Prolonged Hematogone Expansion Is Associated with Better Outcomes in Allogeneic Hematopoietic Stem Cell Transplantation Recipients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Data Collection
2.3. Flow Cytometry
2.4. Molecular Biology Analysis
2.5. Statistical Analysis
3. Results
3.1. Patients’ Characteristics at Allo-HSCT
3.2. Impact of Hematogone Expansion on Survival After Allo-HSCT
3.3. Factors Influencing Hematogone Expansion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HSCT | Hematopoietic stem cell transplantation |
MRR | Most recent re-evaluation |
Allo-HSCT | Allogeneic hematopoietic stem cell transplantation |
HSCs | Hematopoietic stem cells |
BM | Bone marrow |
GvHD | Graft versus host disease relapse |
NRM | Non-relapse transplant mortality |
HLA | Human leukocyte antigen |
CMV | Cytomegalovirus |
ALL | Acute lymphoblastic leukemia |
BM-MNCs | BM mononuclear cells |
OS | Overall survival |
RFS | Relapse-free survival |
WBC | White blood cells |
Hb | Hemoglobin levels |
PLT | Platelets |
LDH | Lactate dehydrogenase |
VUS | Variants of unknown significance |
MAC | Myeloablative conditioning |
RIC | Reduced-intensity conditioning |
PBS | Phosphate-buffered saline |
FSC-A | Forward scatter area |
SSC-A | Side scatter area |
HR | Hazard ratio |
AML | Acute myeloid leukemia |
MDS | Myelodysplastic syndrome |
MM | Multiple myeloma |
MRD | Matched-related donor |
MUD | Matched-unrelated donor |
NHL | Non-Hodgkin lymphoma |
FLT3 | Fms-related receptor tyrosine kinase 3 |
NPM1 | Nucleophosmin |
WT1 | Wilm’s tumor 1 |
ANC | Absolute neutrophil count |
PBSCs | Peripheral blood stem cells |
BMSCs | Bone marrow stem cells |
HG | Hematogones |
PB | Peripheral blood |
CREA | Creatinine |
ROC | Receiver Operating Characteristic |
AUC | Area under the curve |
NGS | Next-generation sequencing |
References
- Giralt, S.; Bishop, M.R. Principles and overview of allogeneic hematopoietic stem cell transplantation. Cancer Treat. Res. 2009, 144, 1–21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheuk, D.K. Optimal stem cell source for allogeneic stem cell transplantation for hematological malignancies. World J. Transplant. 2013, 3, 99–112. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Z.; Rubinstein, S.M.; Thota, R.; Savani, M.; Brissot, E.; Shaw, B.E.; Majhail, N.S.; Mohty, M.; Savani, B.N. Immune-Mediated Complications after Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2016, 22, 1368–1375. [Google Scholar] [CrossRef] [PubMed]
- Arnaout, K.; Patel, N.; Jain, M.; El-Amm, J.; Amro, F.; Tabbara, I.A. Complications of allogeneic hematopoietic stem cell transplantation. Cancer Investig. 2014, 32, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Kalwak, K.; Gorczyńska, E.; Wójcik, D.; Toporski, J.; Turkiewicz, D.; Slociak, M.; Latos-Grazynska, E.; Boguslawska-Jaworska, J.; Chybicka, A. Late-onset idiopathic thrombocytopenic purpura correlates with rapid B-cell recovery after allogeneic T-cell-depleted peripheral blood progenitor cell transplantation in children. Transplant. Proc. 2002, 34, 3374–3377. [Google Scholar] [CrossRef] [PubMed]
- Mikulska, M.; Gualandi, F.; Anserini, P. Early and late complications of hematopoietic stem cell transplantation. Handb. Clin. Neurol. 2024, 202, 135–151. [Google Scholar] [CrossRef] [PubMed]
- Serio, B.; Storti, G.; D’Addona, M.; Santoro, L.; Frieri, C.; De Novellis, D.; Marano, L.; De Santis, G.; Guariglia, R.; Manfra, I.; et al. Post-Transplant Cyclophosphamide versus Anti-Thymocyte Globulin in Patients with Hematological Malignancies Treated with Allogeneic Hematopoietic Stem Cell Transplantation from Haploidentical and Matched Unrelated Donors: A Real-Life Experience. Hematol. Rep. 2024, 16, 234–243. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agarwal, K.; Aggarwal, M.; Aggarwal, V.K.; Pujani, M.; Nain, M. Increased hematogones in an infant with bicytopenia and leucocytosis: A case report. Cases J. 2010, 3, 75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, K.; Tiwari, D.; Boddu, R.; Somasundarum, V.; Mishra, K. Hematogones: The Supreme Mimicker and a Cytomorphological Confounder in Acute Lymphoblastic Leukemia. J. Lab. Physicians 2022, 15, 212–216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chantepie, S.P.; Cornet, E.; Salaün, V.; Reman, O. Hematogones: An overview. Leuk. Res. 2013, 37, 1404–1411. [Google Scholar] [CrossRef] [PubMed]
- Tsao, L.; Colovai, A.I.; Jiang, J.G.; Bhagat, G.; Alobeid, B. Characterizing CD43 expression in haematogones using multicolor flow cytometric analysis. Br. J. Haematol. 2005, 128, 820–823. [Google Scholar] [CrossRef] [PubMed]
- McKenna, R.W.; Washington, L.T.; Aquino, D.B.; Picker, L.J.; Kroft, S.H. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood 2001, 98, 2498–2507. [Google Scholar] [CrossRef] [PubMed]
- Rimsza, L.M.; Larson, R.S.; Winter, S.S.; Foucar, K.; Chong, Y.Y.; Garner, K.W.; Leith, C.P. Benign hematogone-rich lymphoid proliferations can be distinguished from B-lineage acute lymphoblastic leukemia by integration of morphology, immunophenotype, adhesion molecule expression, and architectural features. Am. J. Clin. Pathol. 2000, 114, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Ishio, T.; Sugita, J.; Tateno, T.; Hidaka, D.; Hayase, E.; Shiratori, S.; Okada, K.; Goto, H.; Onozawa, M.; Nakagawa, M.; et al. Hematogones Predict Better Outcome in Allogeneic Hematopoietic Stem Cell Transplantation Irrespective of Graft Sources. Biol. Blood Marrow Transplant. 2018, 24, 1990–1996. [Google Scholar] [CrossRef] [PubMed]
- McKenna, D.H.; Rupp, C.; Wagner, J.; McGlennen, R.; Hirsch, B.; Dolan, M.; Burger, S.; Hanson, M.; Jaszcz, W.; Nguyen, P.L. Increased lymphoblast-like cells following umbilical cord blood stem cell transplantation do not predict recurrent acute leukemia. Leukemia 2002, 16, 2171–2172. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, P.; Gascón, A.; Martínez-Cuadrón, D.; Senent, M.L.; Cordón, L.; Sanz, J.; Sempere, A.; López-Pavía, M.; Rodríguez-Veiga, R.; Hurtado, M.J.; et al. Significance of increased blastic-appearing cells in bone marrow following myeloablative unrelated cord blood transplantation in adult patients. Biol. Blood Marrow Transplant. 2012, 18, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Shima, T.; Miyamoto, T.; Kikushige, Y.; Mori, Y.; Kamezaki, K.; Takase, K.; Henzan, H.; Numata, A.; Ito, Y.; Takenaka, K.; et al. Quantitation of hematogones at the time of engraftment is a useful prognostic indicator in allogeneic hematopoietic stem cell transplantation. Blood 2013, 121, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Snowden, J.A.; Sánchez-Ortega, I.; Corbacioglu, S.; Basak, G.W.; Chabannon, C.; de la Camara, R.; Dolstra, H.; Duarte, R.F.; Glass, B.; Greco, R.; et al. Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: Current practice in Europe, 2022. Bone Marrow Transplant. 2022, 57, 1217–1239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muehleck, S.D.; McKenna, R.W.; Gale, P.F.; Brunning, R.D. Terminal deoxynucleotidyl transferase (TdT)-positive cells in bone marrow in the absence of hematologic malignancy. Am. J. Clin. Pathol. 1983, 79, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Loken, M.R.; Shah, V.O.; Hollander, Z.; Civin, C.I. Flow cytometric analysis of normal B lymphoid development. Pathol. Immunopathol. Res. 1988, 7, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Chantepie, S.P.; Parienti, J.J.; Salaun, V.; Benabed, K.; Cheze, S.; Gac, A.C.; Johnson-Ansah, H.; Macro, M.; Damaj, G.; Vilque, J.P.; et al. The prognostic value of hematogones in patients with acute myeloid leukemia. Am. J. Hematol. 2016, 91, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Tavarozzi, R.; Manzato, E.; Morganti, R.; Sammuri, P.; Tarrini, G.; Ricci, F.; Mattana, G.; Galimberti, S.; Petrini, M.; Carulli, G. Hematogones in patients with acute myeloid leukaemia: Prognostic value and correlation with minimal residual disease. Leuk. Res Rep. 2021, 15, 100234. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liao, H.; Zheng, Q.; Jin, Y.; Chozom, T.; Zhu, Y.; Liu, L.; Jiang, N. The prognostic significance of hematogones and CD34+ myeloblasts in bone marrow for adult B-cell lymphoblastic leukemia without minimal residual disease. Sci. Rep. 2019, 9, 19722. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ishii, H.; Konuma, T.; Kato, S.; Oiwa-Monna, M.; Tojo, A.; Takahashi, S. Impact of hematogones on the long-term outcomes of single-unit cord blood transplantation for adult patients. Leuk. Lymphoma. 2017, 58, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Mori, H.; Koyama, D.; Sato, Y.; Kataoka, Y.; Taito, S.; Ishio, T.; Teshima, T.; Yokota, I. Prognostic Value of Hematogones in Patients With Hematopoietic Disorders After Allogeneic Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta-Analysis. Cureus 2023, 15, e47184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Honebrink, T.; Dayton, V.; Burke, M.J.; Larsen, K.; Cao, Q.; Brunstein, C.; Weisdorf, D.; Miller, J.S.; Wagner, J.E.; Verneris, M.R. Impact of bone marrow hematogones on umbilical cord blood transplantation outcomes in patients with acute myeloid leukemia. Biol. Blood Marrow Transplant. 2012, 18, 930–936. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Christopeit, M.; Heiland, A.; Binder, M.; Zabelina, T.; Ayuk, F.; Horn, C.; Haferlach, T.; Bokemeyer, C.; Kröger, N.; Bacher, U. Impact of physiological BM CD10+CD19+ B-cell precursors (haematogones) in the post-transplant period in patients with AML. Bone Marrow Transplant. 2013, 48, 1257–1259. [Google Scholar] [CrossRef] [PubMed]
- Doki, N.; Haraguchi, K.; Hagino, T.; Igarashi, A.; Najima, Y.; Kobayashi, T.; Kakihana, K.; Okuyama, Y.; Sakamaki, H.; Ohashi, K. Clinical impact of hematogones on outcomes of allogeneic hematopoietic stem cell transplantation. Ann. Hematol. 2015, 94, 2055–2060. [Google Scholar] [CrossRef] [PubMed]
- Giudice, V.; Serio, B.; Errichiello, S.; Ferrara, I.; Galdiero, A.; Bertolini, A.; Visconti, R.; De Novellis, D.; Guariglia, R.; Luponio, S.; et al. Subclones with variants of uncertain clinical significance might contribute to ineffective hemopoiesis and leukemia predisposition. Eur. J. Haematol. 2023, 111, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Striker, S.S.; Wilferd, S.F.; Lewis, E.M.; O’Connor, S.A.; Plaisier, C.L. Systematic integration of protein-affecting mutations, gene fusions, and copy number alterations into a comprehensive somatic mutational profile. Cell Rep. Methods. 2023, 3, 100442. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giudice, V.; Gorrese, M.; Vitolo, R.; Bertolini, A.; Marcucci, R.; Serio, B.; Guariglia, R.; Ferrara, I.; Pepe, R.; D’Alto, F.; et al. WT1 Expression Levels Combined with Flow Cytometry Blast Counts for Risk Stratification of Acute Myeloid Leukemia and Myelodysplastic Syndromes. Biomedicines 2021, 9, 387. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chantepie, S.P.; Salaün, V.; Parienti, J.J.; Truquet, F.; Macro, M.; Cheze, S.; Vilque, J.P.; Reman, O. Hematogones: A new prognostic factor for acute myeloblastic leukemia. Blood 2011, 117, 1315–1318. [Google Scholar] [CrossRef] [PubMed]
- Göçer, M.; Kurtoğlu, E. Prognostic significance of hematogone presence after autologous stem cell transplantation in patients with multiple myeloma. Cytom. Part B Clin. Cytom. 2021, 100, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, A.; Killick, S.; Littlewood, T.; Hatton, C.; Peniket, A.; Seidl, T.; Soneji, S.; Leach, J.; Bowen, D.; Chapman, C.; et al. Evidence for reduced B-cell progenitors in early (low-risk) myelodysplastic syndrome. Blood 2005, 106, 2982–2991. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento Palao, H.; Tarín, F.; Martirena, F.; Barragán, E.; Such, E.; Sempere, A.; Tasso, M.; Manresa, P.; López, F. A reproducible strategy for analysis of minimal residual disease measured by Standardized multiparametric flow cytometry in b acute lymphoblastic leukemia. Cytom. Part B Clin. Cytom. 2019, 96, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Ondrejka, S.L.; Hsi, E.D.; Rybicki, L.A.; Katanik, D.A.; Bolwell, J.B.; Duong, H.K. Hematogones Contained in CD34+ Apheresis Products for Hematopoietic Progenitor Cell Transplantation Have No Adverse Impact on Engraftment Outcomes. Blood 2012, 120, 3022. [Google Scholar] [CrossRef]
Recipient N = 60 | Donor N = 60 | |
---|---|---|
Median age, years (range) | 50 (19–71) | 44 (17–69) |
Gender (M/F), n (%) | M 37 (62) | M 30 (50) |
CMV positivity, n (%) | 56 (93) | 47 (78) |
HLA-mismatch | ||
HLA-identical, n (%) | 37 (62) | |
Haplo-identical, n (%) | 23 (38) | |
AB0 homogroup, n (%) | 18 (30) | |
Donor status | ||
MRD, n (%) | 56 (93%) | |
MUD, n (%) | 4 (7%) | |
Comorbidities, n (%) | 24 (40) | |
Metabolic, n (%) | 13 (22) | |
Hypertension, n (%) | 10 (17) | |
Others, n (%) | 14 (23) | |
Diagnosis | ||
AML | 36 (60) | |
ALL | 11 (18) | |
MDS | 6 (10) | |
MM | 6 (10) | |
T-cell NHL | 1 (2) | |
Cytogenetics abnormalities, n (%) | 17 (28) | |
Pathogenic/VUS mutations, n (%) | 9 (15)/17 (28) | |
FLT3 mutated | 7 (19) | |
NPM1 mutated | 7 (19) | |
WT1 upregulation | 19 (53) | |
Median ANC, cells/µL (range) | 2246 (20–14,170) | |
Median platelets, cells/µL (range) | 85,703 (1000–298,000) | |
Median LDH U/L (range) | 523 (200–3326) | |
Conditioning | ||
RIC, n (%) | 36 (60) | |
MAC, n (%) | 24 (40) | |
HSC source | ||
PBSCs, n (%) | 55 (92) | |
BMSCs, n (%) | 5 (8) | |
Median CD34+ cells × 103/Kg infused (range) | 4.61 (0.58–10.00) | |
Median days to engraftment (range) | 15 (9–36) | |
Median days to full chimerism (range) | 71 (30–114) | |
Median follow-up, months | 21 |
Dependent Variable = OS | Univariate | Multivariate | |||
---|---|---|---|---|---|
Patient-Related Factors | Comparison | Odds (95% CI) | p Value | Odds (95% CI) | p Value |
Recipient age | <50 vs. ≥50 years | 2.141 (0.97–4.74) | 0.060 | - | - |
Recipient gender | Male vs. female | 2.1 (0.89–4.95) | 0.090 | - | - |
Recipient CMV serostatus | Positive vs. negative | 2.249 (0.31–16.57) | 0.426 | - | - |
Hematogones at first re-evaluation | Presence vs. absence | 0.59 (0.22–1.58) | 0.292 | - | - |
Hematogones at MMR | Presence vs. absence | 0.094 (0.02–0.43) | 0.002 | 0.357 (0.05–2.63) | 0.019 |
WBC at first evaluation | Normal vs. out of range | 1.348 (0.49–3.72) | 0.564 | - | - |
WBC at MRR | Normal vs. out of range | 4.486 (1.30–15.46) | 0.017 | - | - |
LDH at first evaluation | Normal vs. out of range | 1.266 (0.46–3.49) | 0.649 | - | - |
LDH at MRR | Normal vs. out of range | 5.764 (1.53–21.76) | 0.010 | - | - |
Platelets at first evaluation | Normal vs. out of range | 1.323 (0.38–4.66) | 0.662 | - | - |
Platelets at MRR | Normal vs. out of range | 6.681 (0.846–52.769) | 0.072 | - | - |
Hb at first evaluation | Normal vs. out of range | 1.177 (0.34–4.14) | 0.800 | - | - |
Hb at MRR | Normal vs. out of range | 5.329 (1.14–24.99) | 0.034 | 0.739 (0.34–1.62) | 0.024 |
Creatinine at first evaluation | Normal vs. out of range | 3.432 (1.19–9.92) | 0.023 | - | - |
Creatinine at MRR | Normal vs. out of range | 9.396 (2.63–33.55) | 0.001 | 1.568 (0.71–3.47) | 0.019 |
Disease-related factors | Comparison | Odds (95% CI) | p Value | Odds (95% CI) | p Value |
Disease | AML vs. others | 1.805 (0.86–3.8) | 0.120 | - | - |
Metabolic disease | Presence vs. absence | 4.282 (1.91–9.60) | 0.000 | - | - |
Hypertension | Presence vs. absence | 2.299 (0.97–5.43) | 0.058 | - | - |
Other comorbidities | Presence vs. absence | 1.659 (0.75–3.69) | 0.214 | - | - |
Mutations | Presence vs. absence | 1.92 (0.76–4.86) | 0.169 | - | - |
VUS | Presence vs. absence | 0.372 (0.13–1.09) | 0.072 | - | - |
Cytogenetic abnormalities | Presence vs. absence | 1.376 (0.57–3.31) | 0.477 | - | - |
WBC at HSCT | Normal vs. out of range | 0.868 (0.33–2.28) | 0.774 | - | - |
LDH at HSCT | Normal vs. out of range | 2.243 (1.01–4.97) | 0.046 | - | - |
Platelets at HSCT | Normal vs. out of range | 1.673 (0.51–5.55) | 0.400 | - | - |
Hb at HSCT | Normal vs. out of range | 1.173 (0.45–3.09) | 0.746 | - | - |
Creatinine at HSCT | Normal vs. out of range | 1.568 (0.71–3.47) | 0.267 | - | - |
HSCT-related factors | Comparison | Odds (95% CI) | p Value | Odds (95% CI) | p Value |
Conditioning | MAC vs. RIC | 0.739 (0.34–1.62) | 0.449 | - | - |
Graft source | PB vs. BM | 0.357 (0.05–2.63) | 0.311 | - | - |
Previous HSCT | Yes vs. no | 0.955 (0.41–2.25) | 0.916 | - | - |
Days to engraftment | <16 vs. ≥16 days | 0.487 (0.19–1.24) | 0.133 | - | - |
Chimerism time | <71 vs. ≥71 days | 0.253 (0.06–1.12) | 0.070 | - | - |
Donor-related factors | Comparison | Odds (95% CI) | p Value | Odds (95% CI) | p Value |
Donor age | <44 vs. ≥44 years | 1.805 (0.83–3.91) | 0.135 | - | - |
Donor gender | Male vs. female | 1.232 (0.59–2.59) | 0.582 | - | - |
Donor status | MRD vs. MUD | 0.584 (0.08–4.32) | 0.598 | - | - |
Donor CMV serostatus | Positive vs. negative | 1.588 (0.55–4.59) | 0.394 | - | - |
HLA mismatch | Match vs. mismatch | 0.605 (0.27–1.38) | 0.231 | - | - |
AB0 type | Match vs. mismatch | 1.021 (0.45–2.32) | 0.960 | - | - |
Dependent Variable = Hematogone Emergency | Univariate | Multivariate | |||
---|---|---|---|---|---|
Patient-Related Factors | Comparison | Odds (95% CI) | p Value | Odds (95% CI) | p Value |
Recipient age | <50 vs. ≥50 years | 2.641 (0.89–7.78) | 0.078 | - | - |
Recipient gender | Male vs. female | 0.616 (0.22–1.72) | 0.356 | - | - |
Recipient CMV serostatus | Positive vs. negative | 1.922 (0.25–14.75) | 0.530 | - | - |
Hematogones at first re-evaluation | Presence vs. absence | 2.607 (0.74–9.22) | 0.137 | - | - |
WBC at first evaluation | Normal vs. out of range | 0.925 (0.34–2.50) | 0.878 | - | - |
WBC at MRR | Normal vs. out of range | 0.765 (0.23–2.56) | 0.664 | - | - |
LDH at first evaluation | Normal vs. out of range | 0.832 (0.31–2.42) | 0.716 | - | - |
LDH at MRR | Normal vs. out of range | 0.752 (0.20–2.79) | 0.670 | - | - |
Platelets at first evaluation | Normal vs. out of range | 0.505 (0.19–1.38) | 0.181 | - | - |
Platelets at MRR | Normal vs. out of range | 0.821 (0.31–2.21) | 0.695 | - | - |
Hb at first evaluation | Normal vs. out of range | 2.104 (0.59–7.44) | 0.249 | - | - |
Hb at MRR | Normal vs. out of range | 1.625 (0.58–4.57) | 0.357 | - | - |
Creatinine at first evaluation | Normal vs. out of range | 2.768 (0.86–8.88) | 0.087 | - | - |
Creatinine at MRR | Normal vs. out of range | 2.348 (0.29–19.19) | 0.426 | ||
Disease-related factors | Comparison | Odds (95% CI) | p Value | Odds (95% CI) | p Value |
Disease | AML vs. others | 0.884 (0.30–2.59) | 0.822 | - | - |
Metabolic disease | Presence vs. absence | 0.851 (0.11–6.49) | 0.876 | - | - |
Hypertension | Presence vs. absence | 1.987 (0.44–9.02) | 0.374 | - | - |
Other comorbidities | Presence vs. absence | 1.439 (0.51–4.11) | 0.496 | - | - |
Mutations | Presence vs. absence | 3.074 (0.62–15.35) | 0.171 | - | - |
VUS | Presence vs. absence | 3.171 (1.01–9.97) | 0.048 | 4.39 (1.46–13.23) | 0.009 |
Cytogenetic abnormalities | Presence vs. absence | 2.34 (0.58–9.46) | 0.233 | - | - |
WBC at HSCT | Normal vs. out of range | 7.99 (0.98–65.38) | 0.053 | - | - |
LDH at HSCT | Normal vs. out of range | 0.201 (0.03–1.55) | 0.123 | - | - |
Platelets at HSCT | Normal vs. out of range | 0.753 (0.09–6.04) | 0.789 | - | - |
Hb at HSCT | Normal vs. out of range | 0.978 (0.32–3.02) | 0.969 | - | - |
Creatinine at HSCT | Normal vs. out of range | 0.777 (0.24–2.51) | 0.674 | - | - |
HSCT-related factors | Comparison | Odds (95% CI) | p Value | Odds (95% CI) | p Value |
Conditioning | MAC vs. RIC | 0.6 (0.20–1.78) | 0.356 | - | - |
Graft source | PB vs. BM | 0.671 (0.15–2.94) | 0.597 | - | - |
Previous HSCT | Yes vs. no | 0.426 (0.12–1.49) | 0.184 | - | - |
Days to engraftment | <16 vs. ≥16 days | 2.272 (0.79–6.46) | 0.124 | - | - |
Chimerism time | <71 vs. ≥71 days | 0.472 (0.15–1.48) | 0.198 | - | - |
Donor-related factors | Comparison | Odds (95% CI) | p Value | Odds (95% CI) | p Value |
Donor age | <44 vs. ≥44 years | 1.371 (0.49–3.82) | 0.546 | - | - |
Donor gender | Male vs. female | 0.917 (0.35–2.42) | 0.861 | - | - |
Donor status | MRD vs. MUD | 8.492 (1.40–51.46) | 0.020 | 2.52 (0.5–13.5) | 0.282 |
Donor CMV serostatus | Positive vs. negative | 0.717 (0.23–2.28) | 0.572 | - | - |
HLA disparity | Match vs. mismatch | 0.759 (0.29–1.99) | 0.576 | - | - |
AB0 type | Match vs. mismatch | 1.301 (0.45–3.76) | 0.626 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serio, B.; De Novellis, D.; Gorrese, M.; Bertolini, A.; Manzo, P.; Picone, F.; Della Corte, A.M.; Marcucci, R.; Morini, D.; Rizzo, M.; et al. Prolonged Hematogone Expansion Is Associated with Better Outcomes in Allogeneic Hematopoietic Stem Cell Transplantation Recipients. Hematol. Rep. 2025, 17, 46. https://doi.org/10.3390/hematolrep17050046
Serio B, De Novellis D, Gorrese M, Bertolini A, Manzo P, Picone F, Della Corte AM, Marcucci R, Morini D, Rizzo M, et al. Prolonged Hematogone Expansion Is Associated with Better Outcomes in Allogeneic Hematopoietic Stem Cell Transplantation Recipients. Hematology Reports. 2025; 17(5):46. https://doi.org/10.3390/hematolrep17050046
Chicago/Turabian StyleSerio, Bianca, Danilo De Novellis, Marisa Gorrese, Angela Bertolini, Paola Manzo, Francesca Picone, Anna Maria Della Corte, Rossella Marcucci, Denise Morini, Michela Rizzo, and et al. 2025. "Prolonged Hematogone Expansion Is Associated with Better Outcomes in Allogeneic Hematopoietic Stem Cell Transplantation Recipients" Hematology Reports 17, no. 5: 46. https://doi.org/10.3390/hematolrep17050046
APA StyleSerio, B., De Novellis, D., Gorrese, M., Bertolini, A., Manzo, P., Picone, F., Della Corte, A. M., Marcucci, R., Morini, D., Rizzo, M., Guariglia, R., Luponio, S., Scala, P., Verdesca, F., Sessa, A. M., Velino, F., De Leucio, M., Langella, M., Giudice, V., & Selleri, C. (2025). Prolonged Hematogone Expansion Is Associated with Better Outcomes in Allogeneic Hematopoietic Stem Cell Transplantation Recipients. Hematology Reports, 17(5), 46. https://doi.org/10.3390/hematolrep17050046