −0.19 | |
Post-exc | 98 | 96 | 100 | ||||||
Citalopram | Pre-exc | 99 | 97 | 100 | Pre-Post exc | 3 | 0.102 | −0.27 | |
Post-exc | 96 | 94 | 99 | ||||||
Atomoxetine | Pre-exc | 99 | 97 | 100 | Pre-Post exc | 2 | 0.132 | −0.31 | |
Post-exc | 97 | 94 | 99 | ||||||
No medication | Pre-exc | 93 | 87 | 100 | Pre-Post exc | 4 | 0.128 | −0.25 | |
Post-exc | 89 | 82 | 96 | ||||||
Citalopram | Pre-exc | 97 | 90 | 100 | Pre-Post exc | 7.3 | 0.015 | −0.65 | |
Post-exc | 90 | 83 | 97 | ||||||
Atomoxetine | Pre-exc | 93 | 86 | 100 | Pre-Post exc | 2 | 0.420 | −0.25 | |
Post-exc | 91 | 84 | 98 | ||||||
No medication | Pre-exc | 336.12 | 320.03 | 352.21 | Pre-Post exc | −5.58 | 0.363 | 0.26 | |
Post-exc | 341.70 | 325.60 | 357.79 | ||||||
Citalopram | Pre-exc | 341.40 | 324.64 | 358.17 | Pre-Post exc | −15.97 | 0.021 | 0.53 | |
Post-exc | 357.38 | 340.61 | 374.14 | ||||||
Atomoxetine | Pre-exc | 339.55 | 323.07 | 356.03 | Pre-Post exc | −6.16 | 0.346 | 0.32 | |
Post-exc | 345.71 | 329.23 | 362.19 | ||||||
No medication | Pre-exc | 17.62 | 8.41 | 26.83 | Pre-Post exc | −2.04 | 0.426 | 0.34 | |
Post-exc | 19.66 | 10.39 | 28.93 | ||||||
Citalopram | Pre-exc | 16.77 | 7.36 | 26.18 | Pre-Post exc | −4.25 | 0.128 | 0.27 | |
Post-exc | 21.01 | 11.65 | 30.38 | ||||||
Atomoxetine | Pre-exc | 12.85 | 3.48 | 22.21 | Pre-Post exc | −5.81 | 0.034 | 0.64 | |
Post-exc | 18.65 | 9.33 | 27.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppieters, I.; Nijs, J.; Meeus, M.; De Kooning, M.; Rheel, E.; Huysmans, E.; Pas, R.; Van Bogaert, W.; Hubloue, I.; Ickmans, K. The Role of Serotonergic and Noradrenergic Descending Pathways on Performance-Based Cognitive Functioning at Rest and in Response to Exercise in People with Chronic Whiplash-Associated Disorders: A Randomized Controlled Crossover Study. Clin. Pract. 2023, 13, 684-700. https://doi.org/10.3390/clinpract13030063
Coppieters I, Nijs J, Meeus M, De Kooning M, Rheel E, Huysmans E, Pas R, Van Bogaert W, Hubloue I, Ickmans K. The Role of Serotonergic and Noradrenergic Descending Pathways on Performance-Based Cognitive Functioning at Rest and in Response to Exercise in People with Chronic Whiplash-Associated Disorders: A Randomized Controlled Crossover Study. Clinics and Practice. 2023; 13(3):684-700. https://doi.org/10.3390/clinpract13030063
Chicago/Turabian StyleCoppieters, Iris, Jo Nijs, Mira Meeus, Margot De Kooning, Emma Rheel, Eva Huysmans, Roselien Pas, Wouter Van Bogaert, Ives Hubloue, and Kelly Ickmans. 2023. "The Role of Serotonergic and Noradrenergic Descending Pathways on Performance-Based Cognitive Functioning at Rest and in Response to Exercise in People with Chronic Whiplash-Associated Disorders: A Randomized Controlled Crossover Study" Clinics and Practice 13, no. 3: 684-700. https://doi.org/10.3390/clinpract13030063