Stability Study of Graphene Oxide-Bovine Serum Albumin Dispersions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PEGylated Graphene Oxide
2.3. Dispersions Preparation
2.4. Characterization
3. Results and Discussion
3.1. Scanning Electron Microscopy Characterization
3.2. Zeta Potential Measurements
3.3. Ultraviolet-Visible Spectrometry Characterization
3.4. Rheological Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Goenka, S.; Sant, V.; Sant, S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 2014, 173, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wu, L.; Zhan, C.; Shao, Q.; Guo, Z.; Zhang, L. Overview of polymer nanocomposites: Computer simulation understanding of physical properties. Polymer 2017, 133, 272–287. [Google Scholar] [CrossRef]
- Gong, X.; Liu, G.; Li, Y.; Yu, D.Y.W.; Teoh, W.Y. Functionalized-graphene composites: Fabrication and applications in sustainable energy and environment. Chem. Mater. 2016, 28, 8082–81118. [Google Scholar] [CrossRef]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Elkhenany, H.; Bourdo, S.; Hecht, S.; Donell, R.; Gerard, D.; Abdelwahed, R.; Lafont, A.; Alghazali, K.; Watanabe, F.; Biris, A.S.; et al. Graphene nanoparticles as osteoinductive and osteoconductive platform for stem cell and bone regeneration and bone regeneration. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 2117–2126. [Google Scholar] [CrossRef]
- Viswanathan, S.; Narayanan, T.N.; Aran, K.; Fink, K.D.; Paredes, J.; Ajayan, P.M.; Filipek, S.; Miszta, P.; Tekin, H.C.; Inci, F.; et al. Graphene-protein field effect biosensors: Glucose sensing. Mater. Today 2015, 18, 513–522. [Google Scholar] [CrossRef]
- Bollella, P.; Fusco, G.; Tortolini, C.; Sanzò, G.; Favero, G.; Gorton, L.; Antiochia, R. Beyond graphene: Electrochemical sensors and biosensors for biomarkers detection. Biosens. Bioelectron. 2017, 89, 152–166. [Google Scholar] [CrossRef]
- Dasari Shareena, T.P.; McShan, D.; Dasmahapatra, A.K.; Tchounwou, P.B. A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health. Nano-Micro Lett. 2018, 10, 1–34. [Google Scholar] [CrossRef]
- Cheong, Y.K.; Arce, M.P.; Benito, A.; Chen, D.; Crisóstomo, N.L.; Kerai, L.V.; Rodríguez, G.; Valverde, J.L.; Vadalia, M.; Cerpa-Naranjo, A.; et al. Synergistic antifungal study of pegylated graphene oxides and copper nanoparticles against candida albicans. Nanomaterials 2020, 10, 819. [Google Scholar] [CrossRef]
- Ma, K.; Li, W.; Zhu, G.; Chi, H.; Yin, Y.; Li, Y.; Zong, Y.; Guo, Z.; Wang, L.; Xu, W.; et al. PEGylated DOX-coated nano graphene oxide as pH-responsive multifunctional nanocarrier for targeted drug delivery. J. Drug Target. 2021, 29, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2018, 1, 203–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenti, L.E.; Fiorito, P.A.; García, C.D.; Giacomelli, C.E. The adsorptiondesorption process of bovine serum albumin on carbon nanotubes. J. Colloid Interface Sci. 2007, 307, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zhen, H.; Li, Y.; Wang, P.; Huang, X.; Shi, P. PEGylated graphene oxide as a nanocarrier for podophyllotoxin. J. Nanopartic. Res. 2014, 16, 1–11. [Google Scholar] [CrossRef]
- Hadjidemetriou, M.; Al-Ahmady, Z.; Kostarelos, K. Time-evolution of in vivo protein corona onto blood-circulating PEGylated liposomal doxorubicin (DOXIL) nanoparticles. Nanoscale 2016, 8, 6948–6957. [Google Scholar] [CrossRef] [Green Version]
- Corbo, C.; Molinaro, R.; Parodi, A.; Toledano Furman, N.E.; Salvatore, F.; Tasciotti, E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 2016, 11, 81–100. [Google Scholar] [CrossRef] [Green Version]
- Kharazian, B.; Hadipour, N.L.; Ejtehadi, M.R. Understanding the nanoparticle-protein corona complexes using computational and experimental methods. Int. J. Biochem. Cell Biol. 2016, 75, 162–174. [Google Scholar] [CrossRef]
- Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 2008, 105, 14265–14270. [Google Scholar] [CrossRef] [Green Version]
- Kragh-Hansen, U. Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev. 1981, 33, 17–53. [Google Scholar]
- Cerpa, A.; Pérez-Piñeiro, J.; Navajas-Chocarro, P.; Arce, M.; Lado-Touriño, I.; Barrios-Bermudez, N.; Moreno, R.; Rojas-Cervantes, M.L. Rheological properties of different Graphene nanomaterials in biological media. Materials 2022, 15, 3593. [Google Scholar] [CrossRef]
- Sapsford, K.E.; Tyner, K.M.; Dair, B.J.; Deschamps, J.R.; Medintz, I.L. Analyzing nanomaterial bioconjugates: A review of current and emerging purification and characterization techniques. Anal. Chem. 2011, 83, 4453–4488. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Perez, J.A.; Gallardo-Moreno, A.M.; Gonzalez-Martin, M.L.; Vadillo-Rodriguez, V. BSA adsorption onto nanospheres: Influence of Surface curvature as probed by electrophoretic light scattering and UV/vis spectroscopy. Appl. Surf. Sci. 2015, 353, 1095–1102. [Google Scholar] [CrossRef]
- Yang, K.; Huang, L.J.; Wang, Y.X.; Du, Y.C.; Zhang, Z.J.; Wang, Y.; Kipper, M.J.; Belfiore, L.A.; Tang, J.G. Graphene oxide nanofiltration membranes containing silver nanoparticles: Tuning separation efficiency via nanoparticle size. Nanomaterials 2020, 10, 454. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhu, Z.; Wang, Y.; Fei, Z.; Cao, J. Changing the activities and structures of bovine serum albumin bound to graphene oxide. Appl. Surf. Sci. 2018, 427, 1019–1029. [Google Scholar] [CrossRef]
- Ravindran, A.; Singh, A.; Raichur, A.M.; Chandrasekaran, N.; Mukherjee, A. Studies on interaction of colloidal Ag nanoparticles with Bovine Serum Albumin (BSA). Colloids Surf. B 2010, 76, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yao, N.; Xu, H.; Wang, T.; Li, G.; Li, Z. Characterization of the interaction between eupatorin and bovine serum albumin by spectroscopic and molecular modeling methods. Int. J. Mol. Sci. 2013, 14, 14185–14203. [Google Scholar] [CrossRef] [Green Version]
- Carnicer, V.; Alcázar, C.; Orts, M.J.; Sánchez, E.; Moreno, R. Microfluidic rheology: A new approach to measure viscosity of ceramic suspensions at extremely high shear rates. Open Ceram. 2021, 5, 100052. [Google Scholar] [CrossRef]
Nanomaterial | BSA (mg/mL) | |||
---|---|---|---|---|
GO 0.25 mg/mL | 0.01 | 0.02 | 0.03 | 0.04 |
GO-PEG 0.125 mg/mL | 0.01 | 0.02 | 0.03 | 0.04 |
pH | Zeta Potential (mV) GO + BSA |
---|---|
2 | 35.5 |
3 | 33.6 |
4 | 17.7 |
5 | −3.8 |
6 | −15.0 |
7 | −29.5 |
8 | −33.7 |
9 | −36.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Piñeiro, J.; Sánchez-Cea, F.; Arce, M.P.; Lado-Touriño, I.; Rojas-Cervantes, M.L.; Gilsanz, M.F.; Gallach-Pérez, D.; Blasco, R.; Barrios-Bermúdez, N.; Cerpa-Naranjo, A. Stability Study of Graphene Oxide-Bovine Serum Albumin Dispersions. J. Xenobiot. 2023, 13, 90-101. https://doi.org/10.3390/jox13010008
Pérez-Piñeiro J, Sánchez-Cea F, Arce MP, Lado-Touriño I, Rojas-Cervantes ML, Gilsanz MF, Gallach-Pérez D, Blasco R, Barrios-Bermúdez N, Cerpa-Naranjo A. Stability Study of Graphene Oxide-Bovine Serum Albumin Dispersions. Journal of Xenobiotics. 2023; 13(1):90-101. https://doi.org/10.3390/jox13010008
Chicago/Turabian StylePérez-Piñeiro, Javier, Fernando Sánchez-Cea, Mariana P. Arce, Isabel Lado-Touriño, María Luisa Rojas-Cervantes, María Fuencisla Gilsanz, Darío Gallach-Pérez, Rodrigo Blasco, Niurka Barrios-Bermúdez, and Arisbel Cerpa-Naranjo. 2023. "Stability Study of Graphene Oxide-Bovine Serum Albumin Dispersions" Journal of Xenobiotics 13, no. 1: 90-101. https://doi.org/10.3390/jox13010008
APA StylePérez-Piñeiro, J., Sánchez-Cea, F., Arce, M. P., Lado-Touriño, I., Rojas-Cervantes, M. L., Gilsanz, M. F., Gallach-Pérez, D., Blasco, R., Barrios-Bermúdez, N., & Cerpa-Naranjo, A. (2023). Stability Study of Graphene Oxide-Bovine Serum Albumin Dispersions. Journal of Xenobiotics, 13(1), 90-101. https://doi.org/10.3390/jox13010008