CRISPR Gene Therapy: A Promising One-Time Therapeutic Approach for Transfusion-Dependent β-Thalassemia—CRISPR-Cas9 Gene Editing for β-Thalassemia
Abstract
:1. Introduction
2. Gene Therapy as a Promising Cure for the Acute form of β-Thalassemia
3. Advances in CRISPR Gene Therapy Hold Great Promise as an Effective One-Time Treatment Option for TDT
4. CTX001 Therapy
5. Relative Merits
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Origa, R. β-Thalassemia. Genet. Med. 2017, 19, 609–619. [Google Scholar] [CrossRef]
- Keikhaei, B.; Slehi-fard, P.; Shariati, G.; Khosravi, A. Genetics of Iranian Alpha-Thalassemia Patients: A Comprehensive Original Study. Biochem. Genet. 2018, 56, 506–521. [Google Scholar] [CrossRef]
- Nasiri, A.; Rahimi, Z.; Vaisi-Raygani, A.; Author, C. Hemoglobinopathies in Iran: An Updated Review. Int. J. Hematol. Stem Cell Res. 2020, 14, 140. [Google Scholar] [CrossRef]
- Kattamis, A.; Forni, G.L.; Aydinok, Y.; Viprakasit, V. Changing Patterns in the Epidemiology of β-Thalassemia. Eur. J. Haematol. 2020, 105, 692–703. [Google Scholar] [CrossRef]
- Modell, B.; Darlison, M.; Birgens, H.; Cario, H.; Faustino, P.; Giordano, P.C.; Gulbis, B.; Hopmeier, P.; Lena-Russo, D.; Romao, L.; et al. Epidemiology of Haemoglobin Disorders in Europe: An Overview. Scand. J. Clin. Lab. Investig. 2009, 67, 39–70. [Google Scholar] [CrossRef] [PubMed]
- Modell, B.; Darlison, M. Global Epidemiology of Haemoglobin Disorders and Derived Service Indicators. Bull. World Health Organ. 2008, 86, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Muncie, H.L., Jr.; Campbell, J. Alpha and Beta Thalassemia—American Family Physician. Available online: https://www.aafp.org/afp/2009/0815/p339.html (accessed on 8 April 2022).
- Bajwa, H.; Basit, H. Thalassemia. In Brenner's Encyclopedia of Genetics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 60–62. [Google Scholar] [CrossRef]
- Galanello, R.; Origa, R. Beta-Thalassemia. Orphanet J. Rare Dis. 2010, 5, 11. [Google Scholar] [CrossRef]
- Bank, A. Regulation of Human Fetal Hemoglobin: New Players, New Complexities. Blood 2006, 107, 435–443. [Google Scholar] [CrossRef]
- Cao, A.; Galanello, R. Beta-Thalassemia. Genet. Med. 2010, 12, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Danjou, F.; Anni, F.; Galanello, R. Beta-Thalassemia: From Genotype to Phenotype. Haematologica 2011, 96, 1573. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Cohan, N.; De Sanctis, V.; Mallat, N.S.; Taher, A. Guidelines for Diagnosis and Management of Beta-Thalassemia Intermedia. Pediatr. Hematol. Oncol. 2014, 31, 583–596. [Google Scholar] [CrossRef]
- Weatherall, D.J.; Clegg, J.B. The Thalassaemia Syndromes—David J. Weatherall, J.B. Clegg—Google Books. Available online: https://books.google.lk/books?hl=en&lr=&id=Jao0z6R4R5gC&oi=fnd&pg=PR5&dq=Weatherall,+D.+J.%3B+Clegg,+J.+B.+The+Thalassaemia+Syndromes.+2001,+846.&ots=noYjMF-QJN&sig=iy2y2C5kdOeZ3peQ3o8paAeTJLc&redir_esc=y#v=onepage&q&f=false (accessed on 9 April 2022).
- Musallam, K.M.; Taher, A.T.; Rachmilewitz, E.A. β-Thalassemia Intermedia: A Clinical Perspective. Cold Spring Harb. Perspect. Med. 2012, 2, a013482. [Google Scholar] [CrossRef]
- Weatherall, D.J. The Definition and Epidemiology of Non-Transfusion-Dependent Thalassemia. Blood Rev. 2012, 26 (Suppl. S1), S3–S6. [Google Scholar] [CrossRef] [PubMed]
- Musallam, K.M.; Rivella, S.; Vichinsky, E.; Rachmilewitz, E.A. Non-Transfusion-Dependent Thalassemias. Haematologica 2013, 98, 833. [Google Scholar] [CrossRef]
- Aziz, K.; Sadaf, B.; Kanwal, S. Psychosocial Problems of Pakistani Parents of Thalassemic Children: A Cross Sectional Study Done in Bahawalpur, Pakistan. Biopsychosoc. Med. 2012, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- de Dreuzy, E.; Bhukhai, K.; Leboulch, P.; Payen, E. Current and Future Alternative Therapies for Beta-Thalassemia Major. Biomed. J. 2016, 39, 24–38. [Google Scholar] [CrossRef]
- Rachmilewitz, E.A.; Giardina, P.J. How I Treat Thalassemia. Blood 2011, 118, 3479–3488. [Google Scholar] [CrossRef]
- Amjad, F.; Fatima, T.; Fayyaz, T.; Khan, M.A.; Qadeer, M.I. Novel Genetic Therapeutic Approaches for Modulating the Severity of β-Thalassemia (Review). Biomed. Rep. 2020, 13, 48. [Google Scholar] [CrossRef]
- Ansari, S.H.; Lassi, Z.S.; Khowaja, S.M.; Adil, S.O.; Shamsi, T.S. Hydroxyurea (Hydroxycarbamide) for Transfusion-Dependent β-Thalassaemia. Cochrane Database Syst. Rev. 2019, 3, CD012064. [Google Scholar] [CrossRef] [PubMed]
- Fathallah, H.; Atweh, G.F. Induction of Fetal Hemoglobin in the Treatment of Sickle Cell Disease. Hematology 2006, 2006, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Ansari, S.H.; Parveen, S.; Khan, I.A.; Siddiqui, A.J.; Musharraf, S.G. Hydroxyurea Treated β-Thalassemia Children Demonstrate a Shift in Metabolism Towards Healthy Pattern. Sci. Rep. 2018, 8, 15152. [Google Scholar] [CrossRef] [PubMed]
- Algiraigri, A.H.; Wright, N.A.; Kassam, A. Hydroxyurea for β-Thalassemia Major: A Meta-Analysis. Blood 2014, 124, 4894. [Google Scholar] [CrossRef]
- Keikhaei, B.; Yousefi, H.; Bahadoram, M. Clinical and Haematological Effects of Hydroxyurea in β-Thalassemia Intermedia Patients. J. Clin. Diagn. Res. 2015, 9, OM01. [Google Scholar] [CrossRef]
- Yasara, N.; Premawardhena, A.; Mettananda, S. A Comprehensive Review of Hydroxyurea for β-Haemoglobinopathies: The Role Revisited during COVID-19 Pandemic. Orphanet J. Rare Dis. 2021, 16, 114. [Google Scholar] [CrossRef] [PubMed]
- Motta, I.; Bou-Fakhredin, R.; Taher, A.T.; Cappellini, M.D. Beta Thalassemia: New Therapeutic Options Beyond Transfusion and Iron Chelation. Drugs 2020, 80, 1053–1063. [Google Scholar] [CrossRef]
- Piga, A.; Perrotta, S.; Gamberini, M.R.; Voskaridou, E.; Melpignano, A.; Filosa, A.; Caruso, V.; Pietrangelo, A.; Longo, F.; Tartaglione, I.; et al. Luspatercept Improves Hemoglobin Levels and Blood Transfusion Requirements in a Study of Patients with β-Thalassemia. Blood 2019, 133, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, M.D.; Porter, J.; Origa, R.; Forni, G.L.; Voskaridou, E.; Galactéros, F.; Taher, A.T.; Arlet, J.B.; Ribeil, J.A.; Garbowski, M.; et al. Sotatercept, a Novel Transforming Growth Factor β Ligand Trap, Improves Anemia in β-Thalassemia: A Phase II, Open-Label, Dose-Finding Study. Haematologica 2019, 104, 477. [Google Scholar] [CrossRef] [PubMed]
- Lucarelli, G.; Isgrò, A.; Sodani, P.; Gaziev, J. Hematopoietic Stem Cell Transplantation in Thalassemia and Sickle Cell Anemia. Cold Spring Harb. Perspect. Med. 2012, 2, a011825. [Google Scholar] [CrossRef]
- Hierlmeier, S.; Eyrich, M.; Wölfl, M.; Schlegel, P.G.; Wiegering, V. Early and Late Complications Following Hematopoietic Stem Cell Transplantation in Pediatric Patients—A Retrospective Analysis over 11 Years. PLoS ONE 2018, 13, e0204914. [Google Scholar] [CrossRef] [Green Version]
- Makis, A.; Voskaridou, E.; Papassotiriou, I.; Hatzimichael, E. Novel Therapeutic Advances in β-Thalassemia. Biology 2021, 10, 546. [Google Scholar] [CrossRef]
- Thompson, A.A.; Walters, M.C.; Kwiatkowski, J.; Rasko, J.E.J.; Ribeil, J.-A.; Hongeng, S.; Magrin, E.; Schiller, G.J.; Payen, E.; Semeraro, M.; et al. Gene Therapy in Patients with Transfusion-Dependent β-Thalassemia. N. Engl. J. Med. 2018, 378, 1479–1493. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.; Durairajan, N.; Soubani, A.O. Noninfectious Pulmonary Complications of Haematopoietic Stem Cell Transplantation. Eur. Respir. Rev. 2020, 29, 190119. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.H.; Erlandson, M.E.; Stern, G.; Schulman, I. The Role of Splenectomy in the Management of Thalassemia. Blood 1960, 15, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Higgs, D.R.; Engel, J.D.; Stamatoyannopoulos, G. Thalassaemia. Lancet 2012, 379, 373–383. [Google Scholar] [CrossRef]
- Karponi, G.; Zogas, N. Gene Therapy For Beta-Thalassemia: Updated Perspectives. Appl. Clin. Genet. 2019, 12, 167. [Google Scholar] [CrossRef]
- Gonçalves, G.A.R.; Paiva, R.D.M.A. Gene Therapy: Advances, Challenges and Perspectives. Einstein 2017, 15, 369–375. [Google Scholar] [CrossRef]
- Selkirk, S.M. Gene Therapy in Clinical Medicine. Postgrad. Med. J. 2004, 80, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Canver, M.C. Evaluation of the Clinical Success of Ex Vivo and In Vivo Gene Therapy—Journal of Young Investigators. Available online: https://www.jyi.org/2009-january/2017/10/2/evaluation-of-the-clinical-success-of-ex-vivo-and-in-vivo-gene-therapy (accessed on 9 April 2022).
- Soofiyani, S.R.; Baradaran, B.; Lotfipour, F.; Kazemi, T.; Mohammadnejad, L. Gene Therapy, Early Promises, Subsequent Problems, and Recent Breakthroughs. Adv. Pharm. Bull. 2013, 3, 249–255. [Google Scholar] [CrossRef]
- Lundstrom, K. Viral Vectors in Gene Therapy. Diseases 2018, 6, 139–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karamperis, K.; Tsoumpeli, M.T.; Kounelis, F.; Koromina, M.; Mitropoulou, C.; Moutinho, C.; Patrinos, G.P. Genome-Based Therapeutic Interventions for β-Type Hemoglobinopathies. Hum. Genom. 2021, 15, 32. [Google Scholar] [CrossRef]
- Nienhuis, A.W.; Persons, D.A. Development of Gene Therapy for Thalassemia. Cold Spring Harb. Perspect. Med. 2012, 2, a011833. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Xie, S.; Guo, X.; Gong, X.; Wang, S.; Lin, D.; Zhang, J.; Ren, Z.; Huang, S.; Zeng, F.; et al. A Novel Transgenic Mouse Model Produced from Lentiviral Germline Integration for the Study of β-Thalassemia Gene Therapy. Haematologica 2008, 93, 356–362. [Google Scholar] [CrossRef]
- Milone, M.C.; O’Doherty, U. Clinical Use of Lentiviral Vectors. Leukemia 2018, 32, 1529–1541. [Google Scholar] [CrossRef] [PubMed]
- Bank, A.; Dorazio, R.; Leboulch, P. A Phase I/II Clinical Trial of β-Globin Gene Therapy for β-Thalassemia. Ann. N. Y. Acad. Sci. 2005, 1054, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Negre, O.; Eggimann, A.V.; Beuzard, Y.; Ribeil, J.A.; Bourget, P.; Borwornpinyo, S.; Hongeng, S.; Hacein-Bey, S.; Cavazzana, M.; Leboulch, P.; et al. Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the ΒA(T87Q)-Globin Gene. Hum. Gene Ther. 2016, 27, 148. [Google Scholar] [CrossRef]
- Pawliuk, R.; Westerman, K.A.; Fabry, M.E.; Payen, E.; Tighe, R.; Bouhassira, E.E.; Acharya, S.A.; Ellis, J.; London, I.M.; Eaves, C.J.; et al. Correction of Sickle Cell Disease in Transgenic Mouse Models by Gene Therapy. Science 2001, 294, 2368–2371. [Google Scholar] [CrossRef]
- Thompson, A.A.; Walters, M.C.; Kwiatkowski, J.L.; Hongeng, S.; Porter, J.B.; Sauer, M.G.; Thrasher, A.J.; Thuret, I.; Elliot, H.; Tao, G.; et al. Northstar-2: Updated Safety and Efficacy Analysis of Lentiglobin Gene Therapy in Patients with Transfusion-Dependent β-Thalassemia and Non-Β0/Β0 Genotypes. Blood 2019, 134 (Suppl. S1), 3543. [Google Scholar] [CrossRef]
- Harrison, C. First Gene Therapy for [Beta]-Thalassemia Approved. Document—Gale Academic OneFile. Available online: https://go.gale.com/ps/i.do?id=GALE%7CA601676196&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=10870156&p=AONE&sw=w&userGroupName=anon~853913b2 (accessed on 9 April 2022).
- Soni, S. Gene Therapies for Transfusion Dependent β-Thalassemia: Current Status and Critical Criteria for Success. Am. J. Hematol. 2020, 95, 1099–1112. [Google Scholar] [CrossRef]
- Prac. Zynteglo EMEA-H-20-1504-C-003691-0023—Assessment Report. Available online: www.ema.europa.eu/contact (accessed on 9 April 2022).
- Zynteglo|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/zynteglo (accessed on 9 April 2022).
- Bluebird Bio Announces Launch in Germany of ZYNTEGLOTM (Autologous CD34+ Cells Encoding βA-T87Q-Globin Gene) Gene Therapy for Patients 12 Years and Older with Transfusion-Dependent β-Thalassemia Who Do Not Have β0/β0 Genotype—Bluebird Bio, Inc. Available online: https://investor.bluebirdbio.com/news-releases/news-release-details/bluebird-bio-announces-launch-germany-zynteglotm-autologous-cd34 (accessed on 9 April 2022).
- Schuessler-Lenz, M.; Enzmann, H.; Vamvakas, S. Regulators’ Advice Can Make a Difference: European Medicines Agency Approval of Zynteglo for Beta Thalassemia. Clin. Pharmacol. Ther. 2020, 107, 492–494. [Google Scholar] [CrossRef] [Green Version]
- White, M.; Whittaker, R.; Gándara, C.; Stoll, E.A. A Guide to Approaching Regulatory Considerations for Lentiviral-Mediated Gene Therapies. Hum. Gene Ther. Methods 2017, 28, 163–176. [Google Scholar] [CrossRef]
- Imren, S.; Payen, E.; Westerman, K.A.; Pawliuk, R.; Fabry, M.E.; Eaves, C.J.; Cavilla, B.; Wadsworth, L.D.; Beuzard, Y.; Bouhassira, E.E.; et al. Permanent and Panerythroid Correction of Murine β Thalassemia by Multiple Lentiviral Integration in Hematopoietic Stem Cells. Proc. Natl. Acad. Sci. USA 2002, 99, 14380–14385. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Tisdale, J.; Schmidt, M.; Kanter, J.; Jaroscak, J.; Whitney, D.; Bitter, H.; Gregory, P.D.; Parsons, G.; Foos, M.; et al. Acute Myeloid Leukemia Case after Gene Therapy for Sickle Cell Disease. N. Engl. J. Med. 2022, 386, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Gantenbein, B.; Tang, S.; Guerrero, J.; Higuita-Castro, N.; Salazar-Puerta, A.I.; Croft, A.S.; Gazdhar, A.; Purmessur, D. Non-Viral Gene Delivery Methods for Bone and Joints. Front. Bioeng. Biotechnol. 2020, 8, 1320. [Google Scholar] [CrossRef]
- Ramamoorth, M.; Narvekar, A. Non Viral Vectors in Gene Therap—An Overview. J. Clin. Diagn. Res. 2015, 9, GE01. [Google Scholar] [CrossRef] [PubMed]
- Raja, J.V.; Rachchh, M.A.; Gokani, R.H. Recent Advances in Gene Therapy for Thalassemia. J. Pharm. Bioallied Sci. 2012, 4, 194–201. [Google Scholar] [CrossRef]
- Frangoul, H.; Altshuler, D.; Cappellini, M.D.; Chen, Y.-S.; Domm, J.; Eustace, B.K.; Foell, J.; de la Fuente, J.; Grupp, S.; Handgretinger, R.; et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. N. Engl. J. Med. 2021, 384, 252–260. [Google Scholar] [CrossRef]
- Xiao-Jie, L.; Hui-Ying, X.; Zun-Ping, K.; Jin-Lian, C.; Li-Juan, J. CRISPR-Cas9: A New and Promising Player in Gene Therapy. J. Med. Genet. 2015, 52, 289–296. [Google Scholar] [CrossRef]
- Kim, E.J.; Kang, K.H.; Ju, J.H. CRISPR-Cas9: A Promising Tool for Gene Editing on Induced Pluripotent Stem Cells. Korean J. Intern. Med. 2017, 32, 42. [Google Scholar] [CrossRef] [PubMed]
- Newsom, S.; Parameshwaran, H.P.; Martin, L.; Rajan, R. The CRISPR-Cas Mechanism for Adaptive Immunity and Alternate Bacterial Functions Fuels Diverse Biotechnologies. Front. Cell. Infect. Microbiol. 2021, 10, 898. [Google Scholar] [CrossRef]
- Mojica, F.J.M.; Rodriguez-Valera, F. The discovery of CRISPR in archaea and bacteria. FEBS J. 2016, 283, 3162–3169. [Google Scholar] [CrossRef]
- Lino, C.A.; Harper, J.C.; Carney, J.P.; Timlin, J.A. Delivering CRISPR: A Review of the Challenges and Approaches. Drug Deliv. 2018, 25, 1234–1257. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Gasiunas, G.; Barrangou, R.; Horvath, P.; Siksnys, V. Cas9-CrRNA Ribonucleoprotein Complex Mediates Specific DNA Cleavage for Adaptive Immunity in Bacteria. Proc. Natl. Acad. Sci. USA 2012, 109, E2579–E2586. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.M. The Genome Editing Revolution: Review. J. Genet. Eng. Biotechnol. 2020, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Uddin, F.; Rudin, C.M.; Sen, T. CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Front. Oncol. 2020, 10, 1387. [Google Scholar] [CrossRef]
- Zhang, H.; McCarty, N. CRISPR-Cas9 Technology and Its Application in Haematological Disorders. Br. J. Haematol. 2016, 175, 208–225. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Ye, L.; Chang, J.C.; Beyer, A.I.; Wang, J.; Muench, M.O.; Kan, Y.W. Seamless Gene Correction of β-Thalassemia Mutations in Patient-Specific IPSCs Using CRISPR/Cas9 and PiggyBac. Genome Res. 2014, 24, 1526–1533. [Google Scholar] [CrossRef]
- Song, B.; Fan, Y.; He, W.; Zhu, D.; Niu, X.; Wang, D.; Ou, Z.; Luo, M.; Sun, X. Improved Hematopoietic Differentiation Efficiency of Gene-Corrected Beta-Thalassemia Induced Pluripotent Stem Cells by CRISPR/Cas9 System. Stem Cells Dev. 2014, 24, 1053–1065. [Google Scholar] [CrossRef]
- Wattanapanitch, M.; Damkham, N.; Potirat, P.; Trakarnsanga, K.; Janan, M.; U-Pratya, Y.; Kheolamai, P.; Klincumhom, N.; Issaragrisil, S. One-Step Genetic Correction of Hemoglobin E/Beta-Thalassemia Patient-Derived IPSCs by the CRISPR/Cas9 System. Stem Cell Res. Ther. 2018, 9, 46. [Google Scholar] [CrossRef]
- Niu, X.; He, W.; Song, B.; Ou, Z.; Fan, D.; Chen, Y.; Fan, Y.; Sun, X. Combining Single Strand Oligodeoxynucleotides and CRISPR/Cas9 to Correct Gene Mutations in β-Thalassemia-Induced Pluripotent Stem Sells. J. Biol. Chem. 2016, 291, 16576–16585. [Google Scholar] [CrossRef] [PubMed]
- Kumari, D. States of Pluripotency: Naïve and Primed Pluripotent Stem Cells. In Pluripotent Stem Cells: From the Bench to the Clinic; Books on Demand: Norderstedt, Germany, 2016. [Google Scholar] [CrossRef]
- Xu, P.; Tong, Y.; Liu, X.Z.; Wang, T.T.; Cheng, L.; Wang, B.Y.; Lv, X.; Huang, Y.; Liu, D.P. Both TALENs and CRISPR/Cas9 Directly Target the HBB IVS2–654 (C > T) Mutation in β-Thalassemia-Derived IPSCs. Sci. Rep. 2015, 5, 12065. [Google Scholar] [CrossRef]
- Ou, Z.; Niu, X.; He, W.; Chen, Y.; Song, B.; Xian, Y.; Fan, D.; Tang, D.; Sun, X. The Combination of CRISPR/Cas9 and IPSC Technologies in the Gene Therapy of Human β-Thalassemia in Mice. Sci. Rep. 2016, 6, 32463. [Google Scholar] [CrossRef]
- Bank, A. Understanding Globin Regulation in β-Thalassemia: It’s as Simple as α, β, γ, δ. J. Clin. Investig. 2005, 115, 1470–1473. [Google Scholar] [CrossRef] [PubMed]
- Demirci, S.; Leonard, A.; Tisdale, J.F. Genome Editing Strategies for Fetal Hemoglobin Induction in Beta-Hemoglobinopathies. Hum. Mol. Genet. 2020, 29, R100–R106. [Google Scholar] [CrossRef]
- Grevet, J.D.; Lan, X.; Hamagami, N.; Edwards, C.R.; Sankaranarayanan, L.; Ji, X.; Bhardwaj, S.K.; Face, C.J.; Posocco, D.F.; Abdulmalik, O.; et al. Domain-Focused CRISPR Screen Identifies HRI as a Fetal Hemoglobin Regulator in Human Erythroid Cells. Science 2018, 361, 285–290. [Google Scholar] [CrossRef]
- Yin, J.; Xie, X.; Ye, Y.; Wang, L.; Che, F. BCL11A: A Potential Diagnostic Biomarker and Therapeutic Target in Human Diseases. Biosci. Rep. 2019, 39, BSR20190604. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Hargreaves, V.V.; Zhu, Q.; Kurland, J.V.; Hong, J.; Kim, W.; Sher, F.; Macias-Trevino, C.; Rogers, J.M.; Kurita, R.; et al. Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell 2018, 173, 430–442.e17. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, V.G.; Menne, T.F.; Xu, J.; Akie, T.E.; Lettre, G.; Van Handel, B.; Mikkola, H.K.A.; Hirschhorn, J.N.; Cantor, A.B.; Orkin, S.H. Human Fetal Hemoglobin Expression Is Regulated by the Developmental Stage-Specific Repressor BCL11A. Science 2008, 322, 1839–1842. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Psatha, N.; Sova, P.; Gil, S.; Wang, H.; Kim, J.; Kulkarni, C.; Valensisi, C.; David Hawkins, R.; Stamatoyannopoulos, G.; et al. Reactivation of γ-Globin in Adult β-YAC Mice after Ex Vivo and in Vivo Hematopoietic Stem Cell Genome Editing. Blood 2018, 131, 2915–2928. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, V.; Srinivasan, S.; Babu, P.; Thangavel, S. Manipulation of Developmental Gamma-Globin Gene Expression: An Approach for Healing Hemoglobinopathies. Mol. Cell. Biol. 2020, 41, e00253-20. [Google Scholar] [CrossRef]
- Xu, J.; Bauer, D.E.; Kerenyi, M.A.; Vo, T.D.; Hou, S.; Hsu, Y.J.; Yao, H.; Trowbridge, J.J.; Mandel, G.; Orkin, S.H. Corepressor-Dependent Silencing of Fetal Hemoglobin Expression by BCL11A. Proc. Natl. Acad. Sci. USA 2013, 110, 6518–6523. [Google Scholar] [CrossRef]
- Wilber, A.; Nienhuis, A.W.; Persons, D.A. Transcriptional Regulation of Fetal to Adult Hemoglobin Switching: New Therapeutic Opportunities. Blood 2011, 117, 3945–3953. [Google Scholar] [CrossRef]
- Thein, S.L. Genetic Association Studies in β-Hemoglobinopathies. Hematology 2013, 2013, 354–361. [Google Scholar] [CrossRef]
- Xu, J.; Sankaran, V.G.; Ni, M.; Menne, T.F.; Puram, R.V.; Kim, W.; Orkin, S.H. Transcriptional Silencing of γ-Globin by BCL11A Involves Long-Range Interactions and Cooperation with SOX6. Genes Dev. 2010, 24, 783–798. [Google Scholar] [CrossRef] [PubMed]
- Shariati, L.; Rohani, F.; Heidari Hafshejani, N.; Kouhpayeh, S.; Boshtam, M.; Mirian, M.; Rahimmanesh, I.; Hejazi, Z.; Modarres, M.; Pieper, I.L.; et al. Disruption of SOX6 Gene Using CRISPR/Cas9 Technology for Gamma-Globin Reactivation: An Approach towards Gene Therapy of β-Thalassemia. J. Cell. Biochem. 2018, 119, 9357–9363. [Google Scholar] [CrossRef] [PubMed]
- Demirci, S.; Zeng, J.; Wu, Y.; Uchida, N.; Shen, A.H.; Pellin, D.; Gamer, J.; Yapundich, M.; Drysdale, C.; Bonanno, J.; et al. BCL11A Enhancer–Edited Hematopoietic Stem Cells Persist in Rhesus Monkeys without Toxicity. J. Clin. Investig. 2020, 130, 6677–6687. [Google Scholar] [CrossRef]
- Bauer, D.E.; Kamran, S.C.; Lessard, S.; Xu, J.; Fujiwara, Y.; Lin, C.; Shao, Z.; Canver, M.C.; Smith, E.C.; Pinello, L.; et al. An Erythroid Enhancer of BCL11A Subject to Genetic Variation Determines Fetal Hemoglobin Level. Science 2013, 342, 253–257. [Google Scholar] [CrossRef]
- Jawaid, K.; Wahlberg, K.; Thein, S.L.; Best, S. Binding Patterns of BCL11A in the Globin and GATA1 Loci and Characterization of the BCL11A Fetal Hemoglobin Locus. Blood Cells Mol. Dis. 2010, 45, 140–146. [Google Scholar] [CrossRef]
- Khosravi, M.A.; Abbasalipour, M.; Concordet, J.P.; Berg, J.V.; Zeinali, S.; Arashkia, A.; Azadmanesh, K.; Buch, T.; Karimipoor, M. Targeted Deletion of BCL11A Gene by CRISPR-Cas9 System for Fetal Hemoglobin Reactivation: A Promising Approach for Gene Therapy of Beta Thalassemia Disease. Eur. J. Pharmacol. 2019, 854, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zeng, J.; Roscoe, B.P.; Liu, P.; Yao, Q.; Lazzarotto, C.R.; Clement, K.; Cole, M.A.; Luk, K.; Baricordi, C.; et al. Highly Efficient Therapeutic Gene Editing of Human Hematopoietic Stem Cells. Nat. Med. 2019, 25, 776–783. [Google Scholar] [CrossRef]
- Canver, M.C.; Smith, E.C.; Sher, F.; Pinello, L.; Sanjana, N.E.; Shalem, O.; Chen, D.D.; Schupp, P.G.; Vinjamur, D.S.; Garcia, S.P.; et al. BCL11A Enhancer Dissection by Cas9-Mediated in Situ Saturating Mutagenesis. Nature 2015, 527, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Paper: Updated Results of a Phase 1/2 Clinical Study of Zinc Finger Nuclease-Mediated Editing of BCL11A in Autologous Hematopoietic Stem Cells for Transfusion-Dependent Beta Thalassemia. Available online: https://ash.confex.com/ash/2021/webprogram/Paper147907.html (accessed on 4 July 2022).
- Doerfler, P.A.; Sharma, A.; Porter, J.S.; Zheng, Y.; Tisdale, J.F.; Weiss, M.J. Genetic Therapies for the First Molecular Disease. J. Clin. Investig. 2021, 131. [Google Scholar] [CrossRef] [PubMed]
- Frangoul, H.; Bobruff, Y.; Cappellini, M.D.; Corbacioglu, S.; Fernandez, C.M.; De La Fuente, J.; Grupp, S.; Handgretinger, R.; Ho, T.W.; Imren, S.; et al. Safety and Efficacy of CTX001TM in Patients With Transfusion-Dependent β-Thalassemia or Sickle Cell Disease: Early Results From the CLIMB THAL-111 and CLIMB SCD-121 Studies of Autologous CRISPR-CAS9-Modified CD34 + Hematopoietic Stem and Progenitor Cells. In Proceedings of the 62nd Annual American Society of Hematology Meeting, Washington, DC, USA, 6 December 2020. [Google Scholar]
- Grupp, S.; Bloberger, N.; Campbell, C.; Carroll, C.; Hankins, J.S.; Ho, T.W.; Imren, S.; Lu, Y.; Mapara, M. CTX001 for sickle cell disease: Safety and efficacy results from the ongoing Climb SCD-121 study of autologous CRISPR-Cas9-modified CD34+ hematopoietic stem and progenitor cells. HemaSphere 2021, 5, 365. [Google Scholar]
- CTX001 for Treatment of Sickle Cell Disease and Other Blood Disorders. Available online: https://sicklecellanemianews.com/ctx001-sickle-cell-disease (accessed on 9 April 2022).
- A Safety and Efficacy Study Evaluating CTX001 in Subjects with Transfusion-Dependent β-Thalassemia—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/study/NCT03655678 (accessed on 13 August 2022).
- A Safety and Efficacy Study Evaluating CTX001 in Subjects with Severe Sickle Cell Disease—Full Text View—ClinicalTrials.gov. Available online: https://www.clinicaltrials.gov/ct2/show/study/NCT03745287 (accessed on 13 August 2022).
- A Long-term Follow-up Study in Subjects Who Received CTX001—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04208529 (accessed on 13 August 2022).
- Evaluation of Safety and Efficacy of CTX001 in Pediatric Participants with Transfusion-Dependent β-Thalassemia (TDT)—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT05356195 (accessed on 13 August 2022).
- Evaluation of Safety and Efficacy of CTX001 in Pediatric Participants with Severe Sickle Cell Disease (SCD)—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/study/NCT05329649 (accessed on 13 August 2022).
- Humbert, O.; Samuelson, C.; Kiem, H.P. CRISPR/Cas9 for the Treatment of Haematological Diseases: A Journey from Bacteria to the Bedside. Br. J. Haematol. 2021, 192, 33–49. [Google Scholar] [CrossRef]
- Nachbaur, D.; Kropshofer, G.; Heitger, A.; Latzer, K.; Glassl, H.; Ludescher, C.; Nussbaumer, W.; Niederwieser, D. Phenotypic and Functional Lymphocyte Recovery After CD34+-Enriched Versus Non-T Cell-Depleted Autologous Peripheral Blood Stem Cell Transplantation. J. Hematother. Stem Cell Res. 2004, 9, 727–736. [Google Scholar] [CrossRef]
- Vertex and CRISPR Therapeutics Present New Data in 22 Patients with Greater Than 3 Months Follow-Up Post-Treatment with Investigational CRISPR/Cas9 Gene-Editing Therapy, CTX001TM at European Hematology Association Annual Meeting|Vertex Pharmaceuticals. Available online: https://investors.vrtx.com/news-releases/news-release-details/vertex-and-crispr-therapeutics-present-new-data-22-patients (accessed on 9 April 2022).
- A Study to Assess the Safety, Tolerability, and Efficacy of ST-400 for Treatment of Transfusion-Dependent Beta-Thalassemia (TDT)—Full Text View—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03432364?term=sangamo&cond=thalassemia&rank=1 (accessed on 30 January 2023).
- Jiang, F.; Doudna, J.A. CRISPR–Cas9 Structures and Mechanisms. Annu. Rev. Biophys. 2017, 46, 505–529. [Google Scholar] [CrossRef]
- Zhang, D.; Hussain, A.; Manghwar, H.; Xie, K.; Xie, S.; Zhao, S.; Larkin, R.M.; Qing, P.; Jin, S.; Ding, F. Genome Editing with the CRISPR-Cas System: An Art, Ethics and Global Regulatory Perspective. Plant Biotechnol. J. 2020, 18, 1651–1669. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Majeed, S.; Hoque, M.Z.; Ahmad, I. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells 2020, 9, 1608. [Google Scholar] [CrossRef]
- Frati, G.; Miccio, A. Genome Editing for β-Hemoglobinopathies: Advances and Challenges. J. Clin. Med. 2021, 10, 482. [Google Scholar] [CrossRef] [PubMed]
- Ran, F.A.; Hsu, P.D.; Lin, C.Y.; Gootenberg, J.S.; Konermann, S.; Trevino, A.E.; Scott, D.A.; Inoue, A.; Matoba, S.; Zhang, Y.; et al. Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell 2013, 154, 1380–1389. [Google Scholar] [CrossRef]
- Alateeq, S.; Ovchinnikov, D.; Tracey, T.; Whitworth, D.; Al-Rubaish, A.; Al-Ali, A.; Wolvetang, E. Identification of On-Target Mutagenesis during Correction of a Beta-Thalassemia Splice Mutation in IPS Cells with Optimised CRISPR/Cas9-Double Nickase Reveals Potential Safety Concerns. APL Bioeng. 2018, 2, 046103. [Google Scholar] [CrossRef] [PubMed]
- Tycko, J.; Myer, V.E.; Hsu, P.D. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity. Mol. Cell 2016, 63, 355–370. [Google Scholar] [CrossRef]
- Vadolas, J.; Glaser, A.; McColl, B. The Therapeutic Potential of Genome Editing for β-Thalassemia. F1000Research 2015, 4. [Google Scholar] [CrossRef]
- Brokowski, C.; Adli, M. CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. J. Mol. Biol. 2019, 431, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Shinwari, Z.K.; Tanveer, F.; Khalil, A.T. Ethical Issues Regarding CRISPR Mediated Genome Editing. Curr. Issues Mol. Biol. 2017, 26, 103–110. [Google Scholar] [CrossRef] [PubMed]
Trial Description | Participants | Primary Endpoint | Baseline Characteristics for Patients with 3 Months Follow Up | Adverse Events | References |
---|---|---|---|---|---|
CLIMB THAL–111 Study Id No: CTX001-111 NCT No: NCT03655678 Title: A Phase 1/2/3 Study of the Safety and Efficacy of a Single Dose of Autologous CRISPR-Cas9 Modified CD34+ Human Hematopoietic Stem and Progenitor Cells (hHSPCs) in Subjects With Transfusion-Dependent β-Thalassemia. Pathology: TDT | Both male and female; Age limit: 12 years to 35 years; Number of estimated participants: 45; History of at least 100 mL/kg/year or ≥10 units/year of packed RBC transfusions in the prior 2 years; Homozygous β-thalassemia or compound heterozygous β-thalassemia including β-thalassemia/hemoglobin E (HbE) | Sustained transfusion reduction of 50% for ≥6 months, beginning 3 months after the CTX001 infusion | (n = 5) Median neutrophil engraftment occurred on day 32 after infusion of CTX001 Median platelet engraftment occurred on day 37 after infusion of CTX001 Total median Hb level: 11.5 g/dL Median HbF level: 8.4 g/dL | AE were reported in 1 patient with TDT: Headache, Haemophagocytic, Lymphohistiocytosis (HLH), Acute respiratory distress syndrome, Idiopathic pneumonia syndrome (All 4 of these AEs were resolved/clinically improved after 15 months of CTX001 infusion) | [64,106] |
CLIMB SCD—121 Study Id No: CTX001-121 NCT No: NCT03745287 Title: A Phase 1/2/3 Study to Evaluate the Safety and Efficacy of a Single Dose of Autologous CRISPR-Cas9 Modified CD34+ Human Hematopoietic Stem and Progenitor Cells (CTX001) in Subjects With Severe Sickle Cell Disease Pathology: SSCD | Both male and female; Age limit: 12 years to 35 years; Number of estimated participants: 45; Presence of previous indications of two or more severe vaso-occlusive episodes per year for a period of early two years; Occurrence of βS/βS or βS/β0 genotype | After 6 months from CTX001 infusion, ≥20% sustained level of HbF for ≥3 months No vaso-occlusive episodes during the 16.6 months after the infusion of CTX001 | (n = 2) Median neutrophil engraftment occurred on day 22 after infusion of CTX001 Median platelet engraftment occurred on day 30 after infusion of CTX001 Total median Hb level: 10.0 g/dL Median HbF level: 4.21 g/dL | 114 adverse events were identified in patient 2 with SCD, among which 3 were classified as serious adverse events. sepsis in the presence of neutropenia; Cholelithiasis; Abdominal pain All 3 adverse events were resolved upon treatment. Furthermore, intermittent, nonserious lymphopenia was observed | [64,107] |
CLIMB 131 Study Id No: CTX001-131 NCT No: 04208529 Title: A Long-term Follow-up Study of Subjects With β-thalassemia or Sickle Cell Disease Treated With Autologous CRISPR-Cas9 Modified Hematopoietic Stem Cells (CTX001) Pathology: TDT | Both male and female; Age limit: 2 years and older (Child, Adult, Older Adult); Number of estimated participants: 114; Subjects must have received CTX001 infusion in a parent study (CTX001-111 or CTX001-121 or VX21-CTX001-141 or VX21-CTX001-151) | N/A | N/A | N/A | [108] |
CLIMB 141 Study Id No: VX21-CTX001-141 NCT No: NCT05356195 Title: A Phase 3 Study to Evaluate the Safety and Efficacy of a Single Dose of CTX001 in Pediatric Subjects With Transfusion-Dependent β-Thalassemia Pathology: TDT | Both male and female; Age limit: 2 years to 11 years (Child); Number of estimated participants: 12; Homozygous or compound heterozygous β-thalassemia including β-thalassemia/hemoglobin E (HbE); History of at least 100 mL/kg/year of packed RBC transfusions in the prior 24 months | N/A | N/A | N/A | [109] |
CLIMB 151 Study Id No: VX21-CTX001-151 NCT No: NCT05329649 A Phase 3 Study to Evaluate the Safety and Efficacy of a Single Dose of CTX001 in Pediatric Subjects With Severe Sickle Cell Disease Pathology: SSCD | Both male and female; Age limit: 2 years to 11 years (Child); Number of estimated participants: 12; Presence of βS/βS or βS/β0 genotype; Previous indications of two or more severe vaso-occlusive episodes per year for a period of early two years | N/A | N/A | N/A | [110] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamage, U.; Warnakulasuriya, K.; Hansika, S.; Silva, G.N. CRISPR Gene Therapy: A Promising One-Time Therapeutic Approach for Transfusion-Dependent β-Thalassemia—CRISPR-Cas9 Gene Editing for β-Thalassemia. Thalass. Rep. 2023, 13, 51-69. https://doi.org/10.3390/thalassrep13010006
Gamage U, Warnakulasuriya K, Hansika S, Silva GN. CRISPR Gene Therapy: A Promising One-Time Therapeutic Approach for Transfusion-Dependent β-Thalassemia—CRISPR-Cas9 Gene Editing for β-Thalassemia. Thalassemia Reports. 2023; 13(1):51-69. https://doi.org/10.3390/thalassrep13010006
Chicago/Turabian StyleGamage, Udani, Kesari Warnakulasuriya, Sonali Hansika, and Gayathri N. Silva. 2023. "CRISPR Gene Therapy: A Promising One-Time Therapeutic Approach for Transfusion-Dependent β-Thalassemia—CRISPR-Cas9 Gene Editing for β-Thalassemia" Thalassemia Reports 13, no. 1: 51-69. https://doi.org/10.3390/thalassrep13010006
APA StyleGamage, U., Warnakulasuriya, K., Hansika, S., & Silva, G. N. (2023). CRISPR Gene Therapy: A Promising One-Time Therapeutic Approach for Transfusion-Dependent β-Thalassemia—CRISPR-Cas9 Gene Editing for β-Thalassemia. Thalassemia Reports, 13(1), 51-69. https://doi.org/10.3390/thalassrep13010006