New-Generation Ektacytometry Study of Red Blood Cells in Different Hemoglobinopathies and Thalassemia
Abstract
1. Introduction
2. Patients
3. Methods
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vives-Corrons, J. The Rare Anaemias. In Rare Diseases [Internet]; Wu, Z.H., Ed.; IntechOpen: London, UK, 2019; Available online: https://www.intechopen.com/chapters/69673 (accessed on 13 February 2022). [CrossRef]
- Mohandas, N.J. Red cell membrane disorders. Int. J. Lab. Hematol. 2017, 39 (Suppl. 1), 47. [Google Scholar]
- Kohne, E. Hemoglobinopathies: Clinical manifestations, diagnosis, and treatment. Dtsch. Ärzteblatt Int. 2011, 108, 532–540. [Google Scholar]
- Brancaleoni, V.; Di Pierro, E.; Motta ICappellini, M.D. Laboratory diagnosis of thalassemia. Int. J. Lab. Hematol. 2016, 38, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Polin, R.A.; Steven, H.; Abman, D.; David Rowitch, F. Fetal and Neonatal Physiology, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2. [Google Scholar]
- Andolfo, I.; Russo, R.; Gambale, A.; Iolascon, A. New insights on hereditary erythrocyte membrane defects. Haematologica 2016, 101, 1284–1294. [Google Scholar] [CrossRef] [PubMed]
- Bolton-Maggs, P.H.; Langer, J.C.; Iolascon, A. General Haematology Task Force of the British Committee for Standards in H. Guidelines for the diagnosis and management of hereditary spherocytosis—2011 Update. Br. J. Haematol. 2011, 2012, 37–49. [Google Scholar]
- Bianchi, P.; Vercellati, C.; Fermo, E. How will next generation sequencing (NGS) improve the diagnosis of congenital hemolytic anemia? Ann. Transl. Med. 2020, 8, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Llaudet-Planas, E.; Vives-Corrons, J.L.; Rizzuto, V.; Gómez-Ramírez, P.; Sevilla Navarro, J.; Coll Sibina, M.T.; García-Bernal, M.; Ruiz Llobet, D.; Badell, I.; Velasco-Puyó, P.; et al. Osmotic gradient ektacytometry: A valuable screening test for hereditary spherocytosis and other red blood cell membrane disorders. Int. J. Lab. Hematol. 2018, 40, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Zaninoni, A.; Fermo, E.; Vercellati, C.; Consonni, D.; Marcello, A.P.; Zanella, A.; Cortelezzi, A.; Barcellini, W.; Bianchi, P. Use of laser assisted optical rotational cell analyzer (LoRRca MaxSis) in the diagnosis of RBC membrane disorders, enzyme defects, and congenital dyserythropoietic anemias: A monocentric study on 202 patients. Front. Physiol. 2018, 9, 451. [Google Scholar] [CrossRef] [PubMed]
- Vives-Corrons, J.L.; Krishnevskaya, E.; Rodriguez, I.H.; Ancochea, A. Characterization of hereditary red blood cell membranopathies using combined targeted next-generation sequencing and osmotic gradient ektacytometry. Int. J. Hematol. 2021, 113, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Vives Corrons, L.; Bascompte, A. Technical Manual for Hematology Diagnosis, 4th ed.; Elsevier-Masson: Amsterdam, The Netherlands, 2014. (In Spanish) [Google Scholar]
- Huisjes, R.; Bogdanova, A.; van Solinge, W.W.; Schiffelers, R.M.; Kaestner, L.; van Wijk, R. Squeezing for Life—Properties of Red Blood Cell Deformability. Front. Physiol. 2018, 9, 656. [Google Scholar] [CrossRef] [PubMed]
- Berga, L.; Feliu, E.; Vives Corrons, J.L. Deformabilidad Eritrocitaria y Anemias Hemolíticas. Rev. Obras Publicas 1989, 3285, 825–838. [Google Scholar]
- Ilesanmi, O.O. Pathological basis of symptoms and crises in sickle cell disorder: Implications for counseling and psychotherapy. Hematol. Rep. 2010, 2, e2. [Google Scholar] [CrossRef] [PubMed]
- Rees, D.C.; Williams, T.N.; Gladwin, M.T. Sickle-cell disease. Lancet 2010, 376, 2018–2031. [Google Scholar] [CrossRef] [PubMed]
- Krishnevskaya, E.; Payán-Pernía, S.; Hernández-Rodríguez, I.; Remacha Sevilla, Á.F.; Ancochea Serra, Á.; Morales-Indiano, C.; Serra Ferrer, M.; Vives-Corrons, J.L. Distinguishing iron deficiency from beta-thalassemia trait by new generation ektacytometry. Int. J. Lab. Hematol. 2021, 43, e58–e60. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Mora, L.; Cabello-Fusarés, M.; Ferré-Torres, J.; Riera-Llobet, C.; Krishnevskaya, E.; Trejo-Soto, C.; Payán-Pernía, S.; Hernández-Rodríguez, I.; Morales-Indiano, C.; Alarcón, T.; et al. Blood Rheological Characterization of β-Thalassemia Trait and Iron Deficiency Anemia Using Front Microrheometry. Front. Physiol. 2021, 12, 761411. [Google Scholar] [CrossRef] [PubMed]
- Bunn, H.F. Pathogenesis and treatment of sickle cell disease. N. Engl. J. Med. 1997, 337, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Barabino, G.A.; Platt, M.O.; Kaul, D.K. Sickle cell biomechanics. Annu. Rev. Biomed. Eng. 2010, 12, 345–367. [Google Scholar] [CrossRef] [PubMed]
- Lazarova, E.; Gulbis, B.; Oirschot, B.V.; van Wijk, R. Next-generation osmotic gradient ektacytometry for the diagnosis of hereditary spherocytosis: Interlaboratory method validation and experience. Clin. Chem. Lab. Med. 2017, 55, 394–402. [Google Scholar] [CrossRef] [PubMed]
n = 96 | RBCs (×1012/L) | Hb (g/L) | Reticulocytes (×109/L) | MCV (fL) | MCH (pg) | MCHC (g/L) | RDW (%) | |
---|---|---|---|---|---|---|---|---|
HbD | 4 | 5.32 ± 0.5 | 141.8 ± 5.7 | Normal | 79.95 ± 5. | 26.80 ± 1.9 | 335.3 ± 6.0 | 14.25 ± 1.5 |
HbC | 7 | 5.01 ± 0.76 | 134.6 ± 19.4 | Normal | 78.94 ± 8. | 27.15 ± 3.5 | 340.4 ± 12.0 | 15.59 ± 5.1 |
HbC+ Hb O-Arab * | 1 | 6.02 | 156 | 205 | 76.3 | 25.9 | 339 | 17.5 |
HbE | 5 | 5.37 ± 0.48 | 138.7 ± 9.3 | Normal | 80.47 ± 4 | 25.9 ± 1.0 | 322.3 ± 8.0 | 15.20 ± 0.8 |
HbS | 24 | 4.71 ± 0.92 | 131.1 ± 23.4 | Normal | 83.93 ± 5 | 28.02 ± 2.1 | 333.5 ± 9.2 | 14.65 ± 1.9 |
HbSS * | 7 | 3.09 ± 0.92 | 88.0 ± 5.2 | 135.2 ± 9.2 | 87.57 ± 14 | 29.92 ± 5.5 | 341.0 ± 14.5 | 20.67 ± 1.9 |
HbSC | 2 | 4.62 ± 0.2 | 139 ± 14 | Normal | 87.3 ± 6 | 30.05 ± 1.0 | 345± 9.0 | 15.60 ± 0.7 |
HbS+ Hb O-Arab * | 1 | 2.71 | 76 | 231.2 | 85.2 | 28 | 329 | 20.4 |
β-thal * | 41 | 5.30 ± 1.01 | 106.5 ± 21.3 | 115.3 ± 7.8 | 63.38 ± 4 | 20.11 ± 1.3 | 317.4 ± 5.3 | 17.33 ± 1.5 |
δβ-thal | 3 | 5.21 ± 0.49 | 148.8 ± 2.5 | Normal | 80.05 ± 51 | 27.10 ± 1.9 | 329.1 ± 6.1 | 14.55 ± 09 |
α-thal * | 1 | 4.66 | 103 | 113.6 | 69 | 22.1 | 323 | 15.3 |
Controls | 50 | 4.50–5.1 | 135–160 | 40–85 | 80–95 | 27–32 | 300–350 | 10–15 |
n = 96 | Omín (mOsm/kg) | EImax | Ohyper (mOsm/kg) | AUC | |
---|---|---|---|---|---|
HbD | 4 | 138 (128–148) | 0.615 (0.607–0.622) | ** 443 (428–458) | 169 (156–182) |
HbC | 7 | ** 128 (110–146) | ** 0.597 (0.577–0,616) | ** 415 (403–136) | ** 152 (136–168) |
HbC+ Hb O-Arab | 1 | 133 | 0.53 | 345 | 96.9 |
HbE | 5 | * 136.5 (126–146) | 0.609 (0.597–0.619) | 463 (440–487) | * 173 (166–181) |
HbS | 24 | ** 132.7 (110–155) | 0.614 (0.596–0,63) | ** 436.7 (406–467) | 162 (144–179) |
HbSS | 7 | ** 108 (78–139) | ** 0.572 (0.513–0.631) | ** 385 (290–479) | ** 146 (114–176) |
HbSC | 2 | ** 102 (98–106) | 0.555 (0.496–0.605) | ** 364 (352–356) | * 116 (107–124) |
HbS+ Hb O-Arab | 1 | 100 | 0.545 | 403 | 144.6 |
β-thal | 41 | ** 119 (98–139) | ** 0.597 (0.567–0.623) | ** 411 (411–482) | ** 171 (155–185) |
δβ-thal | 3 | 124 (100–148) | 0.588 (0.574–0.603) | ** 452 (405–498.5) | 168 |
α-thal (α-/α-) | 1 | 120 | 0.61 | 474 | 189.8 |
Controls | 50 | 145.5 (130–161) | 0.614 (0.6–0.628) | 465.5 (450–481) | 166.8 (160–175) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnevskaya, E.; Molero, M.; Ancochea, Á.; Hernández, I.; Vives-Corrons, J.-L. New-Generation Ektacytometry Study of Red Blood Cells in Different Hemoglobinopathies and Thalassemia. Thalass. Rep. 2023, 13, 70-76. https://doi.org/10.3390/thalassrep13010007
Krishnevskaya E, Molero M, Ancochea Á, Hernández I, Vives-Corrons J-L. New-Generation Ektacytometry Study of Red Blood Cells in Different Hemoglobinopathies and Thalassemia. Thalassemia Reports. 2023; 13(1):70-76. https://doi.org/10.3390/thalassrep13010007
Chicago/Turabian StyleKrishnevskaya, Elena, Marta Molero, Águeda Ancochea, Ines Hernández, and Joan-Lluis Vives-Corrons. 2023. "New-Generation Ektacytometry Study of Red Blood Cells in Different Hemoglobinopathies and Thalassemia" Thalassemia Reports 13, no. 1: 70-76. https://doi.org/10.3390/thalassrep13010007
APA StyleKrishnevskaya, E., Molero, M., Ancochea, Á., Hernández, I., & Vives-Corrons, J.-L. (2023). New-Generation Ektacytometry Study of Red Blood Cells in Different Hemoglobinopathies and Thalassemia. Thalassemia Reports, 13(1), 70-76. https://doi.org/10.3390/thalassrep13010007